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SUMMARY

Inspired by recent analyses of the finite element heterogeneous multiscale method and the reduced basis
technique for nonlinear problems, we present a simple and concise finite element algorithm for the reliable
and efficient resolution of elliptic or parabolic multiscale problems of nonmonotone type. Solutions of
appropriate cell problems on sampling domains are selected by a greedy algorithm in an offline stage and
assembled in a reduced basis (RB). This RB is then used in an online stage to solve two-scale problems at a
computational cost comparable to the single-scale case. Both the offline and the online cost are independent
of the smallest scale in the physical problem. The performance and accuracy of the algorithm are illustrated
on 2D and 3D stationary and evolutionary nonlinear multiscale problems.

KEY WORDS: nonlinear nonmonotone problems, numerical homogenization, reduced basis method, a
posteriori error estimator, finite element method

1. INTRODUCTION

The aim of the proposed algorithm is to solve multiscale quasilinear elliptic problems of the form

−∇ · (aε(x, uε(x))∇uε(x)) = f(x) in Ω, uε = 0 on ∂Ω, (1)

or parabolic problems of the form

∂uε(x, t)

∂t
−∇ · (aε(x, uε(x, t))∇uε(x, t)) = f(x, t) in Ω× [0, T ], uε = 0 on ∂Ω× [0, T ], (2)

where aε is a nonlinear tensor that oscillates rapidly in space at the scale ε, at a computational cost
analogous to that of standard finite element methods (FEM) for single-scale quasilinear elliptic or
parabolic problems. We recall that solving (1) or (2) by a standard FEM requires, for small ε, a very
fine mesh width h < ε leading to a prohibitive computational cost.

For simplicity, we assume that Ω is a polyhedral domain in Rd, d ≤ 3, and we consider
homogeneous Dirichlet boundary conditions. Here, f is a source term and the nonlinear tensors
aε(x, s) are matrices of size d× d which are assumed uniformly elliptic and bounded with respect
to x, s and ε,

λ|ξ|2 ≤ aε(x, s)ξ · ξ, |aε(x, s)ξ| ≤ Λ1|ξ|, ∀ξ ∈ Rd,∀s ∈ R, a.e. x ∈ Ω, (3)
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and Lipchitz continuous with respect to s,

|aε(x, s1)ξ − aε(x, s2)ξ| ≤ Λ2|ξ||s1 − s2|, ∀ξ ∈ Rd,∀s1, s2 ∈ R, a.e. x ∈ Ω, (4)

where λ,Λ1,Λ2 > 0 are independent of ξ, s, s1, s2, x.
Standard homogenization theory for such nonlinear problems [1, 2, 3] states that uε converges as

ε→ 0 (up to a subsequence) weakly inH1(Ω)† toward a homogenized solution u0 which is solution
of a one-scale effective problem of the same form as (1),

−∇ ·
(
a0(x, u0(x))∇u0(x)

)
= f(x) in Ω, u0 = 0 on ∂Ω. (5)

The tensor a0(x, s) in (5), called the homogenized tensor, is in general unknown and needs to be
approximated numerically [4, 5]. For simplicity, we assume that the tensor aε (and thus also a0) is
symmetric, but we emphasize that the algorithm could be extended to non-symmetric problems.

The method, called the reduced basis finite element heterogeneous multiscale method (RB-
FE-HMM) combines the finite element heterogeneous multiscale method (FE-HMM) [6, 7, 8, 9]
with a reduced order model strategy, namely the reduced basis (RB) method. The RB-FE-HMM,
proposed in [10, 11] for linear problems, is based on an offline-online strategy: one first computes
a representative reduced basis for appropriate microscopic sampling cell problems which permits
to recover the (upscaled) homogenized solution u0. In addition, a corrector procedure permits to
reconstruct the oscillatory solution uε from the homogenized one at a negligible overcost. Indeed,
an important feature of the (RB-)FE-HMM is that its computational cost is independent of the
smallness of the parameter ε because the mesh width of the domain Ω can be much larger than ε
and appropriate cell problems are solved on sampling domains of size that scale with ε.

The convergence analysis of the RB-FE-HMM for nonlinear elliptic problems (1) of
nonmonotone type was recently proposed in [12], with a study of the coupling of the reduced basis
technique with the FE-HMM for computing the homogenized solution of quasilinear multiscale
elliptic problems of nonmonotone type [7, 9].

