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THE OPEN STRING MCKAY CORRESPONDENCE FOR TYPE A

SINGULARITIES

ANDREA BRINI, RENZO CAVALIERI, AND DUSTIN ROSS

Abstract. We formulate a Crepant Resolution Correspondence for open Gromov–Witten in-
variants (OCRC) of toric Calabi–Yau orbifolds by viewing the open theories as sections of
Givental’s symplectic vector space and the correspondence as a linear map of Givental spaces
which identifies them. We deduce a Bryan–Graber-type statement for disk invariants and ex-
tend it to arbitrary genus zero topologies in the Hard Lefschetz case. The equivariant version
of Iritani’s theory of integral structures leads us to conjecture a general form of the symplec-
tomorphism entering the OCRC, which should arise from a geometric correspondence at the
equivariant K-theory level. We give a complete proof of this in the case of minimal resolu-
tions of threefold An-singularities. Our methods rely on a new description of the equivariant
quantum D-modules underlying the Gromov–Witten theory of this class of targets.
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1. Introduction

1.1. Summary of Results. This paper proposes an approach to the Crepant Resolution Con-
jecture for open Gromov-Witten invariants, and supports it with a series of results and verifi-
cations about threefold An-singularities and their resolutions.
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Let Z be a smooth toric Calabi–Yau Deligne–Mumford stack with generically trivial stabi-
lizers and let L be an Aganagic-Vafa brane (Sec. 2.2). Fix a Calabi–Yau torus action T on Z
and denote by ∆Z the free module over H•(BT ) spanned by the T -equivariant lifts of orbifold
cohomology classes of Chen–Ruan degree at most two. We define (Sec. 3.1) a family of elements
of Givental space,

F̂disk
L,Z : H•T (Z)→ HZ = H•T (Z)((z−1)), (1)

which we call the winding neutral disk potential. Upon appropriate specializations of the vari-

able z, F̂disk
L,Z encodes disk invariants of (Z, L) at any winding d.

Consider a crepant resolution diagram X → X ← Y , where X is the coarse moduli space of
X and Y is a crepant resolution of the singularities of X. A Lagrangian boundary condition
L is chosen on X and we denote by L′ its transform in Y . Our version of the open crepant
resolution conjecture is a comparison of the (restricted) winding neutral disk potentials.

Proposal (The OCRC). There exists a C((z−1))-linear map of Givental spaces O : HX → HY
and analytic functions hX : ∆X → C, hY : ∆Y → C such that

h
1/z
Y F̂disk

L,Y

∣∣
∆Y

= h
1/z
X O ◦ F̂disk

L,X
∣∣
∆X

(2)

upon analytic continuation of quantum cohomology parameters.

Further, we conjecture (Conjecture 3.4) that both O and h• are completely determined by the
classical toric geometry of X and Y . In particular, we give a prediction for the transformation
O depending on a choice of identification of the K-theory lattices of X and Y .

When X is a Hard Lefschetz Calabi–Yau orbifold, the OCRC extends to functions on all
of H•T (Z). Together with WDVV, this gives a Bryan–Graber-type statement for potentials
encoding invariants from genus 0 maps with an arbitrary number of boundary components:

Theorem 3.8. Let X → X ← Y be a Hard Lefschetz diagram for which the OCRC holds.
Defining O⊗n = O(z1)⊗ . . .⊗O(zn), we have:

F̂nL′,Y = O⊗n ◦ F̂nL,X , (3)

where F̂n is the n-boundary components analog of F̂disk defined in (86).

Consider now the family of threefold An singularities, where X = [C2/Zn+1]×C and Y is its
canonical minimal resolution.

Main Theorem. The OCRC and Conjecture 3.4 hold for the An-singularities for any choice
of Aganagic-Vafa brane on X .

The main theorem is an immediate consequence of Proposition 3.5 and Theorem 4.1. From
it we deduce a series of comparisons of generating functions in the spirit of Bryan-Graber’s
formulation of the CRC.

In (82) we define the cohomological disk potential Fdisk
L - a cohomology valued generating

function for disk invariants that “remembers” the twisting and the attaching fixed point of an
orbi-disk map. We also consider the coarser scalar disk potential (see (51)), which keeps track of
the winding of the orbimaps but forgets the twisting and attaching point. There are essentially
two different choices for the Lagrangian boundary condition on X ; the simpler case occurs when
L intersects one of the effective legs of the orbifold. In this case we have the following result.

Theorem 4.5. Identifying identically the winding parameters and setting OZ(1k) = Pn+1 for
every k, we have:

Fdisk
L′,Y (t, y, ~w) = OZ ◦ Fdisk

L,X (t, y, ~w). (4)

2



It is immediate to observe that the scalar disk potentials coincide (Corollary 4.6).

The case when L intersects the ineffective leg of the orbifold is more subtle.

Theorem 4.3. We exhibit a matrix OZ of roots of unity and a specialization of the winding
parameters depending on the equivariant weights such that

Fdisk
L′,Y (t, y, ~w) = OZ ◦ Fdisk

L,X (t, y, ~w). (5)

The comparison of scalar potentials in this case does not hold anymore. Because of the
special form of the matrix OZ we deduce in Corollary 4.4 that the scalar disk potential for Y
corresponds to the contribution to the potential for X by the untwisted disk maps. As the
An-singularities satisfy the Hard Lefschetz condition, it is an exercise in book-keeping to extend
the statements of Theorems 4.3 and 4.5 to compare generating functions for arbitrary genus
zero open invariants, even treating all boundary Lagrangian conditions at the same time.

In order to prove our main theorem, we must establish a fully equivariant version of the
symplectomorphism of Givental spaces which verifies the closed CRC for the An geometries.
Our analysis is centered on a new global description of the gravitational quantum cohomology
of these targets which enjoys a number of remarkable features, and may have an independent
interest per se.

Theorem 5.6. By identifying the A-model moduli space with a genus zero double Hurwitz space,
we construct a global quantum D-module (Fλ,φ, TFλ,φ,∇(g,z), H(, )g) which is locally isomorphic
to QDM(X ) and QDM(Y ) in appropriate neighborhoods of the orbifold and large complex struc-
ture points.

1.2. Context, Motivation and Further Discussion. Open Gromov-Witten (GW) theory
intends to study holomorphic maps from bordered Riemann surfaces, where the image of the
boundary is constrained to lie in a Lagrangian submanifold of the target. While some general
foundational work has been done [55,63], at this point most of the results in the theory rely on
additional structure. In [21,22] Lagrangian Floer theory is employed to study the case when the
boundary condition is a fiber of the moment map. In the toric context, a mathematical approach
[14, 31, 47, 58] to construct operatively a virtual counting theory of open maps is via the use
of localization. A variety of striking relations have been verified connecting open GW theory
and several other types of invariants, including open B-model invariants and matrix models
[3,4,8,37,50], quantum knot invariants [41,52], and ordinary Gromov–Witten and Donaldson–
Thomas theory via “gluing along the boundary” [2, 51,53].

Since Ruan’s influential conjecture [59], an intensely studied problem in Gromov–Witten the-
ory has been to determine the relation between GW invariants of target spaces related by a
crepant birational transformation (CRC). The most general formulation of the CRC is framed in
terms of Givental formalism ([28], [29, Conj 4.1]); the conjecture has been proved in a number of
examples [24,26,28] and has by now gained folklore status, with a general proof in the toric set-
ting announced for some time [25]. A natural question one can ask is whether similar relations
exist in the context of open Gromov–Witten theory. Within the toric realm, physics arguments
based on open mirror symmetry [8,9,16] have given strong indications that some version of the
Bryan–Graber [18] statement of the crepant resolution conjecture should hold at the level of
disk invariants. This was proven explicitly for the crepant resolution of the Calabi–Yau orbifold
[C3/Z2] in [20]. Around the same time, it was suggested [10, 11] that a general statement of
a Crepant Resolution Conjecture for open invariants should have a natural formulation within
Givental’s formalism, as in [26, 29]. Some implications of this philosophy were verified in [11]
for the crepant resolution OP2(−3) of the orbifold [C3/Z3].

The OCRC we propose here is a natural extension to open Gromov–Witten theory of the
Coates–Corti–Iritani–Tseng approach [28] to Ruan’s conjecture. The observation that the disk
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function of [14,58] can be interpreted as an endomorphism of Givental space makes the OCRC
statement follow almost tautologically from the Coates–Corti–Iritani–Tseng/Ruan picture of
the ordinary CRC via toric mirror symmetry [26]. The more striking aspect of our conjecture
is then that the linear function O comparing the winding neutral disk potentials is consider-

ably simpler than the symplectomorphism UX ,Yρ in the closed CRC and it is characterized in
terms of purely classical data: essentially, the equivariant Chern characters of X and Y . This is
closely related to Iritani’s proposal [45] that the analytic continuation for the flat sections of the
global quantum D-module is realized via the composition of K-theoretic central charges; our
disk endomorphisms are very close to just being inverses to the Γ factors appearing in Iritani’s

central charges and therefore “undo” most of the transcendentality of UX ,Yρ .

Iritani’s proposal is inspired and consistent with the idea of global mirror symmetry, i.e. that
there should be a global quantum D-module on the A-model moduli space which locally agrees
with the Frobenius structure given by quantum cohomology. In order to verify Iritani’s proposal
in the fully equivariant setting, we construct explicitly such a global structure. Motivated by
the connection of the Gromov–Witten theory of An to certain integrable systems [12], we realize
the Dubrovin local system as a system of one-dimensional hypergeometric periods. As a special
feature of this case, structure constants of quantum cohomology are rational in exponentiated
flat coordinates (or, equivalently, the inverse mirror map is a rational function of the B-model
variables). Moreover, the n-dimensional oscillating integrals describing the periods of the sys-
tem reduce to Euler–Pochhammer line integrals in the complex plane. As a consequence, the
computation of the analytic continuation of flat sections is drastically simplified with respect
to the standard toric mirror symmetry methods. Furthermore, in this context integral struc-
tures in equivariant cohomology emerge naturally from the interpretation of flat sections of the
Dubrovin connection as twisted period maps. The Deligne–Mostow monodromy of hypergeo-
metric periods translates then to an action of the colored braid group in equivariant K-theory.
An enticing speculation is that, upon mirror symmetry, this may correspond to autoequivalences
of Db

T (Y ) and surject to the Seidel–Thomas braid group action [62] in the non-equivariant limit.

Acknowledgements. We are particularly grateful to Tom Coates for his collaboration at the
initial stages of this project, and the many enlightening conversations that followed. We would
also like to thank Hiroshi Iritani, Yunfeng Jiang, Étienne Mann, Stefano Romano and Ed Se-
gal for useful discussions and/or correspondence. This project originated from discussions at
the Banff Workshop on “New recursion formulae and integrability for Calabi–Yau manifolds”,
October 2011; we are grateful to the organizers for the kind invitation and the great scientific
atmosphere at BIRS. A. B. has been supported by a Marie Curie Intra-European Fellowship
under Project n◦ 274345 (GROWINT). R. C. has been supported by NSF grant DMS-1101549.
Partial support from the GNFM-INdAM under the Project “Geometria e fisica dei sistemi in-
tegrabili” is also acknowledged.

2. Background

This section gathers background for the formulation of the open string Crepant Resolution
Conjecture of Section 3 and its proof in Section 5. We give a self-contained account of the
quantum D-module/Givental space approach to the study of the closed string Crepant Reso-
lution Conjecture in genus zero along the lines of Coates–Corti–Iritani–Tseng [26] and Iritani
[45] (Section 2.1). Section 2.2 provides an overview of open Gromov–Witten theory for toric
Calabi–Yau threefolds à la Katz–Liu as well as its extension to toric orbifolds. Section 2.3
collects relevant material on the classical and quantum geometry of An-resolutions.

The content of Section 2.1 is surveyed in Iritani’s excellent review article [46], to which
the reader is referred for further details. For a more comprehensive introduction to the open
Gromov–Witten theory for toric orbifolds, see e.g. [14, 58].
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2.1. Quantum D-modules and the Crepant Resolution Conjecture. Let Z be a smooth
Deligne–Mumford stack with coarse moduli space Z and suppose that Z carries an alge-
braic T ' C∗ action with zero-dimensional fixed loci. Write IZ for the inertia stack of Z,
inv : IZ → IZ for its canonical involution and i : IZT ↪→ IZ for the inclusion of the T -
fixed loci into IZ. The equivariant Chen–Ruan cohomology ring H(Z) , H•T,CR(Z) of Z is

a finite rank free module over the T -equivariant cohomology of a point HT (pt) ' C[ν], where

ν = c1(OBT (1)); we define NZ , rankC[ν]H(Z) and will denote by ∆Z the free module over
C[ν] spanned by the T -equivariant lifts of Chen–Ruan cohomology classes having age-shifted
degree at most two. We furthermore suppose that odd cohomology groups vanish in all degrees.

