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In this Note we present new results which bring about hitherto unknown relations between certain Bernstein di¤usions wandering in bounded convex domains of Euclidean space on the one hand, and processes which typically occur in forward-backward systems of stochastic di¤erential equations on the other hand. A key point in establishing such relations is the fact that the Bernstein di¤usions we consider are actually reversible Itô di¤usions.

3 3 3 3 3 3 3 3 33 Résumé. Dans cette Note nous présentons des résultats nouveaux mettant en évidence certaines relations jusquici inconnues entre certaines di¤usions de Bernstein évoluant dans des domaines convexes bornés de lespace euclidien dune part, et des processus apparaissant typiquement dans des systèmes progressifs-rétrogrades déquations di¤érentielles stochastiques dautre part. Un point clé permettant détablir de telles relations est que les di¤usions de Bernstein que nous considérons sont en fait des di¤usions dItô réversibles.

Version française abrégée

La numérotation, la notation et la terminologie que nous utilisons ici ainsi que les hypothèses (L), (V) et (IF) se réfèrent directement aux formules, à la notation, à la terminologie et aux hypothèses (L), (V), et (IF) de la version principale en anglais. Nous nous intéressons à mettre en évidence certaines relations existant entre les di¤usions de Bernstein associées à une classe déquations aux dérivées partielles paraboliques linéaires déterministes et certain processus apparaissant dans des systèmes progressifs-rétrogrades déquations di¤érentielles stochastiques de type Itô. La démonstration de ce résultat repose tout dabord sur le fait établi en [START_REF] Vuillermot | Bernstein di¤usions for a class of linear parabolic partial di¤erential equations[END_REF] suivant lequel il est possible dassocier aux équations paraboliques (5) et [START_REF] Cruzeiro | Bernstein processes associated with Markov processes[END_REF] un processus de Bernstein Z [0;T ] possédant les propriétés dune di¤usion dItô réversible dans D. Dans un premier temps nous remarquons que cette di¤usion est solution faible de léquation dItô progressive (13) dans laquelle apparaît le champ vectoriel de dérive [START_REF] Ma | Reected forward-backward SDEs and obstacle problems with boundary conditions[END_REF]. Dans un deuxième temps nous vérions que le processus c 3 (Z ; ) [0;T ] est solution faible de léquation dItô rétrograde [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF]. Enn nous montrons que le processus (Z ; c 3 (Z ; ) ; rc 3 (Z ; )) [0;T ] , où rc 3 (Z ; ) est déni par [START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary-value problems[END_REF], est solution dun système progressif-rétrograde au sens de la dénition 2.1. Lidentication de (A ; B ; C ) [0;T ] au processus précédent conduit alors au résultat désiré. À notre connaissance le résultat énoncé est nouveau et basé sur la dénition 1.2 qui tient compte du fait que les processus de Wiener y apparaissant ne sont pas donnés a priori mais sont déterminés a posteriori par les di¤usions de Bernstein elles-mêmes. Nous obtenons également un résultat dual du résultat énoncé ci-dessus en considérant le processus (Z ; c (Z ; ) ; rc (Z ; )) [0;T ] où apparaît le champ vectoriel de dérive [START_REF] Privault | Markovian bridges and reversible di¤usion processes with jumps[END_REF]. Dans ce cas cest le processus Z [0;T ] qui est solution faible de léquation rétrograde [START_REF] Schrödinger | Sur la théorie relativiste de lélectron et linterprétation de la mécanique quantique[END_REF], alors que c (Z ; ) [0;T ] satisfait à une équation dItô progressive. Nous donnons les démonstrations détaillées de tous ces résultats en [START_REF] Cruzeiro | Bernstein di¤usions and forwardbackward stochastic di¤erential equations[END_REF].

