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Abstract

In this paper, a subspace fitting method is proposed to update, in the time
domain, the finite element model of a rotating machine. The procedure is achieved
by minimizing an error norm, leading to the comparison between experimental and
theoretical observability matrices. Experimental observability matrix is obtained
through a MOESP subspace identification algorithm, by projecting the output signal
onto some appropriate subspaces, resulting in a cancellation of input excitations and
noises. The theoretical observability matrix is obtained from modal parameters of
a finite element model of the structure. The minimization procedure is carried
out through a Gauss-Newton algorithm. The method is applied to determine the
foundation stiffness of an experimental rotating machine subject to a random noise.

Keywords: Subspace fitting/Operational Modal Analysis/Finite Elements
Model Updating/Vibratory Diagnosis/Rotating machine

1 Introduction
Evaluating damages occurring in mechanical systems constitutes a tough task. Their
emergence and evolution are characterized by variations (those can be small) of the
dynamic properties of structures [1]. Many damage diagnosis methods have been
proposed to carry out this issue. The methods based on Finite Element (FE) model
updating [2] perform the comparison between the modal parameters obtained ex-
perimentally with those of a numerical model. For industrial processes, Operational
Modal Analysis (OMA) [3] approaches aim at extracting the structural parameters
in operating conditions. Among these approaches, Subspace Identification (SubID)
techniques [4, 5, 6] appear highly efficient to determine the modal parameters of
structures in the time domain. The framework of SI techniques is summarized as
follows. From the consideration of input-output data, a so-called experimental ob-
servability matrix is obtained by projecting the output signal onto some appropriate
subspaces. The observability matrix contains the modal parameters of the structure
considered, which are extracted using a subspace fitting method [7, 8]. The moti-
vation behind this work is to improve further on the accuracy of SI techniques to
predict the modal parameters of any mechanical system. To this aim, a FE model
of the structure is considered to carry out the subspace fitting procedure in a Least
Squares (LS) sense. The modal parameters of the system are then updated by min-
imizing an error norm which depends on some unknown parameters of the structure
(e.g., stiffnesses. . . ). The proposed approach is applied to a rotating machine excited
by a random noise. The experimental observability matrix, as obtained using the
MOESP SubID technique, is used to update the parameters of the structure. The
accuracy of the method is highlighted.

2 Deterministic-Stochastic Modal Analysis
The purpose of SI techniques [5] is to consider a discrete modal state-space repre-
sentation of the form

qk+1 = Λqk +Bmoduk +wk (1)
yk = Φobsqk + vk (2)
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where uk and yk are the vectors of input and output data, respectively; Λ is a
diagonal matrix of eigenvalues; Bmod and Φobs are matrices expressed in terms of
the mode shapes of the structure; also, wk and vk are vectors of noises while qk is a
vector of generalized coordinates. In (1), the subscripts k and k+ 1 refer to vectors
of data measured at two different times tk and tk+1 = tk +∆t. From the linear state
space model, an input-output matrix equation is derived as [6]

Y = ΓexpQ+HdU +HsR+N (3)

where Y is a matrix of output data that are measured over different time inter-
vals {[tktk+1 . . . tk+α−1]}k. Q, H R and N are the related matrices of generalized
coordinates, input data and noises; also, Γexp represents the experimental observ-
ability matrix; otherwise, Hd and Hs are Hankel matrices. The basic idea behind
SubID techniques is to identify the experimental observability matrix Γexp from the
knowledge of Y . This is done by eliminating the terms HdU +HsR +N in (3)
by means of projection and weighting procedures. Clearly, a projection of the row
space of Y onto the orthogonal complement U⊥ of the row space of U enables one
to remove the influence of inputs. In addition, the fact to left and right multiply
(3) with some matricesW 1 andW 2 having some specific properties regarding noise
uncorrelation enables those noise terms to be removed as well. Considering such
procedures yields

O = W 1Y /U
⊥W 2 = W 1ΓexpQ/U

⊥W 2 (4)

More specifically, SI techniques deal with the matrix W 1Γexp = U1S
1/2
1 [5], where

the matrix S1 results from a SVD of O, i.e.