The T -action on Z gives a non-degenerate inner product on H(Z) via the equivariant orbifold
Poincaré pairing

η(θ1, θ2)Z ,
∫
IZT

i∗(θ1 ∪ inv∗θ2)

e(NIZT /IZ)
, (6)

and it induces a torus action on the moduli space Mg,n(Z, β) of degree β twisted stable maps
[1, 23] from genus g orbicurves to Z. For classes θ1, . . . , θn ∈ H(Z) and integers r1, . . . , rn ∈ N,
the Gromov–Witten invariants of Z

〈σr1(θ1) . . . σrn(θn)〉Zg,n,β ,
∫

[Mg,n(Z,β)]vir
T

n∏
i=1

ev∗i θiψ
ri
i , (7)

〈θ1 . . . θn〉Zg,n,β , 〈σ0(θ1) . . . σ0(θn)〉Zg,n,β , (8)

define a sequence of multi-linear functions on H(Z) with values in the field of fractions C(ν)
of HT (pt). The correlators (8) (respectively, (7) with ri > 0) are the primary (respectively,
descendent) Gromov–Witten invariants of Z.

Fix a basis {φi}NZ−1
i=0 of H(Z) such that φ0 = 1Z and φj , 1 ≤ j ≤ b2(Z) are untwisted

Poincaré duals of T -equivariant divisors in Z. Denote by {φi}NZ−1
i=0 the dual basis with respect

to the pairing (6). Let τ =
∑
τiφi denote a general point of H(Z). The WDVV equation for

primary Gromov–Witten invariants (8) defines a family of associative deformations ◦τ of the
T -equivariant Chen–Ruan cohomology ring of Z via

η (θ1 ◦τ θ2, θ3)Z , 〈〈θ1, θ2, θ3〉〉Z0,3 (τ) (9)

where

〈〈θ1, . . . , θk〉〉Z0,k (τ) ,
∑
β

∑
n≥0

〈
θ1, . . . , θk,

n times︷ ︸︸ ︷
τ, τ, . . . , τ

〉Z
0,n+k,β

n!
∈ C((ν)), (10)

and the index β ranges over the cone of effective curve classes Eff(Z) ⊂ H2(Z,Q); we denote

by lZ , b2(Z) its dimension.

By the Divisor Axiom [1] this can be rewritten as

η (θ1 ◦τ θ2, θ3)Z =
∑

β∈Eff(Z),n≥0

〈
θ1, θ2, θ3,

n times︷ ︸︸ ︷
τ ′, τ ′, . . . , τ ′

〉Z
0,n+3,β

n!
eτ0,2·β (11)
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where we have decomposed τ =
∑NZ−1

i=0 τiφi = τ0,2 + τ ′ as

τ0,2 =

lZ∑
i=1

τiφi, (12)

τ ′ = τ01Z +

NZ−1∑
i=lZ+1

τiφi. (13)

The quantum product (11) is a formal Taylor series in (τ ′, eτ0,2). Suppose that it is actually
convergent in a contractible open set U 3 (0, 0); this is the case for many toric orbifolds [27,40]
and, as we see explicitly, for all the examples of Section 2.3. Then the quantum product ◦τ is
an analytic deformation of the Chen–Ruan cup product ∪CR, to which it reduces in the limit
τ ′ → 0, Re(τ0,2) → −∞. Thus, the holomorphic family of rings H(Z) × U → U , together
with the inner pairing (6) and the associative product (11), gives U the structure of a (non-

conformal) Frobenius manifold QH(Z) , (U, η, ◦τ ) [34]; this is the quantum cohomology ring of
Z. We refer to the Chen–Ruan limit τ ′ → 0, Re(τ0,2)→ −∞ as the large radius limit point of Z.

Assigning a Frobenius structure on U is tantamount to endowing the trivial cohomology
bundle TU ' H(Z) × U → U with a flat pencil of affine connections [34, Lecture 6]. Denote

by ∇(η) the Levi–Civita connection associated to the Poincaré pairing on H(Z); in Cartesian

coordinates for U ⊂ H(Z) this reduces to the ordinary de Rham differential ∇(η) = d. Consider
then the one parameter family of covariant derivatives on TU

∇(η,z)
X , ∇(η)

X + z−1X ◦τ . (14)

The fact that the quantum product is commutative, associative and integrable implies that
R∇(η,z) = T∇(η,z) = 0 identically in z; this is equivalent to the WDVV equations for the genus

zero Gromov–Witten potential. The equation for the horizontal sections of ∇(η,z),

∇(η,z)ω = 0, (15)

is a rank-NZ holonomic system of coupled linear PDEs. We denote by SZ the vector space
of solutions of (15): a C((z))-basis of SZ is by definition given by the gradient of a flat frame

τ̃(τ, z) for the deformed connection ∇(η,z). The Poincaré pairing induces a non-degenerate inner
product H(s1, s2)Z on SZ via

H(s1, s2)Z , η(s1(τ,−z), s2(τ, z))Z . (16)

The triple QDM(Z) , (U,∇(η,z), H(, )Z) defines a quantum D-module structure on U , and the
system (15) is the quantum differential equation (in short, QDE) of Z.

Remark 2.1. Notice that the assumption that the quantum product (11) is analytic in (τ ′, eτ0,2)
around the large radius limit point translates into the statement that the QDE (15) has a Fuch-

sian singularity along ∪lZi=1{qi , eτi = 0}.

In the same way in which the genus zero primary theory of Z defines a quantum D-module
structure on H(Z)×U , the genus zero gravitational invariants (7) furnish a basis of horizontal

sections of ∇(η,z) [39]. For every θ ∈ H(Z), a flat section of the D-module is given by an
End(H(Z))-valued function SZ(τ, z) : H(Z)→ SZ defined as

SZ(τ, z)θ , θ −
NZ−1∑
k=0

φk
〈〈

φk,
θ

z + ψ

〉〉Z
0,2

(τ) (17)

where ψ is a cotangent line class and we expand the denominator as a geometric series 1
z+ψ =

1
z

∑(
−ψ
z

)k
. We call the pair (QDM(Z), SZ) a calibration of the Frobenius structure (H(Z), ◦τ , η).
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The flows of coordinate vectors for the flat frame of TH(Z) induced by SZ(τ, z) give a basis

of deformed flat coordinates of ∇(η,z), which is defined uniquely up to an additive z-dependent
constant. A canonical basis is obtained upon applying the String Axiom: define the J-function
JZ(τ, z) : U × C→ H(Z) by

JZ(τ, z) , zSZ(τ,−z)∗1Z (18)

where SZ(τ, z)∗ denotes the adjoint to SZ(τ, z) under H(−,−)Z . Explicitly,

JZ(τ, z) = (z + τ0)1Z + τ1φ1 + ...+ τNZφNZ +

NZ−1∑
k=0

φk
〈〈

φk
z − ψn+1

〉〉Z
0,1

(τ). (19)

Components of JZ(τ, z) in the φ-basis give flat coordinates of (14); this is a consequence of
(18) combined with the String Equation. From (19), the undeformed flat coordinate system is
obtained in the limit z →∞ as

lim
z→∞

(
JZ(τ, z)− z1Z

)
= τ. (20)

By Remark 2.1, a loop around the origin in the variables qi = eτi gives a non-trivial mon-
odromy action on the J-function. Setting τ ′ = 0 in (19) and applying the Divisor Axiom then
gives [30, Proposition 10.2.3]

JZ,small(τ0,2, z) , JZ(τ, z)
∣∣∣
τ ′=0

= zeτ1φ1/z . . . eτlZφlZ /z
(

1Z +
∑

β,k eτ1β1 . . . eτlZ βlZ φk
〈

φk
z(z−ψ1)

〉Z
0,1,β

)
. (21)

In our situation where the T -action has only zero-dimensional fixed loci {Pi}NZi=1, write

φi →
NZ∑
j=1

cij(ν)Pj , i = 1, . . . , lZ , (22)

for the image of {φi ∈ H2(Z,C)}lZi=1 under the Atiyah–Bott isomorphism. The image of each φi
is concentrated on the fixed point cohomology classes with trivial isotropy which are idempotents
of the classical Chen-Ruan cup product on H(Z). Therefore, the components of the J-function
in the fixed points basis

JZ,small(τ0,2, z) =:

NZ∑
j=1

JZ,small
j (τ0,2, z)Pj (23)

satisfy

JZ,small
j (τ0,2, z) = ze

∑lZ
i=1 τicij/z (1 +O (eτ0,2)) (24)

where the O (eτ0,2) term on the right hand side is an analytic power series around eτ0,2 = 0 by

(21) and the assumption of convergence of the quantum product. The localized basis {Pj}NZj=1

therefore diagonalizes the monodromy around large radius: by (24), each JZ,small
j (τ0,2, z) is an

eigenvector of the monodromy around a loop in the qi-plane encircling the large radius limit of
Z with eigenvalue e2πicij/z.

2.1.1. Global mirror symmetry and the closed CRC. Consider a toric Gorenstein orbifold X ,
and let X ← Y be a crepant resolution of its coarse moduli space. Ruan’s Crepant Resolu-
tion Conjecture can be phrased as the existence of a global quantum D-module underlying the
quantum differential systems of X and Y . This is a 4-tuple (MA, F,∇, H(, )F ) with

• MA a complex quasi-projective variety
• F →MA a rank-NZ holomorphic vector bundle on MA;
• ∇ a flat OMA

-connection on F ;
• H(, )F ∈ End(F ) a non-degenerate ∇-flat inner product.
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In the quantum D-module picture, the Crepant Resolution Conjecture states that there exist
open subsets VX , VY ⊂ MA and functions hX , hY ∈ OMA

such that the global D-module
(MA, F,∇, H(, )F ) is locally isomorphic to QDM(X ) and QDM(Y ):

(MA, F,∇ ◦ h1/z
X , H(, )F )

∣∣
VX

' QDM(X ), (25)

(MA, F,∇ ◦ h1/z
Y , H(, )F )

∣∣
VY
' QDM(Y ). (26)

Notice that the Dubrovin connections on TH(X ) and TH(Y ) correspond to different trivial-
ization of the global flat system ∇ when hX 6= hY . Any 1-chain ρ in MA gives an analytic

continuation map of ∇-flat sections UX ,YS,ρ : Γ(VY ,O(F )) → Γ(VX ,O(F )), which is an isometry

of H(, )F and identifies the quantum D-modules of X and Y .

Remark 2.2. When hX 6= hY , the induced Frobenius structures on H(X ) and H(Y ) are
inequivalent. A sufficient condition [28] for the two Frobenius structures to coincide is given by
the Hard Lefschetz criterion for X → X:

age(θ)− age(inv∗θ) = 0 (27)

for any class θ ∈ H(X ).

Remark 2.3. Suppose that c1(Z) ≥ 0 and that the coarse moduli space Z is a semi-projective
toric variety given by a GIT quotient of CdimZ+lZ by (C∗)lZ . In this setting, the global quantum
D-module arises naturally in the form of the GKZ system associated to Z [7,25,40]. The scaling

factor h
1/z
Z then measures the discrepancy between the small J-function and the canonical basis-

vector of solutions of the GKZ system (the I-function), restriced to zero twisted insertions:

h
1/z
Z (τ0,2)JZ,small(τ0,2, z) = IZ(a(τ0,2), z), (28)

where a(τ0,2) is the inverse mirror map. As a consequence of (28), the scaling factor hZ is deter-
mined by the toric data defining Z [25, 28, 40]. Let Ξi ∈ H2(Z) be the T -equivariant Poincaré
dual of the reduction to the quotient of the ith coordinate hyperplane in CdimZ+lZ and write

ζ
(j)
i = CoeffφjΞi ∈ C[ν] for the coefficient of the projection of Ξi along φj ∈ H(Z) for j =

0, . . . , lZ . Defining, for every β, Di(β) ,
∫
β Ξi and J±β , {j ∈ {1, . . . ,dimZ + lZ}| ±Dj(β) > 0},

we have

τl = log al +
∑

β∈Eff(Z)

aβ

∏
j−∈J−β

(−1)Dj− (β)|Dj−(β)|!∏
j+∈J+

β
Dj+(β)!

∑
k−∈J−β

−ζ(l)
k−

Dk−(β)
, l = 1, . . . , lZ , (29)

hZ = exp

 ∑
β∈Eff(Z)

aβ

∏
j−∈J−β

(−1)Dj− (β)|Dj−(β)|!∏
j+∈J+

β
Dj+(β)!

∑
k−∈J−β

−ζ(0)
k−

Dk−(β)

 . (30)

2.1.2. Givental’s symplectic formalism. The global quantum D-module picture is intimately
connected to the CRC statement of [26, 29]. In view of our statement of the OCRC in Section
3, we find it useful to spell it out here. Givental’s symplectic space (HZ ,ΩZ) is the infinite
dimensional vector space

HZ , H(Z)⊗O(C∗) (31)

along with the symplectic form

ΩZ(f, g) , Res
z=0

η(f(−z), g(z))Z . (32)

A general point of HZ can be written as∑
k≥0

NZ−1∑
α=0

qk,αφαz
k +

∑
l≥0

NZ−1∑
β=0

pl,βφβ(−z)−k−1. (33)
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Notice that {pl,β, qk,α} are Darboux coordinates for (32); call H+
Z the Lagrangian subpace

spanned by qk,α. The generating function of genus zero descendent Gromov–Witten invariants
of Z,

FZ0 ,
∞∑
n=0

∑
β∈Eff(Z)

∑
a1,...an
r1...rn

∏n
i=1 τai,ri
n!