Statement of the main results

The theory of Bernstein processes goes back to [START_REF] Bernstein | Sur les liaisons entre les grandeurs aléatoires[END_REF] which elaborates on the seminal contribution that was set forth in the very last section of [START_REF] Schrödinger | Sur la théorie relativiste de lélectron et linterprétation de la mécanique quantique[END_REF]. It was subsequently thoroughly developed in [START_REF] Jamison | Reciprocal processes[END_REF], and has ever since played an important rôle in probability theory and in various areas of mathematical physics as testied for instance by the works [4]- [START_REF] Cruzeiro | Malliavin calculus and Euclidean quantum mechanics, I. Functional Calculus[END_REF], [START_REF] Gulisashvili | Non-Autonomous Kato Classes and Feynman-Kac Propagators[END_REF], [START_REF] Privault | Markovian bridges and reversible di¤usion processes with jumps[END_REF], [START_REF] Vuillermot | Bernstein di¤usions for a class of linear parabolic partial di¤erential equations[END_REF], [START_REF] Zambrini | Variational processes and stochastic versions of mechanics[END_REF] and the many references therein. There are several equivalent ways to dene a Bernstein process, but we settle here for a variant which is tailored to our needs. Let D 4 d be a bounded open convex subset whose smooth boundary @D is C 2+B with B 2 (0; 1); let us write D := D [ @D and let T 2 (0; +1) be arbitrary. Denition 1.1. We say the D-valued process Z [0;T ] dened on the complete probability space (A; F; 2) is a Bernstein process if the following conditional expectations satisfy the relation

- 0 h(Z r ) C C F + s _ F 0 t ) 1 = -(h(Z r ) jZ s ; Z t ) (1) 
for every Borel mesurable function h : D ! 4, and for all r; s; t satisfying r 2 (s; t) [0; T ]. In (1), F + s denotes the -algebra generated by the Z s for all 2 [0; s], while F 0 t is that generated by the Z s for all 2 [t; T ].

According to [START_REF] Jamison | Reciprocal processes[END_REF] Bernstein processes are neither Markovian nor reversible in general, but there are special classes of them which are reversible Itô di¤usions as we shall see below. Since this conveys the idea that such di¤usions can evolve forward and backward in time while satisfying Itô equations for some suitably constructed Wiener processes, they constitute the bare minimum we need to establish relations with certain forward-backward systems of stochastic di¤erential equations. Following [START_REF] Bensoussan | Stochastic maximum principle for distributed parameter systems[END_REF], [START_REF] Bismut | Théorie probabiliste du contrôle des di¤usions[END_REF] and [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] which were written in the context of stochastic optimal control, the theory of such systems has been considerably developed in recent times and has led to various applications in mathematical nance and partial di¤erential equations (see e.g. [START_REF] Delarue | On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case[END_REF], [START_REF] Du | Strong solution of backward stochastic partial di¤erential equations in C 2 -domains[END_REF], [START_REF] Ma | Reected forward-backward SDEs and obstacle problems with boundary conditions[END_REF], [START_REF] Ma | Forward-Backward Stochastic Di¤erential Equations and their Applications[END_REF], [START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary-value problems[END_REF] and their references). In this Note we adopt the standard denition for them which can be found for instance in [START_REF] Delarue | On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case[END_REF] or [START_REF] Ma | Forward-Backward Stochastic Di¤erential Equations and their Applications[END_REF], up to the essential di¤erence that the Wiener processes which occur in our context are not a priori given but rather determined a posteriori by the Bernstein di¤usions themselves. This leads to the following notion, where

f; g : D 2 4 d 2 [0; T ] 7 ! 4 d (2) 
are continuous functions, and where we write X = (X 1 ; :::; X d ) for any vector 

A t = + Z t 0 d f (A ; B ; ) + W t (3) 
2-a.s. for every t 2 [0; T ], where : A 7 ! D is F 0 -measurable and satises jj 2 < +1. (c) We have

B t;i = i 0 Z T t d g i (A ; B ; ) 0 Z T t (C ;i ; dW ) 4 d (4) 
2-a.s. for every t 2 [0; T ] and every i 2 f1; :::; dg, where : A 7 ! 4 d is F Tmeasurable and satisesjj 2 < +1. In ( 4), (:; :) 4 d stands for the Euclidean inner product in 4 d and the second integral is the forward Itô integral dened with respect to F [0;T ] , which we assume to be well-dened.