For solving numerically one-scale quasilinear elliptic problem of the form (5), a standard
approach is the a finite element method (FEM) together with a Newton method as analyzed in
[13, 14]. Considering a FEM space S`0(Ω, TH) with mesh grid size H , such method approximates a
solution uH of

BH(uH ;uH , wH) = FH(wH), ∀wH ∈ S`0(Ω, TH), (6)

by a sequence uHk , k = 0, 1, 2, 3, . . . and reads in weak form

∂BH(uHk ;uHk+1 − uHk , wH) = FH(wH)−BH(uHk ;uHk , w
H), ∀wH ∈ S`0(Ω, TH), (7)

where ∂BH(zH ; vH , wH) := BH(zH ; vH , wH) +B′H(zH ; vH , wH). We used the notations

BH(zH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωKja
0(xKj , z

H(xKj ))v
H(xKj )∇zH(xKj ) · ∇wH(xKj ), (8)

B′H(zH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj∂sa
0(xKj , z

H(xKj )v
H(xKj )∇zH(xKj ) · ∇wH(xKj ),(9)

and FH(wH) is an approximation of
∫

Ω
fwHdx. Here, we consider the FEM space

S`0(Ω, TH) = {vH is continuous on Ω, vH = 0 on ∂Ω; vH |K ∈ R`(K), ∀K ∈ TH},

where TH is a shape-regular family of partition of Ω in simplicial or quadrilateral elements K of
diameter HK where we denote H := maxK∈TH HK andR`(K) is the space P`(K) of polynomials
on K of total degree at most ` if K is a simplicial FE, or the space Q`(K) of polynomials on K
of degree at most ` in each variable if K is a quadrilateral FE. For each element K of the partition

†We denote H1(Ω) the Sobolev space of square integrable functions in L2(Ω) which have square integrable derivatives.
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we consider a quadrature formula (ωKj , xKj )j=1,...,J with weights ωKj and nodes xKj fulfuling the
usual assumptions (see [15] in the context of linear elliptic problems).

It can be observed that the Newton method in (7), (8), (9) requires the evaluation of a0(xKj , s) for
all quadratures nodes xKj of all FEM elements K ∈ TH and all nonlinear parameter s = uHk (xKj )
of the iterate functions of the Newton evaluated at the quadrature nodes. Thus for the FE-HMM,
one needs to compute a0(xKj , s) (by a micro FEM) at each quadrature node for each iteration of
the Newton method. As in addition the degrees of freedom (DOF) of the micro FE space have to
increase simultaneously with the DOF of the macro FE space S`0(Ω, TH) for optimal convergence
[9, 6], a numerical homogenization method such as the FE-HMM can become expensive especially
for high-dimensional nonlinear problems.

This paper is organized as follows. In Section 2, we present an offline procedure based on the
reduced basis (RB) technique which permits to precompute the homogenized tensor a0. Then, we
describe in Section 3 how an online procedure, with a computational cost analogous to that of
solving a one scale problem, permits to compute the homogenized solution u0. In Section 4, we
describe a reconstruction procedure for approximating the oscillatory solution uε at a negligible
overcost. In Section 5, the performance of the algorithm is illustrated on a 2D time dependent test
problem and a 3D brake rotor problem.

2. OFFLINE PROCEDURE

This section describes the offline stage of the RB-FE-HMM which permits to precompute the
nonlinear homogenized tensor a0 that is needed in the online stage to compute the homogenized
solution u0 itself.

The idea of the algorithm is to recover the microscopic oscillations by considering
suitable sampling domains Kδj ⊂ Ω defined as follows. For each macro element K ∈ TH and
each quadrature point xKj ∈ K, j = 1, . . . , J, we define the sampling domains Kδj = xKj +
δ(−1/2, 1/2)d, (δ ≥ ε), where Y = (−1/2, 1/2)d. We observe that each sampling domain Kδj is
in correspondence with Y through the affine transformation

y ∈ Y 7→ GxKj (y) = xKj + δy ∈ Kδj (10)

For each sampling domain Kδj , we introduce the corresponding oscillatory tensor defined as

axKj ,s(y) := aε(GxKj (y), s). (11)