〈σr1(φa1) . . . σrn(φan)〉Z0,n,β , (34)

is the germ of an analytic function on H+
Z upon identifying τ0,1 = q0,1 + 1, τα,n = qα,n; under

the assumption of convergence of the quantum product, coefficients of monomials in τα,n with
degCR φα 6= 0, n > 0 are analytic functions of eτ0,2 in a neighbourhood of the origin. The graph
of the differential of (34),

pl,β =
∂FZ0
∂ql,β

, (35)

then yields a formal germ of a Lagrangian submanifold LZ (in fact, a ruled cone, as a conse-
quence of the genus zero Gromov–Witten axioms), depending analytically on the small quantum
cohomology variables τ0,2. By the equations defining the cone, the J-function JZ(τ,−z) yields a
family of elements of LZ parameterized by τ ∈ H(Z), which is uniquely determined by its large
z asymptotics J(τ,−z) = −z + τ + O(z−1). Conversely, the genus zero topological recursion
relations imply that LZ can be reconstructed entirely from JZ(τ, z).

The Crepant Resolution Conjecture has a natural formulation in terms of morphisms of
Givental spaces, as pointed out by Coates–Corti–Iritani–Tseng (CCIT) [26] and further explored
by Coates–Ruan [29].

Conjecture 2.4 ([26], [29]). There exists C((z−1))-linear symplectic isomorphism of Givental

spaces UX ,Yρ : HX → HY , matching the Lagrangian cones of X and Y upon a suitable analytic
continuation of small quantum cohomology parameters:

UX ,Yρ (LX ) = LY . (36)

This version of the CRC is equivalent to the quantumD-module approach via the fundamental
solutions, which give a canonical z-linear identification

SZ(τ, z) : HZ
∼=−→ SZ . (37)

translating the analytic continuation map UX ,YS,ρ to a linear isomorphism of Givental spaces

which is symplectic, as UX ,YS,ρ preserves the pairing (16).

Suppose now that c1(X ) = 0, dimCX = 3 and assume further that the J-functions JZ , for Z
either X or Y , and UX ,Yρ admit well-defined non-equivariant limits,

JZn−eq(τ, z) , lim
ν→0

JZ(τ, z), UX ,Yρ,0 , lim
ν→0

UX ,Yρ . (38)

By homogeneity, e−τ0/zJZn−eq(τ, z) is a Laurent polynomial of the form [30, §10.3.2]

JZn−eq(τ, z) = e−τ0/z

(
z +

NZ−1∑
i=1

(
τi +

fi
Z(τ)

z

)
φi +

gZ(τ)

z2
1Z

)
, (39)

where fZ(τ) and gZ(τ) are analytic functions around the large radius limit point of Z. Re-
stricting JZn−eq(τ, z) to ∆Z and picking up a branch ρ of analytic continuation of the quantum
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parameters, the vector valued analytic function IX ,Yρ defined by

∆X ∆Y

HX HY

IX ,Yρ //

JXn−eq

∣∣
∆X

��

JYn−eq

∣∣
∆Y

��h
1/z
X UX ,Yρ,0 h

−1/z
Y // (40)

gives an analytic isomorphism1 between neighbourhoods VX , VY of the projections of the large
radius points of X and Y to ∆X and ∆Y . When X satisfies the Hard–Lefschetz condition, the

coefficients of UX ,Yρ contain only non-positive powers of z [29] and the non-equivariant limit

coincides with the z →∞ limit; then the isomorphism IX ,Yρ extends to an affine linear change

of variables ÎX ,Yρ : H(X )→ H(Y ) at the level of the full cohomology rings of X and Y , which
is an isomorphism of Frobenius manifolds.

2.1.3. Integral structures and the CRC. In [45], Iritani uses K-groups to define an integral
structure in the quantum D-module associated to the Gromov–Witten theory of a smooth
Deligne–Mumford stack Z; we recall the discussion in [45, 46], adapting it to the equivariant
setting.

Write K(Z) for the Grothendieck group of topological vector bundles V → Z and consider
the map Ψ : K(Z)→ H(Z)⊗ C((z−1)) given by

Ψ(V ) , (2π)−
dimZ

2 z−µΓ̂Z ∪ (2πi)deg /2inv∗ch(V ), (42)

where ch(V ) is the orbifold Chern character, ∪ is the topological cup product on IZ, and

Γ̂Z ,
⊕
v

∏
f

∏
δ

Γ(1− f + δ), (43)

µ ,

(
1

2
deg(φ)− 3

2

)
φ, (44)

where the sum in (43) is over all connected components of the inertia stack, the left product is
over the eigenbundles in a decomposition of the tangent bundle TZ with respect to the stabilizer
action (with f the weight of the action on the eigenspace), and the right product is over all of
the Chern roots δ of the eigenbundle. Via the fundamental solution (17) this induces a map to
the space of flat sections of QDM(Z); its image is a lattice [45] in SZ , which Iritani dubs the
K-theory integral structure of QH(Z) = (H(Z), η, ◦τ ). This implies the existence of an integral
local system underlying QDM(Z) induced by the K-theory of Z.

Iritani’s theory has important implications for the Crepant Resolution Conjecture. At the

level of integral structures, the analytic continuation map UX ,YS,ρ of flat sections should be induced

1Explicitly, matrix entries (UX ,Yρ,0 )ij of UX ,Yρ,0 are monomials in z; call uij the coefficient of such monomial.
Then (40) boils down to the statement that quantum cohomology parameters τ•i in ∆• for i = 1, . . . , lY are
identified as

τYi = (IX ,Yρ τX )i , ui0 +

lY∑
j=1

uijτ
X
j +

NY −1∑
k=lY +1

uikf
X
k (τX ). (41)

Since deg(UX ,Yρ,0 )ij > 0 for j > lY , in the Hard Lefschetz case the condition that the coefficients of UX ,Yρ are

Taylor series in 1/z implies that uik = 0 for k > lY .
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by an isomorphism UX ,YK,ρ : K(Y )→ K(X ) at the K-group level,

K(X ) K(Y )

SX SY

UX ,YK,ρ //

SX (x,z)ΨX

��

SY (t,z)ΨY

��h
1/z
Y UX ,YS,ρ h

−1/z
X // (45)

The Crepant Resolution Conjecture can then be phrased in terms of the existence of an iden-
tification of the integral structures underlying quantum cohomology. In [45], it is conjectured

that UX ,YK,ρ should be induced by a natural geometric correspondence between K-groups (see

also [7] for earlier work in this context). In terms of Givental’s symplectic formalism, we have

UX ,Yρ = ΨY ◦ UX ,YK,ρ ◦Ψ−1
X . (46)

2.2. Open Gromov–Witten theory. For a three-dimensional toric Calabi–Yau variety, open
Gromov-Witten invariants are defined “via localization” in [31, 47]. This theory has been first
introduced for orbifold targets in [14] and developed in full generality in [58] (see also [37]
for recent results in this context). Boundary conditions are given by choosing special type of
Lagrangian submanifolds introduced by Aganagic–Vafa in [4]. These Lagrangians are defined
locally in a formal neighborhood of each torus invariant line: in particular if p is a torus fixed
point adjacent to the torus fixed line l, and the local coordinates at p are (z, u, v), then L is
defined to be the fixed points of the anti-holomorphic involution

(z, u, v)→ (1/z, zu, zv) (47)

defined away from z = 0. Boundary conditions can then be thought of as “formal” ways of
decorating the web diagram of the toric target.

Loci of fixed maps are described in terms of closed curves mapping to the compact edges
of the web diagram in the usual way and disks mapping rigidly to the torus invariant lines
with Lagrangian conditions. Beside Hodge integrals coming from the contracting curves, the
contribution of each fixed locus to the invariants has a factor for each disk, which is constructed
as follows. The map from the disk to a neighborhood of its image is viewed as the quotient
via an involution of a map of a rational curve to a canonical target. The obstruction theory in
ordinary Gromov-Witten theory admits a natural Z2 action, and the equivariant Euler class of
the involution invariant part of the obstruction theory is chosen as the localization contribution
from the disk [14, Section 2.2], [58, Section 2.4]. This construction is efficiently encoded via the
introduction of a “disk function”, which we now review in the context of cyclic isotropy (see
[58, Section 3.3] for the general case of finite abelian isotropy groups).

Let Z be a three-dimensional CY toric orbifold, p a fixed point such that a neighborhood
is isomorphic to [C3/Zn+1], with representation weights (m1,m2,m3) and CY torus weights
(w1, w2, w3). Define ne = (n + 1)/ gcd(m1, n + 1) to be the size of the effective part of the
action along the first coordinate axis. There exist a map from an orbi-disk mapping to the first
coordinate axis with winding d and twisting k if the compatibility condition

d

ne
− km1

n+ 1
∈ Z (48)

is satisfied. In this case the positively oriented disk function is

D+
k (d; ~w) =

(new1

d

)age(k)−1 ne

d(n+ 1)
⌊
d
ne

⌋
!

Γ
(
dw2
new1

+
〈
km3
n+1

〉
+ d

ne

)
Γ
(
dw2
new1

−
〈
km2
n+1

〉
+ 1
) . (49)

11



The negatively oriented disk function is obtained by switching the indices 2 and 3. By renaming
the coordinate axes this definition applies to the general boundary condition.

In [58] the disk function is used to construct the GW orbifold topological vertex, a building
block for open and closed GW invariants of Z. The disk potential is efficiently expressed in
terms of the disk and of the J function of Z. Fix a Lagrangian boundary condition L which
we assume to be on the first coordinate axis in the local chart ( ∼= [C3/Zn+1]) around the point
p. Denote by {1p,k}k=1,...,n+1 the part of the localized basis for H(Z) supported at p. Raising
indices using the orbifold Poincaré pairing, and extending the disk function to be a cohomology
valued function

D+(d; ~w) =

n+1∑
k=1

D+
k (d; ~w)1k

p, (50)

the (genus zero) scalar disk potential is obtained by contraction with the J function:

F disk
L (τ, y, ~w) ,

∑
d

yd

d!

∑
n

1

n!
〈τ, . . . , τ〉L,d0,n

=
∑
d

yd

d!

(
D+(d; ~w), JZ

(
τ,
gw1

d

))
Z
, (51)

where we denoted by 〈τ, . . . , τ〉L,d0,n the disk invariants with boundary condition L, winding d
and n general cohomological insertions.

Remark 2.5. We may consider the disk potential relative to multiple Lagrangian boundary
conditions. In that case, we define the disk function by adding the disk functions for each
Lagrangian, and we introduce a winding variable for each boundary condition.

Remark 2.6. It is not conceptually difficult (but book-keeping intensive) to express the general
genus zero open potential in terms of appropriate contractions of arbitrary copies of these disk
functions with the full descendant Gromov-Witten potential of Z.

2.3. An resolutions.

2.3.1. GIT Quotients. Here we review the relevant toric geometry concerning our targets. Let
X , [C3/Zn+1] be the 3-fold An singularity and Y its resolution. The toric fan for X has rays
(0, 0, 1), (1, 0, 0), and (1, n + 1, 0), while the fan for Y is obtained by adding the rays (1, 1, 0),
(1, 2, 0),..., (1, n, 0). The divisor class group is described by the short exact sequence

0 −→ Zn MT

−→ Zn+3 N−→ Z3 −→ 0, (52)

where

M =


1 −2 1 0 0 ... 0 0
0 1 −2 1 0 ... 0 0
...

. . .
. . .

...
0 ... 0 0 1 −2 1 0

 , N =

 1 1 1 1 0
0 1 2 ... n+ 1 0
0 0 0 0 1

.

 (53)

Both X and Y are GIT quotients:

X =

[
Cn+3 \ V (x1 · ... · xn)

(C∗)n

]
, (54)

Y =
Cn+3 \ V (I1, . . . , In),

(C∗)n
(55)

where

Ii =
n+1∏

j=0,j 6=i−1,i

xi, (56)
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Y X

α1 + α2

α1 + α2

p3

L3

L4
w+

4 = −4α1

w+
3

w−
3

α1 + α2

α1 + α2

p1

L0

L1

p2

w−
1 = −4α2

w+
2

w−
2

p4

L2

ω

−α2

ω−1

−α1

α1 + α2

ω0

w−
4

w+
1

Figure 1. The toric web diagrams for Y and X for n = 3. Fixed points and
invariants lines are labelled, together with the relevant torus and representation
weights.

and the torus action is specified by M . From the quotient (54), we can compute pseudo-
coordinates on the orbifold z1

z2

z3

 =

 x0x
n
n+1

1 x
n−1
n+1

2 · ... · x
1

n+1
n

x
1

n+1

1 x
2

n+1

2 · ... · x
n
n+1
n xn+1

xn+2

 . (57)

These coordinates are only defined up to a choice of (n + 1)st root of unity for each xi. This
accounts for a residual Zn+1 ⊂ (C∗)n acting with dual representations on the first two coordi-
nates. We identify this residual Zn+1 as the subgroup generated by

(
ω, ω2, . . . , ωn

)
∈ (C∗)n,

where ω = e
2πi
n+1 . This realizes the quotient (54) as the 3-fold An singularity where Zn+1 = 〈ω〉

acts by ω · (z1, z2, z3) = (ωz1, ω
−1z2, z3).

Remark 2.7. The weights of the Zn+1 action on the corresponding fibers of TX are inverse to
the weights on the local coordinates because a local trivialization of the tangent bundle is given
by ∂

∂zα where zα are the local coordinates.