(d) We have

- Z T 0 d jA j 2 + jB j 2 + jC j 2 < +1:
In order to show that there exist special classes of Bernstein processes which generate forward-backward systems in the above sense, we now consider parabolic initial-boundary value problems of the form @ t u(x; t) = 1 2 4 x u(x; t) 0 (l(x; t); r x u(x; t)) 4 d 0 V (x; t)u(x; t);

(x; t) 2 D 2 (0; T ] ; u(x; 0) = '(x); x 2 D; @u(x; t) @n(x) = 0; (x; t) 2 @D 2 (0; T ] (5) 
along with the corresponding adjoint nal-boundary value problems

0@ t v(x; t) = 1 2 4 x v(x; t) + div x (v(x; t)l(x; t)) 0 V (x; t)v(x; t); (x; t) 2 D 2 [0; T ) ; v(x; T ) = (x); x 2 D; @v(x; t) @n(x) = 0; (x; t) 2 @D 2 [0; T ) : (6) 
In the preceding relations n(x) denotes the unit outer normal vector at x 2 @D, l is an 4 d -valued vector-eld and V , ', are real-valued functions which satisfy the following hypotheses, respectively:

(L) For l : D 2 [0; T ] 7 ! 4 d we have l i 2 C 2+B; B 2 (D 2 [0; T ]) for every i 2 f1; :::; dg. (V) The function V : D 2 [0; T ] 7 ! 4 is such that V 2 C 1; B 2 (D 2 [0; T ]). (IF) We have '; 2 C 2+B (D) with ' > 0 and > 0 satisfying Neumanns boundary condition, that is, @'(x) @n(x) = @ (x) @n(x) = 0; x 2 @D:
Under such conditions there exists a Bernstein process Z [0;T ] wandering in D which turns out to be a reversible Itô di¤usion according to the theory developed in [START_REF] Vuillermot | Bernstein di¤usions for a class of linear parabolic partial di¤erential equations[END_REF], to which we refer the reader for details. What this means is that Z [0;T ] may be considered simultaneously either as a forward or as a backward Markov di¤usion on some probability space (A; F; 2 ), where 2 is uniquely determined by the positive function

(E 2 F ) := Z E2F dxdy'(x)g(y; T ; x; 0) (y) (7) 
dened for all E; F 2 B 0 D 1 with B 0 D 1 the Borel -algebra on D. In the preceding expression g stands for the parabolic Green function associated with [START_REF] Cruzeiro | Bernstein di¤usions and forwardbackward stochastic di¤erential equations[END_REF], which is well-dened and positive for all x; y 2 D. In addition, (7) must satisfy Z D2D dxdy'(x)g(y; T ; x; 0) (y) = 1:

Furthermore the drift of Z [0;T ] is b 3 (x; t) = l(x; t) + r x ln v (x; t)
in the forward case, and b(x; t) = l(x; t) 0 r x ln u ' (x; t) in the backward case, where u ' is the unique positive classical solution to [START_REF] Cruzeiro | Bernstein di¤usions and forwardbackward stochastic di¤erential equations[END_REF] and v the unique classical positive solution to [START_REF] Cruzeiro | Bernstein processes associated with Markov processes[END_REF]. Finally Z [0;T ] satises two Itô equations in the weak sense, namely, the forward equation

Z t = Z 0 + Z t 0 d b 3 (Z ; ) + W 3 t ( 8 
)
and the backward equation

Z t = Z T 0 Z T t d b (Z ; ) 0 W t (9)
2 -a.s. for every t 2 [0; T ], for two suitably constructed d-dimensional Wiener processes W 3 [0;T ] and W [0;T ] . It is precisely all these properties along with some more renements that lead to the desired relations with forward-backward systems. For instance, let us choose the functions in (2) as f (x; y; t) = l (x; t) + y (10) and g i (x; y; t) = @ xi (V (x; t) 0 div x l(x; t)) 0 (y; r x l i (x; t)) 4 d [START_REF] Jamison | Reciprocal processes[END_REF] for every i 2 f1; :::; dg. One of our typical results is then the following:

Theorem. Let us assume that Hypotheses (L), (V) and (IF) hold, and that the vector-eld l is conservative in D. is the unique solution to the forwardbackward system whose stochastic di¤erential equations are of the form (3) and ( 4) with f and g given by ( 10) and [START_REF] Jamison | Reciprocal processes[END_REF], respectively. The uniqueness is meant as uniqueness in law.