Notice that if the tensor aε is locally periodic, i.e. has the form aε(x, s) = a(x, x/ε, s) with
periodicity with respect to the second argument x/ε, then we shall consider instead

axKj ,s(y) := a(xKj , GxKj (y), s),

and if in addition the oscillatory period ε is known, we shall take δ = ε for the size of the sampling
domains Kδj . We next assume that an affine representation of the tensors axKj ,s is available, i.e. we
have the following decomposition:

ax,s(y) =

P∑
p=1

Θp(x, s)ap(y), ∀y ∈ Y. (12)

Notice that if the above affine representation of the tensor is not available, then the empirical
interpolation method (EIM) can be used to derive such affine representation (see [16]). For all the
point x in Ω and all parameter s, consider the linear cell problem: find ψ̂i,sN ,x ∈ Sq(Y,N ) such that

b(ψ̂i,sN ,x, ẑN ) = −
∫
Y

ax,s(y)ei · ∇ẑN (y)dy ∀ẑN ∈ Sq(Y,N ), (13)

where we use the notation

b(v̂, ẑ) :=

∫
Y

ax,s(y)∇v̂(y) · ∇ẑ(y)dy ∀v̂, ẑ ∈W 1
per(Y ),
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and ei, i = 1, . . . , d denotes the canonical basis of Rd. Considering the Sobolev space W 1
per(Y ) of

periodic functions‡ in H1(Y ), we consider a micro FE space Sq(Y,N ) ⊂W 1
per(Y ) with simplicial

or quadrilateral FEs and piecewise polynomial of degree q on the domain Y = (−1/2, 1/2)d

equipped with a conformal and shape regular family of triangulation denoted Tĥ, and N = O(ĥ−d)
denotes the number of degrees of freedom (DOF) of this FE space.

The idea of the offline procedure is to avoid the computation of the solutions of the cell problem
(13) for all quadrature nodes xKj and all parameter s = uHk (xKj ) lying in a compact subspace D
of Ω×R. Instead we compute a small set of representative basis functions ξ̂l,N , l = 1, . . . , N that
span the RB space

SN (Y ) := span{ξ̂1,N , . . . , ξ̂N,N }. (14)

The above hatmap notation is used to recall that these functions are defined over the reference
domain Y . These RB functions are computed using a greedy procedure that selects representative
cell problems and relies on a suitable a posteriori error estimator described below. Given a parameter
(x, s, i) we consider the solutions ξ̂i,sN ,Tδ , ξ̂

i,s
l,Tδ

of (13) in Sq(Y,N ) and Sl(Y ), respectively (i.e. with
test functions ẑN in Sq(Y,N ) and Sl(Y ), respectively) and define the residual

êi,sl,Tδ = ξ̂i,sl,Tδ − ξ̂
i,s
N ,Tδ . (15)

Then by the Riesz theorem, there exists a unique ēil,Tδ ∈ S
q(Y,N ) such that

b(êi,sl,Tδ , ẑN ) = (ēi,sl,Tδ , ẑN )W , ∀ẑN ∈ Sq(Y,N ), (16)

where we consider the scalar product (u, v)W =
∫
Y
∇u(y) · ∇v(y)dy on the Hilbert spaceW 1

per(Y )

and the corresponding norm ‖v‖W =
√

(v, v)W .

A posteriori error estimator. The a posteriori error estimator for the parameter (xτ , s, i) is then
defined as

∆i,s
l,Tδ

:=
‖ēi,sl,Tδ‖W + ‖∂sēi,sl,Tδ‖W√

λLB
, (17)

where λLB with λLB ≤ λ is an approximation of the coercivity constant λ defined in (3) (see e.g.
[17]). The residual ∂sē

i,s
l,Tδ

in (17) is defined by differentiating with respect to s the FE problem
(16). This a posteriori error estimator is designed to guaranty not only the convergence of the RB-
FE-HMM, but also the Newton method convergence and the uniqueness of the numerical solution,
as analyzed in [14] using the a posteriori error estimates for i, j = 1, . . . , d, l = 1, . . . , N ,

C1∆i
l,Tδ
≤ ‖êi,sl,Tδ‖W + ‖∂sêi,sl,Tδ‖W ≤ C2∆i

l,Tδ
(18)

where C1, C2 depend on λ,Λ1,Λ2, λLB in (3), (4). The above estimator can be computed as follows.
In view of (16), considering the decomposition ξ̂i,sl−1,Tδ

=
∑l−1

j=1 αj(s)ξ̂j,N in the RB space Sl−1, we
compute following the implementation in [17, Sect. 4.4]

ēi,sl,Tδ =

P∑
p=1

Θp(x, s)

(
l−1∑
j=1

αj(s)Lp,j −Mp,i

)
(19)

where Lp,j ,Mp,i ∈ Sq(Y,N ), p = 1, . . . , P, i = 1, . . . , d, j = 1, . . . , N are obtained by solving the
FE projection problems

(Lp,j , ẑN )W =

∫
Y

ap(y)∇ξ̂j,N (y) · ∇ẑN (y)dy, (Mp,i, ẑN )W =

∫
Y

ap(y)∇ei · ∇ẑN (y)dy, ∀ẑN ∈ Sq(Y,N ).