The geometry of the space Y is captured by the toric web diagram in Figure 1. In particular,
Y has n + 1 torus fixed points (corresponding to the n + 1 3-dimensional cones in the fan)
and a chain of n torus invariant lines connecting these points. We label the points p1,...,pn+1

where pi correspondes to the cone spanned by (0, 0, 1), (1, i − 1, 0), and (1, i, 0) and we label
the torus invariant lines by L1,...,Ln where Li connects pi to pi+1. We also denote by L0 and
Ln+1 the torus invariant (affine) lines corresponding to the 2-dimensional cones spanned by
the rays (1, 0, 0), (0, 0, 1) and (1, n, 0), (0, 0, 1), respectively. From the quotient (55) we compute
homogeneous coordinates on the line Li[

xi0x
i−1
1 · ... · xi−1

xn+1−i
n+1 xn−in−1 · ... · xi+1

]
(58)

where pi ↔ [0 : 1] and pi+1 ↔ [1 : 0].
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On the resolution, H2(Y ) is generated by the torus invariant lines Li. Define γi ∈ H2(Y ) to
be dual to Li. The γi form a basis of H2(Y ); denote the corresponding line bundles by O(γi).
Note that O(γi) restricts to O(1) on Li and O on Lj if j 6= i and this uniquely determines the
line bundle O(γi). On the orbifold, line bundles correspond to Zn+1 equivariant line bundles on
C3. We denote Ok the line bundle where Zn+1 acts on fibers with weight ωk; then, for example,
TX = O−1 ⊕O1 ⊕O0 where the subscripts are computed modulo n+ 1 (c.f. Remark 2.7).

2.3.2. Classical equivariant geometry. Given that we are working with noncompact targets, all
of our quantum computations utilize Atiyah-Bott localization with respect to an additional
T = C∗ action on our spaces. Let T act on Cn+3 with weights (α1, 0, ..., 0, α2,−α1 −α2). Then
the induced action on the orbifold and resolution can be read off from the local coordinates in
(57) and (58). In particular, the three weights on the fibers of TX are −α1,−α2, α1 + α2. The
T -equivariant Chen-Ruan cohomology H(X ) is by definition the T -equivariant cohomology of
the inertia stack IX . The latter has components X1, . . . ,Xn,Xn+1, the last being the untwisted
sector2:

Xk = [C/Zn+1], 1 ≤ k ≤ n,
Xn+1 = [C3/Zn+1] (59)

Writing 1k, k = 1, . . . , n + 1 for the fundamental class of Xk we obtain a C(ν) basis of H(X );
the age-shifted grading assigns degree 0 to the fundamental class of the untwisted sector, and
degree 1 to every twisted sector. The Atiyah-Bott localization isomorphism is trivial, i.e. the
fundamental class on each twisted sector is identified with the unique T -fixed point on that
sector. We abuse notation and use 1k to also denote the fixed point basis. The equivariant
Chen-Ruan pairing in orbifold cohomology is

η (1i,1j)X =
δi,n+1δj,n+1 + α1α2δi+j,n+1

α1α2(α1 + α2)(n+ 1)
. (60)

On the resolution Y , the three weights on the tangent bundle at pi are

(w−i , w
+
i , α1 + α2) , ((i− 1)α1 + (−n+ i− 2)α2,−iα1 + (n+ 1− i)α2, α1 + α2). (61)

Moreover, O(γj) is canonically linearized via the homogeneous coordinates in (57). The weight
of O(γi) at the fixed point pi is {

(n+ 1− j)α2 i ≤ j,
jα1 i > j.

(62)

Denote by {Pi}n+1
i=1 the equivariant cohomology classes corresponding to the fixed points of Y .

Choosing the canonical linearization given in (62), the Atiyah-Bott localization isomorphism on
Y is given by

γj −→
∑
i≤j

(n+ 1− j)α2Pi +
∑
i>j

jα1Pi, (63)

γn+1 −→
n+1∑
i=1

Pi. (64)

where γn+1 is the fundamental class on Y . Genus zero, degree zero GW invariants are given by
equivariant triple intersections on Y ,

〈γi, γj , γk〉Y0,3,0 =

∫
Y
γi ∪ γj ∪ γk. (65)

2While it is more common to index the untwisted sector by 0, we make this choice of notation for the sake of
the computations of Section 5, where certain matrices are triangular with this ordering.
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With i ≤ j ≤ k < n+ 1, (63)-(64) yield

〈γn+1, γn+1, γn+1〉Y0,3,0 =
1

(n+ 1)α1α2(α1 + α2)
, (66)

〈γn+1, γn+1, γi〉Y0,3,0 = 0, (67)

〈γn+1, γi, γj〉Y0,3,0 =
i(n+ 1− j)

−(n+ 1)(α1 + α2)
, (68)

〈γi, γj , γk〉Y0,3,0 = − ij(n+ 1− k)α1 + i(n+ 1− j)(n+ 1− k)α2

(n+ 1)(α1 + α2)
. (69)

The T -equivariant pairing η (γi, γj)Y is given by (68) and diagonalizes in the fixed point basis:

η (Pi, Pj)Y =
δi,j

w−i w
+
i (α1 + α2)

. (70)

2.3.3. Quantum equivariant geometry. We compute the genus 0 GW invariants of Y via local-
ization (extending the computations of [17] to a more general torus action):

〈γi1 , ...., γil〉0,l,β =

{
− 1
d3 if β = d(Lj + ...+ Lk) with j ≤ min{iα} ≤ max{iα} ≤ k,

0 else.
(71)

Denote by Φ =
∑n+1

i=1 tiγi a general cohomology class Φ ∈ H(Y ). The equivariant three-point
correlators used to define the quantum cohomology can be computed from (66)-(69), (71), and
the divisor equation (with ≤ i ≤ j ≤ k ≤ n+ 1):

〈〈γi, γj , γk〉〉Y0,3 (t) =

∫
Y
γi ∪ γj ∪ γk −

∑
l≤i≤k≤m

etl+...+tm

1− etl+...+tm
. (72)

The equivariant quantum cohomology of X can then be computed from the following result,
which is proven in the appendix of [26].

Theorem 2.8 (Coates-Corti-Iritani-Tseng). Let log ρ : [0, 1]→ H2(Y ) be a path in H2(Y ) such
that ρ is a straight line in the Kähler cone of Y connecting

ρi(0) = 0, (73)

ρi(1) = ω−i. (74)

Then upon analytic continuation in the quantum parameters ti along ρ, the quantum products
for X and Y coincide after the affine-linear change of variables

ti =
(
ÎX ,Yρ x

)
i

=

{
− 2πi
n+1 +

∑n
k=1

ω−ik(ω
k
2−ω−

k
2 )

n+1 xk 0 < i < n+ 1

xn+1, i = n+ 1
(75)

and the linear isomorphism UX ,Yρ,0 : Horb
T (X )→ HT (Y )

1k →
n∑
i=1

ω−ik(ω
k
2 − ω− k2 )

n+ 1
γi,

1n+1 → γn+1.

Furthermore, UX ,Yρ,0 preserves the equivariant Poincaré pairings of X and Y .
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3. The Open Crepant Resolution Conjecture

3.1. The disk function, revisited. We reinterpret the disk function as an endomorphism of
Givental space. First we homogenize Iritani’s Gamma class (43) and make it of degree zero:

Γ̂Z(z) , z−
1
2

degΓ̂Z ,
∑

Γ̂kZ1p,k, (76)

where the second equality defines Γ̂kZ as the 1p,k-coefficient of Γ̂Z(z). With notation as in
Section 2.2,

D̂+
Z (z; ~w)(1p,k) ,

π

w1(n+ 1) sin
(
π
(〈

km3
n+1

〉
− w3

z

)) 1

Γ̂kZ
1p,k. (77)

The natural basis of inertia components gives a basis of eigenvectors for the linear transfor-

mation D̂+
Z : HZ → HZ .

Lemma 3.1. The k-th eigenvalue of D̂+
Z coincides with Dk(d; ~w) when z = new1/d and the

winding/twisting compatibility condition is met:

δ
1,exp

(
2πi
(
d
ne
− km1
n+1

)) (D̂+
Z

(new1

d
; ~w
)

(1p,k),1k
p

)
Z

= Dk(d; ~w) (78)

Proof. This formula follows from the explicit expression of Γ̂Z in the localization/inertia basis,
manipulated via the identity Γ(?)Γ(1−?) = π

sin(π?) . The Calabi-Yau condition w1 +w2 +w3 = 0

is also used. The δ factor encodes the degree/twisting condition. �

Let now X → X ← Y be a diagram of toric Calabi–Yau threefolds for which the CCIT/Coates–
Ruan version of the closed crepant resolution conjecture holds. Choose a Lagrangian boundary
condition LX in X and denote by LY the transform of such condition in Y ; notice that in
general this can consist of several Lagrangian boundary conditions. We have the following

Proposition 3.2. There exists a C((z−1))-linear transformation O : HX → HY of Givental
spaces such that

D̂+
Y ◦ UX ,Yρ = O ◦ D̂+

X . (79)

This proposition is trivial, as O can be constructed as D̂+
Y ◦ U

X ,Y
ρ ◦ (D̂+

X )−1. However we
observe that interesting open crepant resolution statements follow from this simple fact, and

that O is a simpler object than UX ,Yρ , and for a good reason: our disk function almost com-
pletely “undoes” the transcendental part in Iritani’s central charge. We make this precise in
the following observation.

Lemma 3.3. Referring to equations (43) and (77) for the relevant definitions, we have

ΘZ(1p,k) , z−µΓ̂Z ∪ D̂+
Z (1p,k)

=
z

3
2π

w1(n+ 1) sin
(
π
(〈

km3
n+1

〉
− w3

z

))1p,k (80)

In the hypotheses and notation of Proposition 3.2, note that X and Y must be related by
variation of GIT, and therefore they are quotients of a common space Z = ClY +3. Consider a
grade restriction window3 W ⊂ K(Z): a set of equivariant bundles on Z that descend bijectively
to bases for K(X )⊗ C and K(Y )⊗ C. Combining Lemma 3.3 with Iritani’s proposal (46), we
obtain the following prediction.

3We borrow the terminology from [61]. See also [5] and [42].
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HX
O // HY

HX
UX ,Yρ //

D̂X

OO

HY

D̂Y

OO

∆X

h
1/z
X JX

gg

h
1/z
X F̂

disk
L,X

FF

IX ,Yρ // ∆Y

h
1/z
Y J̃Y

77

h
1/z
Y F̂

disk
L,Y

XX

Figure 2. Open potential comparison diagram. In the Hard Lefschetz case this
same diagram holds with the h factors omitted, and ∆• identified with the full
cohomologies of either target.

Conjecture 3.4. Denote by ĈH• = z−
1
2

degCH• the (homogenized) matrix of Chern characters
in the bases given by W. Let Θ• be as in equation (80). Then:

O = ΘY ◦ ĈHY ◦ ĈH
−1

X ◦ΘX
−1. (81)

We verify Conjecture 3.4 for the resolution of An singularities in Section 4. We also note that
while we are formulating the statement in the case of cyclic isotropy to keep notation lighter,
it is not hard to write an analog prediction in a completely general toric setting.

Having modified our perspective on the disk functions, we also update our take on open disk
invariants to remember the twisting of the map at the origin of the disk. In correlator notation,

denote 〈τ, . . . , τ〉L,d,k0,n the disk invariants with Lagrangian boundary condition L, winding d,
twisting k and n cohomology insertions. We then define the cohomological disk potential as a
cohomology valued function, which is expressed as a composition of the J function with the
disk function (77):

Fdisk
L (τ, y, ~w) ,

∑
d

yd

d!

∑
n

1

n!
〈τ, . . . , τ〉L,d,k0,n 1p,k,

=
∑
d

δ
1,exp

(
2πi
(
d
ne
− km1
n+1

)) yd
d!
D̂+
Z ◦ JZ

(
τ,
new1

d
, ~w
)
. (82)

We define a section of Givental space that contains equivalent information to the disk potential:

F̂disk
L (t, z, ~w) , D̂+

Z ◦ JZ (τ, z; ~w) . (83)

We call F̂disk
L (t, z, ~w) the winding neutral disk potential. For any pair of integers k and d

satisfying (48), the twisting k and winding d part of the disk potential is obtained by substituting
z = new1

d . A general “disk crepant resolution statement” that follows from the closed CRC is a
comparison of winding-neutral potentials, as illustrated in Figure 2.

Proposition 3.5. Let X → X ← Y be a diagram for which the CCIT/Coates–Ruan form of
the closed crepant resolution conjecture holds and identify quantum parameters in ∆X and ∆Y

via IX ,Yρ as in (40). Then:

h
1/z
Y F̂disk

L,Y

∣∣
∆Y

= h
1/z
X O ◦ F̂disk

L,X
∣∣
∆X
. (84)

Assume further that X satisfies the Hard Lefschetz condition and identify cohomologies via the

affine linear change of variables ÎX ,Yρ . Then:

F̂disk
L,Y = O ◦ F̂disk

L,X . (85)
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Here we also understand that the winding-neutral disk potential of Y is analytically continued
appropriately (we suppressed the tilde to avoid excessive proliferation of superscripts).

Remark 3.6. At the level of cohomological disk potentials, the normalization factors hX and
hY enter as a redefinition of the winding number variable y in (82) depending on small quantum
cohomology parameters; this is the manifestation of the the so-called open mirror map in the
physics literature on open string mirror symmetry [3, 8, 11,50].