O =
[
U1 U2

] [S1 0
0 ' 0

] [
V T

1

V T
2

]
(5)

The matrices of eigenvalues Λ and mode shapes Φobs are determined from the ex-
perimental observability matrix Γexp in different ways [6]. All the methods make
use of the invariance property of the matrix Γexp.

3 Subspace Fitting for Finite Element Model
Updating

3.1 Objective function
The subspace fitting procedure [7, 8] is a concept that aims at correlating a theoret-
ical matrix Γ(θ) with the experimental observability matrix Γexp as

Γexp = Γ(θ)T (6)

where T is a similarity matrix. Here, the matrix Γ(θ) is supposed to be dependent
from a set of parameters (denoted as θ) which are to be identified. The subspace
fitting procedure can be formulated through the following LS problem:

{θ,T } = argmin||Γexp − Γ(θ)T ||2F (7)

where ||.||F denotes the Frobenius norm. This LS problem can be simplified by
determining the matrix T in a preprocessing step as T = Γ(θ)+Γexp (Γ(θ)+ being
the pseudo-inverse of Γ(θ)), which yields

θ = argmin||r(θ)||22 (8)
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where r(θ) = vec {(I − Γ(θ)Γ(θ)+)Γexp}.
The key idea behind the present work is to express the theoretical observability

matrix Γ(θ) by means of a FE model of the considered mechanical system. In
doing so, the spatial dynamics of the system is taken into account to carry out the
minimization procedure of r(θ) with a view to identifying the parameters θ in an
accurate and unique way.

Regarding rotating machines, a related FE based eigenproblem is considered as(
µ2
jM + µj(γ + ΩG) +K

)
Φj = 0 (9)

whereM , K and γ refer to the mass, stiffness and damping matrices; also, G is the
matrix that reflects the gyroscopic effects. The solutions of the eigenproblem are
{µj ,Φj} which stand for complex eigenvalues and right eigenvectors, respectively.
Thus a theoretical FE-based observability matrix can be expressed as

Γ(θ) =


Φobs

ΦobsΛ
...

ΦobsΛ
α−1

 (10)

where Λ = e∆tdiag(µi) and Φobs is the matrix of eigenvectors {Φj} at the observation
points of output signals.

3.2 Optimization algorithm
The Gauss-Newton algorithm [9] is used to solve the minimization problem (9). This
algorithm is based on the following iterative scheme

θf+1 = θf − βfH−1g (11)

where βf is a step size, while g andH are Gradient and Hessian matrices of ||r(θ)||22,
defined as

gi = 2Re

{
rH

∂r

∂θi

}
(12)

and

H ij = 2Re

{
∂rH

∂θi

∂r

∂θj

}
(13)

4 Experiments

4.1 Description of the structure
The proposed method is applied to update the FE model of the rotating machine
depicted in Figure 1. The structure is composed of a shaft attached to one rigid
disk and supported by two flexible bearings. The properties of the structure are
reported in Table 1. The output signal of the structure is measured by means of one
accelerometer which is attached to the first bearing. On the second bearing, a shaker
generates a random noise. The experimental observability matrix is obtained using
the MOESP SubID technique [6]. Some of identified experimental eigenfrequencies
are reported in Table 2.
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Figure 1: Experimental structure.

Geometrical proprieties Physical proprieties
Length= 0.50 m E = 193× 109 N.m−2

Shaft Diameter= 0.0254 m G = 74.2× 109 N.m−2

ρ = 7818 kg.m−3

Disk Thickness= 0.01 m ρ = 7818 kg.m−3

Diameter= 0.13 m

Table 1: Properties of the structure.

4.2 FE Model of the structure
A FE model is considered which is composed of six Timoshenko beam elements for
the shaft, with two translations (u and v) and two rotations (ψ and φ) per node,
along the x and y axis.