Notice that the functions Lp,j ,Mp,i are independent of the parameter x, s and thus computed only
once.

‡Notice that H1
0 (Y ) could also be considered for a coupling with Dirichlet boundary conditions and sampling domain

size δ > ε, see the review [5].
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Remark 2.1
The FE approximation of ∂sē

i,s
l,Tδ

in (17) (that could be obtained by solving the appropriate FEM
problem) are simply calculated by using the finite difference approximation

∂sē
i,s
l,Tδ
≈
ē
i,s+
√
eps

l,Tδ
− ēi,sl,Tδ√

eps
,

where eps is the machine precision. This can be done by computing ēi,sl,Tδ in (19) with parameters
s and s+

√
eps, respectively. Thus, the cost of computing ēi,sl,Tδ and ∂sē

i,s
l,Tδ

is twice the cost of
evaluating ēi,sl,Tδ alone.

RB construction by the Greedy algorithm We now describe the construction procedure of the
RB in (14) based on the a posteriori error estimator (17).

A first step is the guess of the range of nonlinear parameters s = uH(xKj ) involved in the
nonlinear tensor a(x, s). This is done using the following empirical algorithm motivated by the
Voigt-Reiss inequality [18, Chapter 1.6],

( ∫
Y

ax,s(y)−1dy
)−1 ≤ a0(x, s) ≤

∫
Y

ax,s(y)dy, (20)

for parameters x, s, and where a0(x, s) is the homogenized tensor. We then apply the following
procedure to derive the training set D, a compact of Ω×R.

Algorithm 2.2 (Construction of the training set)

1. Using a standard one-scale FEM method, solve (5) where the homogenized tensor a0(x, s) is
replaced alternatively with the tensors of the left and right-hand sides of (20).

2. Set a maximum range (u0,low, u0,up) by taking the minimum and maximum values of the two
solutions using theses easy to evaluate tensors.

3. Define the training set as D = Ωδ × [u0,low − α, u0,up + α] where Ωδ is a compact subset of
Ω such that for any x ∈ Ωδ the corresponding sampling domain centered at x is inscribed in
Ω, and the range of parameter s is enlarged by ±α (a safety factor of about 10%).

Based on the training set D, we may now state the Greedy algorithm inspired by the usual RB
methodology (see [19, 20]).

Algorithm 2.3 (Greedy procedure)
Given the maximum basis number NRB and an error tolerance tolRB:

1. Choose randomly (by a Monte Carlo method) Ntrain parameters (xn, sn) ∈ D, d =
1, . . . , Ntrain. Define the ”training set” ΞRB = (xn, sn, ηn); 1 ≤ ηn ≤ d, 1 ≤ n ≤ Ntrain}.

2. Select randomly (x1, s1, η1) ∈ ΞRB and compute ξ̂η1,s1N ,Tδ1
∈ Sq(Y,N ), the solution of

(13) with the selected parameters x = x1, s = s1, i = η1. Set l = 1 and define ξ̂1,N (y) =
ξ̂
η1,s1
N ,Tδ1

(y)

‖ξ̂η1,s1N ,Tδ1
‖W

.

3. For l = 2, . . . , NRB

a. Compute for each (x, s, η) ∈ ΞRB the residual ∆η,s
l−1,Tδ

defined in (17) and compute

(xl, sl, ηl) = argmax(x,s,η)∈ΞRB ∆η,s
l−1,Tδ

.

If § max(Tδ,s,η)∈ΞRB (∆η,s
l−1,Tδ

)2 > tolRB then go to b., otherwise the algorithm ends.