Remark 3.7. The statement of the proposition in principle hinges on the very possibility to
identify quantum parameters as in (40)-(41). In fact, the existence of the non-equivariant limits

of UX ,Yρ and the J-functions in our case is guaranteed by the fact that we restrict to torus
actions acting trivially on the canonical bundle of X and Y ; see e.g. [53].

3.2. The Hard Lefschetz OCRC. In the Hard Lefschetz case the comparison of disk po-
tentials naturally extends to the full genus zero open potential. We first define the n-holes
winding neutral potential, a function from H(Z) to the n-th tensor power of Givental space
H⊗nZ = H(Z)((z−1

1 ))⊗ . . .⊗H(Z)((z−1
n )):

F̂nL(τ, z1, . . . , zn, ~w) , D̂+⊗n
Z ◦ JZn (τ, z1, . . . , zn; ~w) , (86)

where JZn encodes n-point descendent invariants:

JZn (τ, z; ~w) ,

〈〈
φα1

z1 − ψ1
, . . . ,

φαn
zn − ψn

〉〉
0,n

φα1 ⊗ · · · ⊗ φαn . (87)

In (87), we denoted z = (z1, . . . , zn) and a sum over repeated Greek indices is intended. Just
as in the disk case, one can now define a winding neutral open potential by summing over all
integers n and a cohomological open potential by introducing winding variables and summing
over appropriate specializations of the z variables. For a pair or spaces X and Y in a Hard
Lefschetz CRC diagram then the respective potentials can be compared as in Section 3.1 - this
all follows from the comparison of the n-holes winding neutral potential, which we now spell
out with care.

Theorem 3.8. Let X → X ← Y be a Hard Lefschetz diagram for which the closed crepant
resolution conjecture holds. With all notation as in Proposition 3.5, and O⊗n = O(z1) ⊗ . . . ⊗
O(zn), we have:

F̂nL′,Y = O⊗n ◦ F̂nL,X (88)

Proof. The proof follows from the fact that the n-th tensor power of the symplectomorphism

UX ,Yρ compares the Jn’s:

JYn = UX ,Yρ
⊗n ◦ JXn . (89)

For Z either X or Y , define

LnZ(τ, z) , dJZn (τ, z) =

(
∂JZn (τ, z)

∂τβ

)
⊗ φβ

=

〈〈
φα1

z1 − ψ1
, . . . ,

φαn
zn − ψn

, φβ

〉〉
0,n+1

φα1 ⊗ · · · ⊗ φαn ⊗ φβ. (90)

Here d is the total differential, and the second equality is its expression in coordinates with
the natural identification of dτβ with φβ. Since the total differential is a coordinate independent
operator, we have the following.

Lemma 3.9. After the change of variables and the linear isomorphism prescribed in the closed
CRC (e.g. Theorem 2.8 for the An resolutions), we have an equivalence of operators:∑

1≤k≤n+1

(
∂(−)

∂xk

)
⊗ 1k =

∑
1≤i≤n+1

(
∂(−)

∂ti

)
⊗ γi. (91)
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Now we deduce (89) by induction. The result holds for n = 1 (this is the statement of the

closed CRC), assume it holds for all m < n. Define Ûm(z1, . . . , zm+1) , UX ,Yρ
⊗m

(z1, . . . , zm)⊗
U0(zm+1). It follows from Lemma 3.9 that Ûm((LmX (x, z)) = LmY (t, z) for all m < n.

For Z either X or Y , the WDVV relations give:

D(1, n+ 1|2, n+ 2)

〈〈
φα1

z1 − ψ1
· · · φαn

zn − ψn
1Z · 1Z

〉〉
0,n+2

= D(1, 2|n+ 1, n+ 2)

〈〈
φα1

z1 − ψ1
· · · φαn

zn − ψn
1Z · 1Z

〉〉
0,n+2

, (92)

where D(i, j|k, l) is the divisor in the moduli space which separates the points i, j from k, l
(pull-back of the class of a boundary point in M0,4). Expanding (92), we have

∑
1∈J
2/∈J

〈〈1Z ·
∏
i∈J

φαi
zi − ψi

· φβ
〉〉

0,|J |+2

φβ,

〈〈
1Z ·

∏
i/∈J

φαi
zi − ψi

· φε
〉〉

0,|Jc|+2

φε


Z

=
∑

1,2∈J

〈〈∏
i∈J

φαi
zi − ψi

· φβ
〉〉

0,|J |+1

φβ,

〈〈
1Z · 1Z ·

∏
i 6∈J

φαi
zi − ψi

· φε
〉〉

0,|Jc|+3

φε


Z
(93)

where the sum index J ranges over subsets of {1, ..., n}. Applying the string equation to elimi-
nate the fundamental class insertions and summing over all αi, we obtain the relation∑

1∈J
2/∈J

((∑
i∈J

1

zi

)
L
|J |
Z (τ, zJ),

(∑
i/∈J

1

zi

)
L
|Jc|
Z (τ, zJc)

)
Z

=
∑
1,2∈J
Jc 6=∅

L|J |Z (τ, zJ),

(∑
i/∈J

1

zi

)2

L
|Jc|
Z (τ, zJc)


Z

+

 ∑
1≤i≤n

1

zi

 JZn (τ, z) (94)

where (−,−)Z is extended by applying Poincaré pairing on the last coordinate and tensoring
the remaining coordinates in the appropriate order. Equation (94) allows us to write Jn for

either X or Y in terms of Lm with m < n. Since Ûm identifies LmX with LmY and U0 preserves

the Poincaré pairing, it follows that UX ,Yρ
⊗n

(z)(JXn (x, z)) = JYn (t, z). �

4. OCRC for An resolutions

For the pairs (X , Y ) =
(
[C3/Zn+1], An

)
, Propositions 3.5 and 3.8 imply a Bryan-Graber type

CRC statement comparing the open GW potentials. Notice that since X is a Hard Lefschetz
orbifold we do not have to deal with the normalization factors h•. In Sections 4.2 and 4.3 we
study the two essentially distinct types of Lagrangian boundary conditions.

4.1. Equivariant UX ,Yρ and Integral Structures. We write the equivariant version of the

symplectomorphism UX ,Yρ .

Theorem 4.1. With notation as in Theorem 2.8, let J̃Y (z) denote the analytic continuation
of JY along the path ρ to the point ρ(1) composed with the identification (75) of quantum
parameters. Then the linear transformation

UX ,Yρ 1k =
∑
i

Pi
1

(n+ 1)

Γ̂iY

Γ̂kX

 i−1∑
j=0

ω−jke2πi
jα1
z +

n∑
j=i

ω−jke2πi
(n+1−j)α2

z

 (95)
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is a linear isomorphism of Givental spaces such that

J̃Y = UX ,Yρ ◦ JX . (96)

The proof of this theorem in the equivariant setting is a consequence of our computations in
Section 5.

Remark 4.2. In (42) we can replace the operator z−µ by the “homogenization operator” z−
1
2

deg

since the additional z
3
2 part contributes two canceling scalar factors.

We observe now that this result is compatible with Iritani’s proposal (46). We first describe

the canonical identification UX ,YK,ρ . Denote byO(λk) the geometrically trivial line bundle on Cn+3

where the torus (C∗)n acts via the kth factor with weight −1 and the torus T acts trivially. We
define our grade restriction window W ⊂ K(Cn+3) to be the subgroup generated by the O(λk).
Using the description of the local coordinates in Section 2.3.1, we compute that the quotient
(54) identifies O(λk) with O−k (with trivial T -action) and the quotient (55) identifies O(λk)

with O(γk) (with canonical linearization (62)). Therefore, we define UX ,YK,ρ by identifying

OY ↔ OX (97)

O(γk)↔ O−k (98)

where the T -linearizations are trivial on the orbifold and canonical on the resolution.

On the orbifold, all of the bundles Oj are linearized trivially, so the higher Chern classes
vanish. The orbifold Chern characters are:

(2πi)deg /2I∗ch(Oj) =

n+1∑
k=1

ω−jk1k. (99)

The Γ class is

z−
1
2

degΓ̂X = Γ

(
1 +

α1 + α2

z

)
(100)

·
[

n∑
k=1

Γ

(
1− k

n+ 1
− α1

z

)
Γ

(
k

n+ 1
− α2

z

)
1k
z

+ Γ
(

1− α1

z

)
Γ
(

1− α2

z

)
1n+1

]
(101)

On the resolution, the Chern roots at each Pi are the weights of the action on the fiber above
that point:

(2πi)deg /2ch(O(γj)) =

j∑
i=1

e2πi(n+1−j)α2Pi +
n+1∑
i=j+1

e2πijα1Pi (102)

and

(2πi)deg /2ch(O) =

n+1∑
i=1

Pi. (103)

The Γ class is

z−
1
2

degΓ̂Y = Γ

(
1 +

α1 + α2

z

)[n+1∑
i=1

Γ

(
1 +

w+
i

z

)
Γ

(
1 +

w−i
z

)
Pi

]
(104)

With this information one can compute (46) and obtain the formula in Theorem 4.1.

We now derive explicit disk potential CRC statements for the two distinct types of Lagrangian
boundary conditions.
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4.2. L intersects the ineffective axis. We impose a Lagrangian boundary condition on the
gerby leg of the orbifold (the third coordinate axis - m3 = 0); correspondingly there are n + 1
boundary conditions L′ on the resolution, intersecting the horizontal torus fixed lines in Figure 1.

Theorem 4.3. Consider the cohomological disk potentials Fdisk
L,X (t, y, ~w) and Fdisk

L′,Y (t, yP1 , . . . , yPn+1 , ~w).

Choosing the bases 1k and Pi (where k and i both range from 1 to n+ 1), define a linear trans-
formation OZ : H(X )→ H(Y ) by the matrix

OZ i,k =

{
−ω( 1

2
−i)k k 6= n+ 1

−1 k = n+ 1.
(105)

After the identification of variables from Theorem 2.8, and the specialization of winding param-
eters

yPi = e
πi

[
w−
i

+(2i−1)α1
α1+α2

]
y (106)

we have
Fdisk
L′,Y (t, y, ~w) = OZ ◦ Fdisk

L,X (t, y, ~w). (107)

Proof. From equation (77), we have

D̂+
L,X (z; ~w)(1k) =

n+1∑
k=1

π1k

(n+ 1)(α1 + α2) sin
(
π
(〈

k
n+1

〉
+ α2

z

))
Γ̂kX

(108)

and

D̂+
L′,Y (z; ~w)(Pi) =

n+1∑
i=1

πPi

(α1 + α2) sin
(
π
(
−w−i

z

))
Γ̂iY

(109)

The transformation O is now obtained as D̂+
Y ◦ U

X ,Y
ρ ◦

(
D+
X
)−1

:

O(1k) =
n+1∑
i=1

sin
(
π
(〈

k
n+1

〉
+ α2

z

))
sin
(
π
(
−w−i

z

))
 i−1∑
j=0

ω−jke2πi
jα1
z +

n∑
j=i

ω−jke2πi
(n+1−j)α2

z


Pi. (110)

We now specialize z = α1+α2
d , for d ∈ Z. The i, k coefficient for k 6= n+ 1 is:

Oi,k =
sin
(
π
(

k
n+1 + 1− dα1

α1+α2

))
sin
(
π
(
−d (n+1)α1

α1+α2
+ d(n− i+ 2)

))( i−1∑
j=0

ω−jke
2πij

α1
α1+α2

d

+
n∑
j=i

ω−jke
2πi(n+1−j)(1− α1

α1+α2
)d

)

= (−1)d(n−i+2)ω
k/2e

−πi
α1

α1+α2
d − ω−k/2e

πi
α1

α1+α2
d

e
πi(n+1)

α1
α1+α2

d − e
−πi(n+1)

α1
α1+α2

d

i−1∑
j=−(n+1)+i

ω−jke
2πij

α1
α1+α2

d

= (−1)d(n−i+2)+1ω( 1
2
−i)ke

πi(2i−n−2)
α1

α1+α2
d

= (−1)e
dπi
[
n−i+2+(2i−n−2)

α1
α1+α2

]
ω( 1

2
−i)k. (111)

For k = n+ 1

Oi,n+1 = (−1)e
dπi
[
n−i+2+(2i−n−2)

α1
α1+α2

]
. (112)

To go from the second to the third line of this string of equations one notes that the product
of the numerator of the fraction with the summation gives a telescoping sum; the residual
terms have a factor canceling the denominator and leaving the expression in the third line. It
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is now immediate to see that we can incorporate the part of the transformation that depends
multiplicatively on d into a specialization of the winding variables, and that the remaining linear
map is precisely OZ. �

From this formulation of the disk CRC one can deduce a statement about scalar disk po-
tentials which essentially says that the scalar potential of the resolution compares with the
untwisted disk potential on the orbifold.

Corollary 4.4. With all notation as in Theorem 4.3:(
Fdisk
L′,Y (t, y, ~w),

n+1∑
i=1

P i

)
Y

= − 1

n+ 1

(
Fdisk
L,X (t, y, ~w),1n+1

)
X

(113)

Proof. This statement amounts to the fact that the coefficients of all but the last column of
matrix OZ add to zero. �

4.3. L intersects the effective axis. We impose our boundary condition L on the first coor-
dinate axis, which is an effective quotient of C with representation weight m1 = −1 and torus
weight −α1. We can obtain results for the boundary condition on the second axis by switching
α1 with α2, m1 with m2 and + with − in the orientation of the disks. In this case there is only
one corresponding boundary condition L′ on the resolution, which intersects the (diagonal) non
compact leg incident to Pn+1 in Figure 1.