The nodal displacement vector is denoted as

δ =
{
u v φ ψ

}T (14)

The mass matrices MS and Mr
S of a beam element, related to translational and

rotational displacements, are respectively expressed as

MS =
ρSL

420



156 0 0 22L 54 0 0 −13L
156 −22L 0 0 54 13L 0

4L2 0 0 −13L −3L2 0
4L2 13L 0 0 −3L2

156 0 0 −22L
sym 156 22L 0

4L2 0
4L2


(15)
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and

Mr
S =

ρI

30L



36 0 0 3L −36 0 0 3L
36 −3L 0 0 −36 −3L 0

4L2 0 0 3L −L2 0
4L2 −3L 0 0 −L2

36 0 0 −3L
sym 36 3L 0

4L2 0
4L2


(16)

Also, the related matrix of gyroscopic effects is given by

GS =
ρI

15L



0 −36 3L 0 0 36 3L 0
0 0 3L −36 0 0 3L

0 4L2 3L 0 0 L2

0 0 3L L2 0
0 36L 3L 0

skew − sym 0 0 3L
0 4L2

0


(17)

The element stiffness matrix is given by

KS =
EI

(1 + a)L3



12 0 0 6L −12 0 0 6L
12 −6L 0 0 −12 −6L 0

4L2 + a 0 0 6L 2L2 − a 0
4L2 + a −6L 0 0 2L2 − a

12 0 0 −6L2

sym 12 6L 0
4L2 + a 0

4L2 + a


(18)

where a = 12EI
GSL2 is introduced to take into account the shear deformation effects.

Finally, the whole equation of motion for the shaft element is expressed as

(MS +Mr
S)

{
δ̈1

δ̈2

}
+ ΩGS

{
δ̇1

δ̇2

}
+KS

{
δ1

δ2

}
= 0 (19)

where structural damping is neglected.
Otherwise, the disk is modeled by means of concentrated mass and gyroscopic

effects using the following matrix term:

MDδ̈+ΩGDδ̇ =


mD 0 0 0
0 mD 0 0
0 0 IDx 0
0 0 0 IDx



ü
v̈

ψ̈

φ̈

+Ω


0 0 0 0
0 0 0 0
0 0 0 −IDz
0 0 IDz 0



u̇
v̇

ψ̇

φ̇

 (20)

Finally, the foundation of the bearings is modeled by means of the following
stiffness matrix

KB =


kB 0 0 0
0 kB 0 0
0 0 0 0
0 0 0 0

 (21)
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4.3 Updating procedure
The updating procedure of the FE model is carried out considering the bearing stiff-
ness kB as an unknown parameter. This parameter is updated through the subspace
fitting procedure described previously, whose flowchart is postponed in Figure 2.
The procedure is initialized with a value of 10 × 106 N.m−1 for kB. The eigenfre-

Figure 2: Flowchart of the Subspace Fitting procedure.

quencies of the system (rotating machine - foundation), obtained for this value, are
reported in Table 2 and compared with the experimental eigenfrequencies. Thus the

Experimental Before Updating After Updating
Frequency (Hz) Frequency (Hz) Error (%) Frequency (Hz) Error (%)

1 631 394.7 37 635.8 0.8

2 884 759.5 14.1 878.9 0.6

3 1551 1294.3 16.6 1552.1 0.1

4 2399 2064.6 13.9 2284.9 4.8

5 3001 2606.1 13.2 2962.9 1.3

Table 2: Eigenfrequencies of the system (rotating machine - foundation).

updating procedure is carried out which yields a value of 33× 106 N.m−1 for kB. In
that case, the errors between FE-based and experimental eigenfrequencies appear
quite small, as expected. In a more general view, the updating procedure can be
used to determine the variation of the stiffness parameter kB over the time domain
to carry out structural health monitoring. This yields an efficient way to detect the
occurrence of defects as well as machine breakdowns.
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5 Conclusion
A finite element model updating procedure has been proposed. The procedure used
a subspace fitting approach to adjust a FE-based observability matrix with an exper-
imental observability matrix obtained from a subspace identification technique. The
method has been successfully applied to determine the bearing stiffness of a rotating
machine. In a more general view, this method seems to constitute an efficient tool
to carry out the structural health monitoring of mechanical systems.
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