§Notice that the error of the outputs of interest scale like the square of the error of the cell functions, see (23) in
Remark 3.1.
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b. Compute ξ̂ηl,slN ,Tδl
the solution of (13) in Sq(Y,N ) corresponding to (xl, sl, ηl) selected in

a., and define the next RB function ξ̂l,N using the orthogonalization procedure

ξ̂l,N (y) :=
Rl(y)

‖Rl‖W
, where Rl(y) := ξ̂ηl,slN ,Tδl

(y)−
l−1∑
m=1

(ξ̂ηl,slN ,Tδl
, ξ̂m,N )W ξ̂m,N .

Set l = l + 1 and go back to a.

What is next needed for the online procedure is the N ×N stiffness matrices Ap and the length
N vectors Fp,i, with p = 1, . . . , P, i = 1, . . . , d, defined as

(Ap)mn =

∫
Y

ap(y)∇ξ̂n,N (y) · ∇ξ̂m,N (y)dy, Fp,i =

∫
Y

ap(y)ei · ∇ξ̂m,N (y)dy.

We shall also need the matrix of averages

(Gp)mn =

∫
Y

ap(y)em · endy =

∫
Y

(ap(y))mndy.

The above integrals on Y can be computed using a sufficiently accurate quadrature formula on the
micro mesh Tĥ of the micro FEM space Sq(Y,N ).

3. ONLINE PROCEDURE

The online version of the RB-FE-HMM is identical to a standard FEM with numerical quadrature
applied to a one-scale problem (5) using a Newton method. The only difference is that one has to
approximate the homogenized tensor a0(xKj , s) for a given quadrature node xKj and a nonlinear
parameter s. We explain how this can be performed at a negligible overcost using the output of the
offline procedure.

In the case of a locally periodic tensor aε, the homogenized tensor coefficients given by the
homogenization theory [2] can be written as

(a0(x, s))mn =

∫
Y

axKj ,s(y)
(
ψ̂m,sx (y) + em

)
· endy, m, n = 1, . . . , d,

where ψ̂m,sx ∈W 1
per(Y ) is the solution of the cell problem (13) with test functions in W 1

per(Y ).
Analogously, we define the numerical homogenized tensor a0

N as

(a0
N (x, s))mn =

∫
Y

ax,s(y)
(
∇ψ̂m,sN,x(y) + em

)
· endy, m, n = 1, . . . , d, (21)

where ψ̂m,sN,x ∈ SN (Y ), m = 1, . . . , d is the solution of (13) in the RB space SN (Y ), i.e. with test
functions in SN (Y ). This function can be decomposed in the RB space SN (Y ) as

ψ̂m,sN,x(y) =

N∑
j=1

α
(x,s,m)
j ξ̂j,N , (22)

where α(x,s,m) = (α
(x,s,m)
1 , . . . , α

(x,s,m)
N )T is the vector of coordinates in this basis.

Remark 3.1
Notice that the a posteriori error estimates (18) also control the accuracy of the quantity of interest
a0
N (x, s) in (21). Precisely, we have (see [12])

|(a0
N (x, s))mn − (a0

N (x, s))mn| ≤ ∆m,s
l,Tδ

∆n,s
l,Tδ

, m, n = 1, . . . , d, (23)

where the tensor a0
N (x, s) is defined similarly to (21) but using the functions ψ̂m,sN ,x ∈ Sq(Y,N ),

solutions of the cell problem (13) with test functions in Sq(Y,N ).
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Elliptic case. Inspired by (21) and the decomposition (22), we are now in position to state the
algorithm for the online procedure to compute the homogenized solution u0 of the multiscale
quasilinear problem (1).

Algorithm 3.2 (Online algorithm for elliptic problems (1))
Given an initial guess uH0 ∈ S`0(Ω, TH), compute the Newton method sequence uHk , k = 1, 2, 3, . . .
defined in (7), where BH and ∂BH are defined similarly to (8), (9), with the unknown homogenized
tensor a0(x, s) replaced by the numerical tensor a0

N (x, s) and computed as

(a0
N (x, s))mn =

P∑
p=1

Θq(x, s)
(
α(x,s,m) · Fp,n + (Gp)mn

)
, m, n = 1, . . . , d,

where the vectors α(x,s,i) ∈ RN with i = 1, . . . , d are obtained by solving the N ×N linear system(
P∑
p=1

Θp(x, s)Ap

)
α(x,s,i) = −

P∑
p=1

Θp(x, s)Fp,i. (24)

The derivative ∂sa0
N (x, s) of the numerical tensor involved in ∂BH can be computed using a finite

difference formula (analogously to ∂sē
i,s
l,Tδ

in Remark 2.1).