Theorem 4.5. Consider the cohomological disk potentials Fdisk
L,X (t, y, ~w) and Fdisk

L′,Y (t, yPn+1 , ~w).

Choosing the bases 1k and Pi (where k and i both range from 1 to n+1), define OZ(1k) = Pn+1

for every k. After the identification of variables from Theorem 2.8, and the identification of
winding parameters y = yPn+1 we have

Fdisk
L′,Y (t, y, ~w) = OZ ◦ Fdisk

L,X (t, y, ~w). (114)

We obtain as an immediate corollary a comparison among scalar potentials.

Corollary 4.6. Setting y = yPn+1, we have

F disk
L′,Y (t, y, ~w) = F disk

L,X (t, y, ~w). (115)

Proof. The orbifold disk endomorphism is:

D̂+
X (z; ~w)(1k) =

π

−α1(n+ 1) sin
(
π
(
−α1+α2

z

))
Γ̂kX

1k (116)

The resolution disk endomorphism is

D̂+
X (z; ~w)(Pi) =

π

−(n+ 1)α1 sin
(
π
(
−α1+α2

z

))
Γ̂n+1
Y

δi,n+1Pn+1 (117)

We can now compute O:

O(1k) =
1

n+ 1

 n∑
j=0

ω−jke2πi
jα1
z

Pn+i. (118)

Specializing z = −(n+1)α1

d for any positive integer d, we obtain:

On+1,k =
1

n+ 1

n∑
j=0

ω−jke2πij −d
n+1 = δk,−d mod n+1, (119)

which implies the statement of the theorem.
�
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5. One-dimensional mirror symmetry

In this section we exhibit a novel mirror symmetry description of the equivariant quantum
cohomology of An singularities in terms of a weak Frobenius manifold structure on a genus zero
double Hurwitz space. In physics terminology, this is a logarithmic Landau–Ginzburg model
on the sphere, akin to the Hori–Iqbal–Vafa spectral curves of non-equivariant Gromov–Witten
theory [43] and the one-dimensional mirror of equivariant local CP1 [13]. This enables us to give
a complete description of the global quantum D-module and to determine explicitly the form
of the isomorphism between the calibrated Frobenius structures at the large volume points of
X and Y .

5.1. Weak Frobenius structures on double Hurwitz spaces.

Definition 5.1. Let x ∈ Zn+3 be a vector of integers adding to 0. The double Hurwitz space
Hλ , M0(P1; x) parameterizes isomorphism classes of covers λ of the projective line by a
smooth genus 0 curve C, with marked ramification profile over 0 and ∞ specified by x. This
means that the principal divisor of λ is of the form

(λ) =
∑

xiPi.

We denote by π and λ the universal family and universal map, and by Σi the sections marking
the i-th point in (λ):

P1

��

� � // U
π

��

λ // P1

[λ] �
� pt. //

Pi

AA

Hλ

Σi

AA (120)

Remark 5.1. A genus zero double Hurwitz space is naturally isomorphic to M0,n+3, and is
therefore an open set in affine space An. This is the only case that we utilize and it may seem
overly sophisticated to use the language of moduli spaces to then work on such a simple object.
We choose to do so to connect to the work of Dubrovin [33, 34] and Romano [56] (after Saito
[60]; see also [48]), who studied existence and construction of Frobenius structures on arbitrary
double Hurwitz spaces.

Let φ ∈ Ω1
C(log(λ)) be a meromorphic one form having simple poles at the support of (λ)

with constant residues; we call (λ, φ) respectively the superpotential and the quasi-momentum
differential of Hλ. Borrowing the terminology from [56, 57], we say that an analytic Frobenius
manifold structure (F , ◦, η) on a complex manifold F is weak if

(1) the ◦-multiplication gives a commutative and associative unital O-algebra structure on
the space of holomorphic vector fields on F ;

(2) the metric η provides a flat pairing which is Frobenius w.r.t. to ◦;
(3) the algebra structure admits a potential, meaning that the 3-tensor

R(X,Y, Z) , η(X,Y ◦ Z) (121)

satisfies the integrability condition

(∇(η)R)[αβ]γδ = 0. (122)

In particular, this encompasses non-quasihomogeneous solutions of WDVV, and solutions with-
out a flat identity element.

Proposition 5.2 ([56]). For vector fields X, Y , Z ∈ X(Hλ), define the non-degenerate sym-
metric pairing g and quantum product ? as

g(X,Y ) ,
∑

P∈supp(λ)

Res
P

X(log λ)Y (log λ)

dπ log λ
φ2, (123)

g(X,Y ? Z) ,
∑

P∈supp(λ)

Res
P

X(log λ)Y (log λ)Z(log λ)

dπ log λ
φ2, (124)
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where dπ denotes the relative differential with respect to the universal family (i.e. the differential
in the fiber direction). Then the triple Fλ,φ = (Hλ, ?, g) endows Hλ with a weak Frobenius
manifold structure.

Remark 5.3. Equations (123)-(124) are the Dijkgraaf–Verlinde–Verlinde formulae [32] for a
topological Landau–Ginzburg model on a sphere with log λ(q) as its superpotential. The case
in which λ(q) itself is used as the superpotential gives rise to a different Frobenius manifold
structure, which is the case originally studied in [34, Lecture 5]; the situation at hand is its
Dubrovin-dual in the sense of [35], where g plays the role of the intersection form and ? the
dual product.

5.1.1. Twisted periods and the quantum differential equation. The quantum D-module associ-
ated to Fλ,φ,

∇(g,z)ω = 0, (125)

where
∇(g,z)
X (Y, z) , ∇(g)

X Y + z−1X ? Y (126)

enjoys a neat description in terms of the Landau–Ginzburg data (λ, φ): in particular, flat
frames for (125) can be computed from the twisted Picard–Lefschetz theory of λ [13, 35, 38].
In contrast with the classical Picard–Lefschetz theory, this corresponds to considering cycles
γ ∈ H1(C \H,L) in the complement of the zero-dimensional hypersurface H = λ−1(0) cut by

λ, where the linear local system L is defined by multiplication by e2πi/z when moving along a
simple loop around any single point of H. Elements γ of the homology group with coefficients
twisted by L are the twisted cycles of λ.

Oscillating integrals around a basis of twisted cycles of the form

Πλ,φ,γ(z) ,
∫
γ
λ1/zφ (127)

are called twisted periods4 of Fλ,φ. Denote by Solλ,φ the solution space of (125),

Solλ,φ = {s ∈ X(Fλ,φ),∇(g,z)s = 0}. (128)

We have the following

Proposition 5.4 (Dubrovin, [35]). The solution space of the quantum differential equations of
Fλ,φ is generated by gradients of the twisted periods (127)

Solλ,φ = spanC((z)){∇(g)Πλ,φ,γ}γ∈H1(C\H,L) (129)

In particular, Proposition 5.4 implies that the quantum D-modules arising from weak Frobe-
nius structures on genus zero double Hurwitz spaces are described by systems of period integrals
of generalized hypergeometric type.

Remark 5.5. Since λ is a genus zero covering map, in an affine chart parametrized by q ∈ C
its logarithm takes the form

log λ =
∑
i

ai log(q − qi), (130)

where ai ∈ Z. In fact, the existence of the weak Frobenius structure (123)-(124) extends [57]
to the case where dπ log λ is a meromorphic function on C; this in particular encompasses the
case where ai ∈ C in (130). As far as flat coordinates of the deformed connection ∇(g,z) are
concerned, Proposition 5.4 continues to hold, the only proviso being that the locally constant
sheaf L be replaced with the unique local system specified by the monodromy weights ai/z in
(127), (130).

4To be completely consistent with [35] we should more correctly call these the twisted periods of Feλ,φ. See

Remark 5.3.
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5.2. A one-dimensional Landau–Ginzburg mirror. It is known that the quantum D-
modules associated to the equivariant Gromov–Witten theory of the An-singularity X and its
resolution Y admit a Landau–Ginzburg description in terms of n-dimensional oscillating in-
tegrals [6, 28, 39, 44]. We provide here an alternative description via one-dimensional twisted
periods of a genus zero double Hurwitz space Fλ,φ.

Let MA be M0,n+3. By choosing the last three sections to be the constant sections 0, 1,∞,
we realize MA as an open subset of An and trivialize the universal family. In homogeneous
coordinates [u0 : · · · : un] for Pn,

MA = Pn \ Proj
C[u0, . . . , un]

〈ui(uj − uk)〉
, Pn \ discrMA. (131)

Let κi = ui/u0, i = 1, . . . , n be a set of global coordinates onMA and q be an affine coordinate
on the fibers of the universal family. We give C×MA the structure of a one parameter family
of double Hurwitz spaces by specifying the pair (λ, φ); we call κ0 the coordinate in the first
factor, and define

λ(κ0, . . . κn, q) = Cn(κ)
q(n+1)α1

(1− q)α1+α2

n∏
k=1

(1− qκk)−α1−α2 , (132)

φ(q) =
1

α1 + α2

dq

q
, (133)

and

Cn(κ) ,
n∏
j=0

κα1
j . (134)

Then Eqs. (123)-(124) and (132)-(133) define a Frobenius structure Fλ,φ on C × MA; the
discriminant ideal in (131) coincides with the locus where the D-module (126) is singular, and
the irreducible components V (κi − κj), for i, j > 0, correspond to the loci where the ?-product
(124) blows-up. We have the following

Theorem 5.6. (1) Let

κ0 = e(tn+1+δY )/α1 , (135)

κj =

n∏
i=j

eti , 1 ≤ j ≤ n. (136)

where δY is an arbitrary constant. Then, in a neighbourhood VY of {eti = 0},
Fλ,φ ' QHT (Y ). (137)

(2) Let

κ0 = e(xn+1+δX )/α1 , (138)

κj = exp

[
− 2i

n+ 1

(
πj +

n∑
k=1

e−
iπk(j−1)
n+1 sin

(
πjk

n+ 1

)
xk

)]
, 1 ≤ k ≤ n. (139)

where δX is an arbitrary constant. Then, in a neighbourhood VX of {xi = 0},
Fλ,φ ' QHT (X ). (140)

Proof. The proof is a straightforward computation from the Landau–Ginzburg formulae (123)-
(124).

(1) Consider the three-point correlator R(κi∂i, κj∂j , κk∂k), where ∂k ,
∂
∂κk

, and define

R
(l)
i,j,k , Res

q=κ−1
l

κi
∂ lnλ
∂κi

κj
∂ lnλ
∂κj

κk
∂ lnλ
∂κk

(α1 + α2)2q ∂ lnλ
∂q

dq

q
. (141)
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Figure 3. The double loop contour γ4 for n = 4.

Inspection shows that R
(l)
ijk = 0 unless l = i = j, l = i = k or l = j = k. Assume w.l.o.g.

l = j = i, and suppose that i, k > 0. We compute

R
(i)
i,i,k =

κi
κk − κi

+
α2

α1 + α2
, (142)

R
(i)
i,i,i =

(n− 1)α1 + α2

α1 + α2
+

n+1∑
l 6=i

κl
κi − κl

, (143)

R
(i)
0,i,i = − 1

α1 + α2
. (144)

Moreover, for all i, j and k we have

R
(0)
i,j,k , Res

q=0

κi
∂ lnλ
∂κi

κj
∂ lnλ
∂κj

κk
∂ lnλ
∂κk

(α1 + α2)2q ∂ lnλ
∂q

dq

q
,

=
α

2−δi,n+1−δj,n+1−δk,n+1

1

(n+ 1)(α1 + α2)2
(145)

R
(∞)
i,j,k , Res

q=∞

κi
∂ lnλ
∂κi

κj
∂ lnλ
∂κj

κk
∂ lnλ
∂κk

(α1 + α2)2q ∂ lnλ
∂q

dq

q
,

= −(−α2)2−δi,n+1−δj,n+1−δk,n+1

(n+ 1)(α1 + α2)2
. (146)

It is immediate to see that (142)-(143) under the identification (136) imply that the quan-

tum part of the three-point correlatorR(∂ti1∂ti2∂ti3 ) coincides with that of 〈〈pi1 , pi2 , pi3〉〉Y0
in (72). A tedious, but straightforward computation shows that (142)-(146) yield the
expressions for the classical triple intersection numbers of Y .

(2) This is a consequence of the computation above and Theorem 2.8.

�

Remark 5.7. The freedom of shift by δX and δY respectively along H0(X ) and H0(Y ) in (135),
(138) is a consequence of the restriction of the String Axiom to the small phase space. We set
δX = δY = 0 throughout this section, but it will turn out to be useful to reinstate the shifts in
the computations of Section 5.4.

Remark 5.8. It should be possible to infer the form of the superpotential (132) from the
equivariant GKZ system of X and Y by arguments similar to the non-equivariant case (see
e.g. [26, Appendix A]). The conceptual path we followed to conjecture the form (132) for a
candidate dual Landau–Ginzburg model parallels the study of the equivariant local CP1 theory
in [13]; there, the existence of a relation with a reduction of the 2-dimensional Toda hierarchy
allows to derive a Landau–Ginzburg mirror model through the dispersionless Lax formalism
for 2-Toda. More generally, (n,m)-graded reductions [57] of 2-Toda are believed to be relevant
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for the equivariant Gromov–Witten theory of local P(n,m) [12]; the degenerate limit m = 0
corresponds to the threefold An singularity. In this case, the dispersionless 2-Toda Lax function
reduces to (132).