(b) The initial random vector : A 7 ! D has the distribution density x 7 ! '(x)v (x; 0) for all x 2 D, while : A 7 ! 4 d is of the form = r x ln (A T ) .

(c) The process A [0;T ] is a reversible Bernstein di¤usion in D.

A brief sketch of the proof

We rst consider the translated forward drift c 3 (x; t) := b 3 (x; t) 0 l(x; t) = r x ln v (x; t) [START_REF] Ma | Reected forward-backward SDEs and obstacle problems with boundary conditions[END_REF] for all (x; t) 2 D 2 [0; T ], and then rewrite [START_REF] Delarue | On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case[END_REF] as

Z t = Z 0 + Z t 0 d (c 3 (Z ; ) + l (Z ; )) + W 3 t : (13) 
We can also verify that the process c 3 (Z ; ) [0;T ] satises the backward Itô equation [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] 

Théorème. 1 ,

 1 Supposons que les hypothèses (L), (V) and (IF) soient satisfaites, et que le champ vectoriel l soit conservatif dans D. Alors il existe une mesure de probabilité sur B 0 un espace probabilisé (A; F; 2 ) et un processus stochastique (A ; B ; C ) [0;T ] sur (A; F; 2 ) à valeurs dans D 2 4 d 2 4 d 2 tels que les propriétés suivantes soient valables: (a) Le processus (A ; B ; C ) [0;T ] est la solution unique en loi du système progressif-rétrograde dont les équations di¤érentielles stochastiques sont de la forme (3) et (4), où f et g sont donnés par (10) et (11), respectivement. (b) La densité de la distribution du vecteur aléatoire initial : A 7 ! D est x 7 ! '(x)v (x; 0) quel que soit x 2 D, tandis que : A 7 ! 4 d est de la forme = r x ln (A T ) .(c) Le processus A [0;T ] est une di¤usion de Bernstein réversible dans D.

X 2 4 d 2 2 : 1 . 2 .

 2212 with each X i 2 4 d and j:j for the Euclidean norm in 4 d or 4 d Denition We say the D 24 d 24 d 2 -valued process (A ; B ; C ) [0;T ] dened on (A; F; 2) is a solution to a forward-backward system of stochastic differential equations with initial condition and nal condition if the following four conditions hold: (a) The process W [0;T ] dened by W := A 0 A 0 0 Z 0 df (A ; B ; ) is a Wiener process on (A; F; 2) relative to its natural increasing ltration F [0;T ] , and (A ; B ; C ) [0;T ] is progressively measurable with respect to F [0;T ] . (b) We have

r x c 3 i

 3 xi (V (Z ; ) 0 div x l(Z ; )) 0 (c 3 (Z ; ); r x l i (Z ; )) 4 d ) (Z ; ) ; d + W 3 1 4 d

2 -a.s. for every t 2 [0; T ] and every i 2 f1; :::; dg, where the second integral in [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] is the forward Itô integral dened with respect to W 3

[0;T ] and its natural increasing ltration F + [0;T ] . It is then su¢cient to choose (A ; B ; C ) [0;T ] = (Z ; c 3 (Z ; ) ; rc 3 (Z ; )) [0;T ] , where we have written

This choice shows indeed that we can identify ( 3) and ( 4) with ( 13) and ( 14), respectively, if we take [START_REF] Gulisashvili | Non-Autonomous Kato Classes and Feynman-Kac Propagators[END_REF] and ( 11) into account. The remaining statements follow from simple considerations.

We can obtain so to speak a dual result when we consider the process

is the translated backward drift associated with Z [0;T ] , which we consider this time as a backward Itô di¤usion satisfying [START_REF] Du | Strong solution of backward stochastic partial di¤erential equations in C 2 -domains[END_REF] or, equivalently,

Indeed, in this case it is the process c (Z ; ) [0;T ] that satises a forward Itô equation. We refer the reader to the forthcoming typescript [START_REF] Cruzeiro | Bernstein di¤usions and forwardbackward stochastic di¤erential equations[END_REF] for details and complete proofs.