It is proved in [9, 12] that under suitable smoothness assumptions, the Newton method in the
online algorithm 3.2 is well defined and converges for sufficiently fine mesh parameters H,h to
the approximation uH of u0. This numerical solution uH is uniquely defined. We observe that the
a posteriori estimator (17) involving the derivative of the Riesz projection of the residual (15) is
instrumental for establishing the convergence of the Newton method.

Parabolic case. We next explain the extension of the algorithm for solving parabolic problems
(2). First, we note that for quasilinear parabolic problems, the effective tensor can be computed
by solving time-independent (quasilinear elliptic) problems. Second, we observe that Algorithm 2.2
can be applied to obtain the training set by solving standard parabolic FE problems using the bounds
in (20). Finally, we can use the Algorithm 2.3 for the Greedy procedure.

Notice that various time integrators can be used in the online stage of RB-FE-HMM, see e.g. [21]
in the context of linear multiscale parabolic problems. Here, we use the linearized backward Euler
(see [22] for details) and consider a constant time stepsize. Its advantage over the standard backward
Euler scheme is that it permits to avoid Newton iterations.

Algorithm 3.3 (Online algorithm for parabolic problems (2))
Given the time step ∆t and uH0 ∈ S`0(Ω, TH) associated to the initial condition, compute uHn ,
n = 1, 2, 3, . . . the solution at time t = n∆t, of the linear system∫

Ω

uHn − uHn−1

∆t
vHdx+BH(uHn−1;uHn , v

H) = FH(vH), ∀vH ∈ S`0(Ω, TH), (25)

where the form BH is computed identically as is Algorithm 3.2.

4. CONSTRUCTION OF A CORRECTOR

The online algorithm 3.2 permits to approximate the homogenized solution u0 of the multiscale
problem (1) as ε→ 0. To reconstruct the oscillatory solution uε of (1) for a fixed value of ε, and
in turn obtaining an approximation of uε in the energy norm (i.e. uεcorr ' u0 + εu1), a suitable
corrector procedure is needed [23, 18] and can be obtained as follows. Consider the linear multiscale
problem

−∇ ·
(
aε(x, u0)∇vε(x)

)
= f(x) in Ω, vε = 0 on ∂Ω,

where compared to (1), the tensor is evaluated at u0 instead of uε. It is shown in [2, Sect. 3.4.2] that
a corrector ucorr for the above linear problem is also a corrector for the solution uε of the nonlinear
problem (1). This permits to define the following numerical corrector for the approximation of uε

similarly to the linear case.
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Nonlinear corrector Given a quadrature point xKj ∈ K ∈ TH , we consider the inverse map
G̃xKj := G−1

xKj
: Tδj → Y where GxKj is defined in (10). We next extend this map periodically on

the macro element K by setting G̃xKj (x+ δk) = G̃xKj (x) for all k ∈ Zd, x ∈ Tδj . We next define
for all x ∈ K,

uH,εcorr(x) := uH(x) + εψ̂m,sN,x0

(
G̃xKj (x)

)
' uε(x),

where uH ∈ S`0(Ω, TH) is the output of the online algorithm 3.2 and the functions ψ̂m,sN,x0
∈ SN (Y )

can be evaluated using the RB decomposition (22) with the RB produced by the Greedy algorithm
2.3. Notice that the coefficients α(x,s,m)

j in (22) are already computed (24) and need not to be
recomputed.

5. NUMERICAL EXPERIMENTS

We illustrate the performances of the proposed implementation of RB-FE-HMM on various
elliptic and parabolic multiscale problems in 2D and 3D. We compare the algorithm with the
standard nonlinear FE-HMM code [9] designed without the reduced basis technique, and based
on the implementation in [24] in the context of linear problems. We consider here (non-parallel¶)
implementations made in Matlab on a desktop computer.