5.3. The global quantum D-module. An immediate corollary of Theorem 5.6 and Proposi-
tion 5.4 is a concrete description of a global quantum D-module (MA, F,∇, H(, )g) interpolating

between QDM(X ) and QDM(Y ). Let F , TFλ,φ be endowed with the family of connections

∇ = ∇(g,z) as in (126) and for ∇-flat sections s1, s2 let

H(s1, s2)g = g(s1(κ,−z), s2(κ, z)) (147)

Let now VX and VY be neighbourhoods of {κi = ω−i} and {κi = 0} respectively. Then
Theorem 5.6 can be rephrased as

(Fλ,φ, TFλ,φ,∇(g,z), H(, )g)|VX ' QDM(X ), (148)

(Fλ,φ, TFλ,φ,∇(g,z), H(, )g)|VY ' QDM(Y ), (149)

that is, the twisted period system of Fλ,φ is a global quantum D-module connecting the genus
zero descendent theory of X and Y ; the twisted periods (127) thus define a global flat frame for
the quantum differential equations of X and Y upon analytic continuation in the κ-variables,

Solλ,φ|VX = SX , Solλ,φ|VY = SY . (150)

A canonical basis of Solλ,φ can be constructed as follows. For the superpotential (132), the
twisted homology H1(C \ λ−1(0),L) is generated [66] by Pochhammer double loop contours
{ξi}n+1

i=1 encircling the origin q = 0 and q = κ−1
i , i = 1, . . . , n + 1, as in Figure 3 (alternatively

ξi = [ρ0, ρi], where the ρ’s are simple oriented loops around each of the punctures). Then the
integrals

Π
(n)
i (κ, z) ,

1

(1− e2πia)(1− e−2πib)

∫
ξi

λ1/z(q)
dq

q

=
Cn(κ)

1
z

(1− e2πia)(1− e−2πib)

∫
ξi

qa(1− q)−b
n∏
k=1

(1− qκk)−b
dq

q

=
Cn(κ)

1
z κ−ai

(1− e2πia)(1− e−2πib)

∫
ξn+1

qa(1− q)−b (1− q/κi)−b
n∏
k 6=i

(1− qκk/κi)−b
dq

q

(151)

where we defined

a ,
(n+ 1)α1

z
, (152)

b ,
α1 + α2

z
, (153)

give a basis of twisted periods of Fλ,φ; when Re(a) > 0, Re(b) < 1 they reduce to line integrals

along chains connecting q = 0 to q = κ−1
i .

The integrals (151) can be given very explicit expressions in terms of known generalized
hypergeometric functions [36]. Namely, we have

Π
(n)
i (κ, z) =

Γ(a)Γ(1− b)
Γ(1 + a− b)Cn(κ)

1
z κ−ai

× Φ(n)

(
a, b, 1 + a− b; 1

κi
,
κ1

κi
, . . . ,

κn
κi

)
, 1 ≤ i ≤ n, (154)

Π
(n)
n+1(κ, z) =

Γ(a)Γ(1− b)
Γ(1 + a− b)Cn(κ)

1
zΦ(n)(a, b, 1 + a− b;κ1, . . . , κn), (155)
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where we defined

Φ(M)(a, b, c, w1, . . . , wM ) , F (M)
D (a; b, . . . , b; c;w1, . . . , wM ), (156)

and F
(M)
D (a; b1, . . . , bM ; c;w1, . . . , wM ) in (156) is the generalized hypergeometric Lauricella

function of type D [49]:

F
(M)
D (a; b1, . . . , bM ; c;w1, . . . , wM ) ,

∑
i1,...,iM

(a)∑
j ij

(c)∑
j ij

M∏
j=1

(bj)ijw
ij
j

ij !
. (157)

In (157), we used the Pochhammer symbol (x)m to denote the ratio (x)m = Γ(x+m)/Γ(x).

Remark 5.9. That flat sections of QDM(X ) and QDM(Y ) are solutions of a GKZ-type system,
and therefore take the form of generalized hypergeometric functions in B-model variables, is
a direct consequence of equivariant mirror symmetry for toric Deligne–Mumford stacks; see
[26, Appendix A] for the case under study here, and [25] for the general case. Less expected,
however, is the fact that flat sections of QDM(X ) and QDM(Y ) are hypergeometric functions
in exponentiated flat variables for (6), that is, in A-model variables. This is a consequence of
the particular form (72), (142)-(143) of the quantum product: this depends rationally on the
variables in the Kähler cone for Y in such a way that the quantum differential equation (15) for
Y (and therefore X , via (75)) becomes a generalized hypergeometric system in exponentiated
flat coordinates. From the vantage point of mirror symmetry, the rational dependence of the A-
model three-point correlators on the quantum parameters can be regarded as an epiphenomenon
of the Hard Lefschetz condition, which ensures that the inverse mirror map is a rational function
of the B-model variables.

Remark 5.10. As a further surprising peculiarity of the case of An singularities, integral
representations of the flat sections have a simpler description in A-model variables: the one-
dimensional Euler integrals (151) replace here the n-fold Mellin-Barnes contour integrals that
represent solutions of the corresponding GKZ system [26, 44]. This technical advantage is cru-
cial for our calculations of Section 5.4. The reader may find a comparison of the Hurwitz mirror
with the traditional approach of toric mirror symmetry in [15].

5.3.1. Example: n = 2 and the Appell system. In this case the quantum D-module has rank
three. We factor out the dependence on C2(κ) in (154)-(155) for the flat coordinates of the
deformed connection as

f(κ1, κ2, z) , (κ0κ1κ2)−a/3t̃(κ0, κ1, κ2, z). (158)

The flatness equations for ∇(g,z) for n = 2 reduce to a hypergeometric Appell F1 system [36]
for f :

(κ1 − κ2)∂1∂2f − b(∂1 − ∂2)f = 0, (159)[
κ1(1− κ1)θ2

1 + κ2(1− κ1)∂12 + (a+ 1− 2b)∂1 +

−(a+ 1 + 2b)κ1∂1 − bκ2∂2 − ab
]
f = 0. (160)
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Figure 4. The Kähler moduli space of the A2 singularity in A-model coordinates.

For n = 2, the twisted periods (154)-(155) reduce to Appell F1 functions [36]

Π
(2)
1 (κ0, κ1, κ2, z) =

Γ(a)Γ(1− b)
Γ(1 + a− b)C2(κ)

1
z κ−a1 Φ(2)

(
a, b, b, 1 + a− b; 1

κ1
,
κ2

κ1

)
=

Γ(a)Γ(1− b)
Γ(1 + a− b) (κ0κ2)a/3κ

−a/3
1 F1

(
a, b, b, 1 + a− b, 1

κ1
,
κ2

κ1

)
(161)

Π
(2)
2 (κ0, κ1, κ2, z) = Π

(2)
1 (κ0, κ2, κ1, z) (162)

Π
(3)
2 (κ0, κ2, κ1, z) =

Γ(a)Γ(1− b)
Γ(1 + a− b) (κ0κ1κ2)a/3 F1 (a, b, b, 1 + a− b, κ1, κ2) (163)

where

F1 (a, b1, b2, c, x, y) ,
∑

i1,i2≥0

(a)i1+i2

(c)i1+i2

(b1)i1x
i1

i1!

(b2)i2y
i2

i2!
. (164)

It is straightforward to check that (161)-(163) yield a complete set of solutions of (159)-(160).

In this case, irreducible components of the discriminant locus are given by the lines κ1 = κ2

and κi = 0, 1,∞, i = 1, 2. Its moduli space is depicted in Figure 4. The large radius point of X
(κ1, κ2) = (e4πi/3, e2πi/3), denoted OP in Figure 4, is a regular point of the quantum D-module
(159)-(160), and the Fuchsian singularities (κ1, κ2) = (0, 0) and (∞,∞) correspond to two copies
of the large radius point (henceforth, LR) of Y , referred to as LR1 and LR2 in Figure 4. The
Frobenius structure induced around the latter two points are canonically isomorphic toQHT (Y ),
and they are related to one another by the involution κi → −κi. In contrast with the n = 1
case [15, 20], where the Appell system reduces to the Gauss 2F1-system, it is impossible here
[36] to provide a local solution around LR of the Appell system (159)-(160) in terms of Appell
F1-functions only; see Appendix A for a discussion of this point. Representing eigenvectors of
the monodromy around LR in general in terms of the twisted period basis will be the subject
of the first part of the proof of Theorem 4.1 in the next section.

5.4. Proof of Theorem 4.1. Let ρ be a straight line inMA connecting the large radius point
{κj = 0} of Y to the one of X , given by {κj = ω−j}, with zero winding number around all
irreducible components of the discriminant locus ofMA. We compute the analytic continuation

map UX ,Yρ : HX → HY that identifies the corresponding flat frames and Lagrangian cones upon
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analytic continuation along ρ.

Define the period map Ω:

Ω : H1 (C \ (λ),L) → OFλ,φ ,
ξ →

∫
ξ λ

1/zφ,
(165)

and denote by Π(n) as in (151) the image of the basis ξ of twisted cycles of Section 5.3 under the
period map. The horizontality (17)-(18) of the J-functions of X and Y , the String Equation

for X and Y , and Proposition (5.4) together state that JX , JY and Π(n) are three different

C(eiπa, eiπb, z)-bases of deformed flat coordinates of ∇(g,z) under the identifications (135)-(136),
(138)-(139). This entails, for every ρ, the existence of two C(eiπa, eiπb, z)-linear maps A, B

∇(ηY )AΩ : H1 (C \ (λ),L) → SY ,
∇(ηX )B−1Ω : H1 (C \ (λ),L) → SX ,

(166)

such that

AΠ(n) = JY , (167)

BJX = Π(n). (168)

In particular,

UX ,Yρ = AB. (169)

A sends the twisted period basis Π(n) to a basis of eigenvectors of the monodromy around
the large radius point of Y normalized as in (24). We compute A by investigating the leading
asymptotics of the twisted periods (154)-(155) around the large radius point of Y ; as in the
example of Section 5.3.1, we denote the latter by LR.

In Cm with coordinates (w1, . . . , wm), let χi, for every i = 1, . . . ,m, be a path connecting the
point at infinity W∞i ,

W∞i , (

i times︷ ︸︸ ︷
0, . . . , 0,

m− i times︷ ︸︸ ︷∞, . . . ,∞), (170)

with zero winding number along wi = wj (i 6= j) and wi = 0, 1. We want to compute the analytic

continuation along χi of the Lauricella function F
(m)
D (a, b1, . . . , bn, c, w1, . . . , wi, w

−1
i+1, . . . , w

−1
m )

from an open ball centered on W∞i to the origin W∞0 = (0, . . . , 0) in the sector where wi � 1,
wi/wj � 1 for i < j. One strategy to do this is by performing the continuation in each individ-
ual variable wj , j > i appearing in (157) through an iterated use of Goursat’s identity (195).
The final result is (201); we refer the reader to Appendix A for the details of the derivation.

In our case, Eq. (201) (see also Remark A.1) implies, around wi =∞, that

Φ(m)(a, b, c;w1, . . . , wm) ∼
m−1∑
j=0

Γ

[
c, a− jb, (j + 1)b− a
a, b, c− a

]
j∏
i=1

(−wm−i+1)−b(−wm−j)−a+jb

+

m∏
j=1

(−wj)−bΓ
[
c, a−mb
a, c−mb

]
. (171)
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when wi ∼ 0, wi/wj ∼ 0 for j > i. In particular, at the level of twisted periods this entails

Π
(n)
n−k ∼ Cn(κ)

1
z κ−an−k

Γ(a)Γ(1− b)
Γ(1 + a− b) Φ(k+1)

(
a, b, 1 + a− b, κn−k+1

κn−k
, . . . ,

κn
κn−k

,
1

κn−k

)
∼ Cn(κ)

1
z κ−an−k

{
Γ(a)Γ(b− a)

Γ(b)
(−κn−k)a

+
k∑
j=1

Γ(a− jb)Γ((j + 1)b− a)

Γ(b)

(
−κn+1−j

κn−k

)−a+jb

(−κn−k)b
j−1∏
i=1

(
−κn+1−i

κn−k

)−b

+ κ
(k+1)b
n−k

Γ(1− b)Γ(a− (k + 1)b)

Γ(1 + a− (k + 2)b)

n∏
j=n−k+1

(−κj)−b
}

∼ Cn(κ)
1
z

{
k∑
j=0

Γ(a− jb)Γ((j + 1)b− a)

Γ(b)
(−1)a (κn+1−j)

−a+jb
j−1∏
i=1

(κn+1−i)
−b

+ (−1)(k+1)bΓ(1− b)Γ(a− (k + 1)b)

Γ(1 + a− (k + 2)b)
κ

(k+1)b−a
n−k

n∏
j=n−k+1

(κj)
−b

}
. (172)

in a neighbourhood of κ = 0 given by |κi| � 1, κi/κj � 1 for j > i; notice that in cohomology
coordinates (136) for Y , this becomes an actual open ball |q| � 1 around the point of classical
limit qi = eti = 0. Now, from the discussion of Section 2.3.1 and Eqns. (21), (136), around the
limit point of classical cohomology the J-function of Y behaves as

JYpi = zCn(κ)
1
z κ

(n−i+1)b−a
i

n∏
j=i+1

(κj)
−b (1 +O(et)

)
. (173)

Then we can read off from (172)-(173) the decomposition of each twisted period Π
(n)
i in terms

of eigenvectors of the monodromy around LR, and in particular, in terms of the localized
components of the J-function. Explicitly,

Π(n) = A−1JY , (174)

where

A−1
ji =


(−1)(n−i+1)b Γ(1−b)Γ(a−(n−i+1)b)

zΓ(1+a−(n−i+2)b) for i = j,

(−1)a Γ(a−(n−i+1)b)Γ((n−i+2)b−a)
zΓ(b) for j < i,

0 j > i.

(175)

Its inverse reads

Aij =


eπi(n−i+1)b zΓ(1+a−(n−i+2)b)Γ(1−a+(n−i+1)b) sin(a+(n−i+1)b)

Γ(1−b)π i = j,

e−iπ(a−b(2n−2j+3)) z sin(πb)Γ(1−a+b(n+1−i))Γ(1+a−b(n−i+2))
πΓ(1−b) j > i,

0 j < i.

(176)

Consider now the situation at the orbifold point (as before, denoted OP) given by {κj = ω−j}.
Since by (19),

JX (0, z) = z10, (177)

∂JX

∂xk
(0, z) = 1 k

n+1
, (178)

to compute the operator B in (166) it suffices to evaluate the expansion of the Lauricella
functions (154)-(155) at OP to linear order in xk, k = 0, . . . , n, where it is implicit that principal
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Figure 5. The path σ13 in π1(MA) for n = 4.

branches are chosen in (151) for all k; this corresponds to the assumption that the 1-chain ρ
has trivial winding number around the boundary divisors of MA. From (139), (151), one has

Π
(n)
j (κ, z)

∣∣∣
x=0

= ω(j−n/2)aΓ(a)Γ(1− b)
Γ(1 + a− b) Φ(n) (a, b, 1 + a− b;ω, . . . , ωn)

=
ω(j−n/2)a

n+ 1

Γ(a/(n+ 1))Γ(1− b)
Γ(1− b+ a/(n+ 1))

, j = 1, . . . , n+ 1. (179)

Similarly, a short computation shows that

κk
∂Π

(n)
j

∂κk
(0, z) = −ω

(j−n/2)a

n+ 1

n∑
l=1

ω(j−k)l
Γ
(
a+l
n+1

)
Γ(1− b)

Γ
(
a+l
n+1 − b

) , (180)

∂Π
(n)
j

∂xk
(κ, z)

∣∣∣∣
x=0

= −ω
(j−n/2)a−jk+k/2

n+ 1

Γ
(
a−k
n+1 + 1

)
Γ(1− b)

Γ
(
a−k
n+1 + 1− b

) . (181)

In matrix form we have:

Π(n) = BJX = D1V D2J
X (182)

where

(D1)jk = ω(j−n/2)aδjk (183)

(D2)jk = δjk

 −ωk/2
Γ(a−kn+1

+1)Γ(1−b)
Γ(a−kn+1

+1−b)
for 1 ≤ k ≤ n

Γ(a/(n+1))Γ(1−b)
zΓ(1−b+a/(n+1)) for k = n+ 1

(184)

Vjk =
ω−jk

n+ 1
(185)

Piecing (176) and (182)-(185) together yields5 (95), up to a scalar factor of ωa. By Remark 5.7,
this corresponds to our freedom of a String Equation shift along either of H0(X ) and H0(Y ).
Setting δX − δY = 2πiα1 in (135), (138) concludes the proof.

�

5.5. Monodromy and equivariant integral structures. The expression (95) for the sym-

plectomorphism UX ,Yρ was obtained for the analytic continuation path ρ of Theorem 2.8. Fixing
a reference point m0 = (κ̃1, . . . , κ̃n) ∈ MA, for a general path ρ ◦ σ with [σ] ∈ π1(MA,m0) we
get a composition

UX ,Yρ◦σ = UX ,Yρ Mσ (186)

5This amounts to a rather tedious exercise in telescoping sums and additions of roots of unity. The computation
can be made available upon request.
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LR1

LR2

CPOP ρ

Figure 6. The Kähler moduli space of the A1 singularity in A-model coordi-
nates. LR1 and LR2 indicate the large radius points κ = 0,∞ respectively, CP is
the conifold point, and OP is the orbifold point. Circuits around LR1-2 and CP
generate the monodromy group of the global quantum D-module. The dashed
segment depicts the analytic continuation path ρ of Theorem 2.8 and 4.1.

where Mσ : π1(MA,m0) → End(Solλ,φ) is the monodromy representation of the fundamental

group of MA in the space of solutions of the Lauricella system F
(n)
D .

By definition (131), MA is the configuration space of n distinct points in P1 \ {0, 1,∞}.
Therefore, its fundamental group coincides with the genus zero pure mapping class group [19,64]

π1(MA) ' PBn+2/Z(PBn+2); (187)

where PBn+2 denotes the pure braid group in n + 2 strands and Z(PBn+2) ' Z2 is its center.
Writing κ̃i = 0, 1,∞ for i = n+ 1, n+ 2 and n+ 3 respectively, generators Pij , i = 1, . . . , n+ 3,
j = 1, . . . , n of PBn+2 are in bijection with paths σij : [0, 1] → MA given by lifts to MA of

closed contours in the jth affine coordinate plane that start at κj = κ̃j , turn counterclockwise
around κ̃i (and around no other point) and then return to their original position, as in Figure 5.

The image of the period map (165), by Proposition 5.4, is a lattice in Solλ,φ:

Solλ,φ = ∇(g)Ω (H1 (C \ (λ),L))⊗Z(eiπa,eiπb) C(eiπa, eiπb, z), (188)

and by (176), (182)-(185) the induced morphism H1(C\(λ),L) ' K(Y ) is a lattice isomorphism.
The monodromy action on Solλ,φ, at the level of equivariant K-groups, is given by lattice
automorphisms π1(MA)→ AutZ(eiπa,eiπb)K(Y ); this can be verified explicitly from the form of

the monodromy matrices in the twisted period basis [54]. It would be fascinating to trace the
origin of this pure braid group action on the quantum D-module as coming from an action of
the braid group at the level of the equivariant derived category of coherent sheaves on X and
Y , as in [62].

5.5.1. Example: n = 1. In this case the action on K(Y ) is given by the classical monodromy of
the Gauss system for c = a− b+ 1. With reference to Figure 6, we have in the standard basis
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{OY ,OY (1)} for K(Y ),

MLR1 =

(
e−iaπ

(
e2iaπ + e2ibπ

)
e2ibπ

−1 0

)
, (189)

MCP =

(
1 −2ie−i(a−b)π sin(bπ)

−e−i(a+2b)π
(
−1 + e2ibπ

)
e−2i(a+b)π

(
−1 + e2ibπ

)2
+ 1

)
, (190)

MLR2 =

(
2 cos(aπ) 1− e−2iaπ

(
−1 + e2ibπ

)
−1 2ie−i(a−b)π sin(bπ)

)
, (191)

for the large radius and the conifold monodromy of QDM(Y ). It is straightforward to check
that they induce symplectic automorphisms of the Givental vector space H(Y ).

Remark 5.11. In the non-equivariant limit the conifold monodromy becomes trivial. As a
result, the monodromy group reduces to the integers, being generated by the Galois action
around the large radius limit point of Y . This is consistent with the fact that B2 ' Z in [62].

Appendix A. Analytic continuation of Lauricella F
(N)
D

Consider the Lauricella function F
(M+N)
D (a; b1, . . . , bM+N ; c; z1, . . . , zM , w1, . . . , wN ) around

P = (0, 0, . . . ,∞, . . . ,∞). We are interested in the leading terms of the asymptotics of this
function in the region ΩM+N defined as

ΩM+N , B(P, ε)
⋂
i<j

Hij (192)

given by the intersection of the ball B(P, ε) with the interior of the real hyperquadrics

Hij ,
{

(z, w) ∈ CM+N
∣∣|wi/wj | < ε

}
. (193)

As our interest is confined to the leading asymptotics only, we can assume w.l.o.g. that M = 0.

Following [36, Chapter 6], start from the power series expression (157) and perform the sum
w.r.t. wN

F
(N)
D (a; b1, . . . , bN ; c;w1, . . . , wN ) =

∑
i1,...,iN−1

(a)∑N−1
j=1 ij

(c)∑N−1
j=1 ij

N−1∏
j=1

(bj)ijw
ij
j

ij !

2F1

a+
N−1∑
j=1

ij , bN , c+

N−1∑
j=1

ij , wN

 . (194)

The main idea then is to apply the connection formula for the inner Gauss function

2F1(a, b; c; z) =
(−z)−aΓ(c)Γ(b− a) 2F1

(
a, a− c+ 1; a− b+ 1; 1

z

)
Γ(b)Γ(c− a)

+
(−z)−bΓ(c)Γ(a− b) 2F1

(
b, b− c+ 1;−a+ b+ 1; 1

z

)
Γ(a)Γ(c− b) (195)

to analytically continue it to |z| = |wN | > 1; in doing so, we fix a path of analytic continuation
by choosing the principal branch for both the power functions (−z)−a and (−z)−b in (195)
and continue 2F1(a, b; c; z) to |z > 1| along a path that has winding number zero around the
Fuchsian singularity at z = 1. As a power series in wN the analytic continuation of (194) around
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wN =∞ then reads

F
(N)
D (a; b1, . . . , bN ; c;w1, . . . , wN ) = (−wN )−aΓ

[
c, bN − a
bN , c− a

]
F

(N)
D

(
a; b1, . . . , bN−1, 1− c+ a; 1− bN + a,

w1

wN
, . . . ,

1

wN

)
+ (−wN )−bNΓ

[
c, a− bN
a, c− bN

]
C

(N−1)
N

(
b1, . . . , bN , 1− c+ bN ; a− bN ,−w1,−w2, . . . ,

1

wN

)
, (196)

where we defined [36, Chapter 3]

C
(k)
N

(
b1, . . . , bN , a; a′, x1, . . . , xN

)
,

∑
i1,...,iN

(a)
α

(k)
N (i)

(a′)−α(k)
N (i)

N∏
j=1

(bj)ijw
ij
j

ij !
(197)

and

α
(k)
N (i) ,

N∑
j=k+1

ij −
k∑
j=1

ij , (198)

Γ

[
a1, . . . , am
b1, . . . , bn

]
,

∏m
i=1 Γ(ai)∏l
i=1 Γ(bi)

. (199)

Now, notice that the F
(N−1)
D function in the r.h.s. of (196) is analytic in ΩN ; there is nothing

more that should be done there. The analytic continuation of the C
(N−1)
N function is instead

much more involved (see [36] for a complete treatment of the N = 3 case); but as all we are
interested in is the leading term of the expansion around P in ΩN we isolate the O(1) term in
its 1/wN expansion to find

C
(N−1)
N

(
b1, . . . , bN , 1− c+ bN ; a− bN ,−w1,−w2, . . . ,

1

wN

)
=

= F
(N−1)
D (a− bN , b1, . . . , bN−1, c− bN ;w1, . . . , wN−1) +O

(
1

wN

)
(200)

We are done: by (200), the form of the leading terms in the expansion of F
(N)
D inside ΩN can

be found recursively by iterating N times the procedure we have followed in (194)-(200); as at
each step (195)-(200) generate one additional term, we end up with a sum of N + 1 monomials
each having power-like monodromy around P . Explicitly:

F
(N)
D (a; b1, . . . , bN ; c;w1, . . . , wN ) ∼

N−1∑
j=0

Γ

[
c, a−∑N

i=N−j+1 bi,
∑N

i=n−j bi − a
a, bN−j , c− a

]
j∏
i=1

(−wN−i+1)−bN−i+1(−wN−j)−a+
∑N
i=N−j+1 bi

+

N∏
i=1

(−wi)−biΓ
[
c, a−∑N

i=1 bj
a, c−∑N

i=1 bj

]
. (201)

Remark A.1. The analytic continuation to some other sectors of the ball B(P, ε) is straight-
forward. In particular we can replace the condition wi/wj ∼ 0 for j > i by its reciprocal
wj/wi ∼ 0; this amounts to relabeling bi → bN−i+1 in (201).

Remark A.2. When a = −d for d ∈ Z+, the function F
(N)
D reduces to a polynomial in

w1, . . . , wN . In this case the arguments above reduce to a formula of Toscano [65] for Lauricella
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polynomials:

F
(N)
D (−d; b1, . . . , bN ; c;w1, . . . , wN )

= (−wN )d
(b)d
(c)d

F
(N)
D

(
−d; b1, b2 . . . , bN−1; 1− d− c, 1− d− bN ,

w1

wN
, . . . ,

1

wN

)
. (202)
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[64] Toshiaki Terada, Quelques propriétés géométriques du domaine de F1 et le groupe de tresses colorées,
Publ. Res. Inst. Math. Sci., 17 (1981), 95–111.

[65] Letterio Toscano, Sui polinomi ipergeometrici a più variabili del tipo FD di Lauricella, Matematiche
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