5.1. A 2D time dependent problem

We consider a time dependent test problem of the form (2). We choose an example where a reference
solution can be easily computed to check the accuracy of the method, and we take the affine tensor
with diagonal entries

aε(x, s)11 = (x2
1 + 0.2) + (x2 sin(sπ) + 2)(sin(2π

x1

ε
) + 2),

aε(x, s)22 = (
1

s+ 1
ex2 + 0.05) + (x1x2 + 1)(sin(2π

x2

ε
) + 2), (26)

defined on the domain Ω = [0, 1]2 and we choose the boundary conditions

uε(x, t) = gD(x), on {x1 = 0} ∪ {x1 = 1},
n · (aε(x, uε(x, t))∇uε(x, t)) = gN (x), on {x2 = 0} ∪ {x2 = 1}. (27)

It follows from the homogenization theory [18], that the homogenized tensor corresponding to (26)
is diagonal with entries given by the harmonic averages

a0
ii =

( ∫
Y

a(x, y, s)−1dy
)−1

, i = 1, 2.

We set f(x) = 50e(x1−0.2)2+(x2−0.3)2 , gD = 1 and gN = 0. We choose uε(x, 0) = 1 as the initial
condition, and we consider the time interval [0, T ] = [0, 0.5].

We apply the offline stage as described in Sect. 2 and obtain the RB with 8 functions. The offline
settings and output are presented in Table I.

In this computation, we set the time step ∆t = 0.001 (so that the corresponding O(∆t) error is
negligible compared to the spatial discretization). A reference solution uref is computed by using
the standard FEM with piecewise linear FEs applied to the homogenized problem with tensor a0,
with a mesh grid 257× 257 and the linearized backward Euler scheme as time integrator. We can see
from Fig. 1 that we obtain the usual convergence rates for the FEM applied to parabolic problems.
Indeed, ‖uH − uref‖L2([0,T ];H1(Ω)) decreases with rate O(H) and ‖uH − uref‖L∞([0,T ];L2(Ω))

decreases with rate O(H2).
We list the online CPU times in Table II for various macro meshes of the square domain Ω. We

tested that the CPU time cost for the FE-HMM with NMAC = NMIC = 65 for one time step is

¶Notice that the linear systems (24) involving different parameters x, s are independent and can be solved in parallel.
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Table I. Offline settings and output for the time dependent problem (2) with boundary conditions (27).

Parameter space [0, 1]2 × [0.9, 3.93]
Train set size 4400

Mesh 1500× 1500
tolRB 1e-10

RB Basis number 8

Figure 1. Time dependent problem (2), (27) with T = 0.5. We plot the errors ‖uH − uref‖L∞([0,T ];L2(Ω))

and ‖uH − uref‖L2([0,T ];H1(Ω)) versus NMAC = 1/H for the RB-FE-HMM.

280s. As we have T/∆t = 500 time steps, the total CPU time for the FE-HMM without reduced
basis would be about 39 hours. In contrast, the RB-FE-HMM CPU time is only 446s, i.e. 300 times
less. The total CPU time of the RB-FE-HMM (including the offline procedure) is only 1.3% of the
FE-HMM cost.

Table II. Online CPU times for the parabolic test problem (2), (27), T = 0.5,∆t = 0.001.

Macro mesh 5× 5 9× 9 17× 17 33× 33 65× 65
Online CPU time 14.87 17.53 19.49 26.46 445.93

Figure 2. Left picture: example of a rotor break system in a car. Right picture: the geometry of the brake
rotor part considered as the computational domain Ω.

5.2. Heat transfer in a 3D rotor

To illustrate the performances of the RB-FE-HMM, we consider in this section a simplified model
in 3D inspired from [25] of a car brake rotor in a stationary regime (see left picture of Fig. 2).
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We focus on the heat propagation in a part of the rotor as the break system is activated. The
geometry of this part is represented in Fig. 2 (right picture). Its external and internal radius are
given respectively by R = 15cm and r = 8cm and its thickness is 5cm. We assume that the material
has a composite structure with a microscopic characteristic length ε. We consider a nonlinear heat
propagation modeled by problem (1) with heat source f = 0 where uε(x) denotes the temperature
(in Kelvin degrees) as a function of x in the 3D computational domain. The nonlinear multiscale
conductivity tensor is assumed diagonal with entries given by

aε11(x, s) = α(s)
(

cos(4π
x3

ε
) + 2

)
+ β(x)

(
sin(2π

x1

ε
) + 2

)
,

aε22(x, s) = α(s)
(

cos(4π
x1

ε
) + 2

)
+ β(x)

(
sin(2π

x2

ε
) + 2

)
,

aε33(x, s) = α(s)
(

cos(4π
x2

ε
) + 2

)
+ β(x)

(
sin(2π

x3

ε
) + 2

)
,

where α(s) = 0.01
(
e−(s−300)2 + 0.5

)
, β(x) =

(
0.001(x2

1 + x2
2 + x2

3)
)1/2

+ 0.005. Our aim here is
to show the capability of our nonlinear algorithm on a realistic 3D geometry and we therefore choose
to model the microstructure by ad-hoc oscillatory tensors. We note that for realistic composite
materials these conductivity tensors could be obtained via imaging techniques. We next describe
the boundary conditions that are considered in the model. The external circular boundary surface
(diameter R) of the considered rotor part is attached to a brake plate (see left picture in Fig. 2). It
permits to slow down and stop the disk rotation by the friction due to the brake pads pushing against
this brake plate (yellow part). The heat flux arising from the braking is modeled by a Neumann
boundary condition on this external cylindrical boundary

−∇ ·
(
aε(x, uε(x))∇uε(x)

)
· n = gB (28)

where n is the external unit vector normal to the boundary and we set the surface power gB =
75Wm−2. The six small holes in the computational domain (see Fig. 2) as well as the main hole
in the center are normally filled with screws or other components (not considered here) and we
choose for simplicity homogeneous Neumann boundary conditions at these interfaces (we thus use
(28) with gB replaced by zero). The rest of the boundary is in contact with air at temperature
uext = 293.15K. The corresponding convective heat transfer is modeled by a Robin boundary
condition and we use (28) with gB replaced by −α(uε(x)− uext) and set α = 10Wm−2K−1.

We apply the RB-FE-HMM to this 3D problem and we collect the offline parameters and in
Table IV. For the online stage, we consider a macro mesh of the computational domain Ω with
about 90000 tetrahedra generated by Cubit13.2 [26]. The CPU time for the online stage of the

Figure 3. RB-FE-HMM macro solution uH of the 3D brake rotor elliptic problem.



AN OFFLINE-ONLINE HOMOGENIZATION STRATEGY FOR QUASILINEAR PROBLEMS 11

Table III. RB offline pre-process for the 3D rotor problem. DOF = 17804.

Tensor type min ū0
H max ū0

H

< a(x, y; s) >Y 293.2 348.7
< a(x, y; s)−1 >−1

Y 293.2 353.7

Table IV. Offline parameters and output for the 3D rotor problem.

Parameter space Ω× [288, 360]
Training set size 4000

Number of tetrahedra 29478000
tolRB 1e-8

RB Basis number 6

nonlinear elliptic RB-FE-HMM is 96.4s for 6 Newton iterations. In Fig. 3, we plot the computed
temperature distribution on the rotor (a cut parallel to the top surface is displayed to see the internal
heat distribution). As we can see, the range of the computed temperature is [293.85, 349.2] which
lies in our training set based on the data in Table III.

We finally consider the parabolic model of the form (2) where we use the same boundary
conditions as above and we consider the initial temperature uε(x, 0) = uext = 293.15K and

Figure 4. RB-FE-HMM macro solution of the 3D brake rotor parabolic model at times
t = 0.6, 2.4, 4.2, 6.0, 7.8, 50 (respectively from left to right and top to bottom).
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consider the time interval [0, T ] = [0, 50]. The RB produced by the offline procedure of the elliptic
problem can be reused for this time evolutionary problem because the range of temperature in Table
III remains valid. The CPU computational time for the parabolic online stage is 8 s per time step,
using a constant time step ∆t = 0.2. We plot in Figure 4 the RB-FE-HMM solutions obtained by
the parabolic online procedure. We observe that the heat propagates from the exterior to the interior
of the rotor and approaches the steady solution (Figure 3).

6. CONCLUSION

We have presented an efficient implementation of the RB-FE-HMM algorithm for the resolution of
elliptic or parabolic nonlinear multiscale problems at the cost of single-scale nonlinear problems.
This proposed algorithm combines a numerical homogenization strategy (the FE-HMM) with a
model reduction strategy (the RB method). The accuracy of the model reduction strategy and
the outputs of interest are controlled by an appropriate a posteriori error estimator for nonlinear
problems. A remarkable feature of the offline-online strategy is that the computational cost of the
method is independent of the smallness of the oscillatory parameter ε and the oscillatory solution
uε can be reconstructed from the homogenized one u0 with negligible overhead. The efficiency of
the proposed algorithm has been illustrated on two and three dimensional time dependent nonlinear
problems on a non-trivial computational domain.
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