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Abstract: Many real-world complex systems such as social, biological, 
information as well as technological systems results of a decentralized and 
unplanned evolution which leads to a common structuration. Irrespective of their 
origin, these so-called complex networks typically exhibit small-world and scale-
free properties. Another common feature is their organisation into communities. 
In this paper, we introduce models of interaction networks based on the 
composition process of syntactic and semantic Web services. An extensive 
experimental study conducted on a benchmark of real Web services shows that 
these networks possess the typical properties of complex networks (small-world, 
scale-free). Unlike most social networks, they are not transitive. Using a 
representative sample of community detection algorithms, a community 
structuration is revealed. The comparative evaluation of the discovered 
community structures shows that they are very similar in terms of content. 
Furthermore, the analysis performed on the community structures and on the 
communities themselves, leads us to conclude that their topological properties are 
consistent.  

 
Keywords: Web services, Composition, Classification, Interaction networks, 
Community detection, Complex networks 
 
Reference to this paper should be made as follows: Cherifi, C., Santucci, J-F., 
‘Community Structure in Interaction Web Service Networks’, Int. J. Web 
Based Communities, Vol. X, Nos. X/4, pp. X–X. 

Biographical notes: Chantal Cherifi received her Ph.D. degree from Corsica 
University in Computer Sciences in 2011. She is presently a researcher of SPE 
laboratory of Corsica University. Her main research interests include complex 
network and semantic web services. 
 
Jean-François Santucci is Professor in Computer Sciences at the University of 
Corsica. His main research interest is discrete event modelling and simulation 
of complex systems. He has been responsible for two European research 
projects in the area of test and validation of digital systems and in the area of 
water management processes in Mediterranean islands. He is also working in 
interdisciplinary research topics associated to archaeology and anthropology. 
 

 

 

1. Introduction 
 
Many organisations are publishing their core business competencies on the 
Internet as a collection of Web services. These building blocks for modular 
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applications independent of any software or hardware platform provide a rapid 
way to share and distribute information between clients, providers and 
commercial partners. They can be coupled through the Web to create new value-
added services during a composition process. 
The notion of community is important in the context of Web services. 
Classically, a community is a set of Web services with similar functionalities 
grouped together independently of their location, of their maintenance and of 
their provider. This organisation of the Web services space is primarily intended 
to increase the efficiency of publication and discovery processes. Communities 
are also used to sustain high availability of Web services. Rather than aborting a 
composition because of the eventual unavailability of some Web services at run 
time, a substitution process enables the use of a different Web service that can 
perform the same functionality as the failed Web service. 
Two approaches are proposed in the literature to group Web services into 
communities. The first one focuses on organisation model definition. In (Arpinar 
et al., 2005; Medjahed and Bouguettaya, 2005) communities are “containers” that 
group a set of Web services that share the same area of interest, they meet the 
same set of functional requirements. In (Benatallah et al., 2005; Taher et al., 
2006) a community is a collection of functionally similar Web services. In 
(Cherifi, 2011), the author introduce different levels of functional similarities and 
propose a network representation to group similar Web services. The second one 
focuses more particularly on automatic classification. In (Bruno et al., 2005; 
Katakis et al., 2009; Oldham et al., 2004), the proposed solutions rely on 
supervised learning techniques while in (Azmeh et al., 2008; Konduri and Chan, 
2008; Nayak and Lee, 2007), they rely on unsupervised learning techniques. 
In this paper, we propose an alternative approach to build Web service 
communities. Rather than using a similarity relationship, we consider the ability 
of Web services to be composed to form communities. The notion of community 
is then different. A community groups Web services that predominantly interact. 
This is the approach taken in (Dekar and Kheddouci, 2008). The authors propose 
to gather Web services that frequently interact in the same compositions. 
Classification takes place on a network of interacting Web services. Network 
nodes represent the Web services and an interaction link between two Web 
services is weighted by the number of times the two Web services are composed. 
The Web services are grouped into clusters using a b-colouring algorithm. To our 
knowledge, this is the only attempt to structure the Web services space using 
interaction as an alternative to the notion of the most classical similarity notion. 
Our work is in this line. We propose to use the complex network framework to 
investigate the community structure of the Web service composition space. 
Indeed, Web services can be seen as an information system that exhibits the two 
following salient aspects: they are numerous on the Web and they keep complex 
interaction relationships. Hence, this information system represents a complex 
system and it can be modelled under the form of networks.  
Different network models can be defined according to node and link definitions. 
Roughly speaking, we can distinguish three types of nodes (Web service, 
operation or parameter). The links are drawn according to some rules which 
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depend on the Web services description (syntactic or semantic). In this work, we 
concentrate on syntactic and semantic parameter and operation networks.   
Although very promising, few authors have proposed the use of complex 
networks as a model for the Web services information system. In (Oh, 2006), 
syntactic network models are presented. Experimental results show that these 
networks exhibit some of the typical characteristics observed in most real-world 
networks, such as the small-world and scale-free properties. In this work, we 
extend the model to semantic Web services. We investigate their community 
structure. Indeed, we believe that grouping Web services according to interaction 
relationships is a good alternative to the classical Web service communities 
based on similarity criteria for the composition process. A comparative analysis 
on the different partitioning obtained with a set of representative community 
detection algorithms is performed on a representative benchmark of syntactic and 
semantic Web services. We also study the topological properties of the 
communities uncovered by the various community detection algorithms.  
The rest of the paper is organized as follows. In section 2, we introduce the 
models of Web service networks and we describe their design principles. In 
section 3, we present the selected community detection algorithms as well as the 
measure for the partitioning comparison and the topological properties of the 
community structure used in the analysis. Section 4 is devoted to our 
methodology and experimental results. We present the Web service collection 
used to build the Web services interaction networks. A comparative analysis of 
the topological properties of the networks and their community structure is 
reported. Conclusion and future work are presented in section 5. 
 
 
2. Web service network models  
 
A Web service can be seen from different points of view. It can be considered as 
a software system that exposes a set of functionalities through its operations. An 
operation has a set of input and a set of output parameters, i.e. data to be 
communicated to or from a Web service. Such a view is simply an input/output 
perspective. Additionally, we can consider preconditions and effects. A 
precondition defines a set of assertions that must be met before a Web service 
operation can be invoked. An effect defines the result of invoking an operation. 
A Web service can also be described by the constraints specification of its 
operations execution order. In this case, operations which are said to be “equal” 
when considering the input/output perspective are not if they have different 
behavioural descriptions. Finally, a set of non functional attributes, like for 
example the quality of service could be considered. In this paper, we consider a 
Web service as a distributed application that exports a view of its functionalities 
in terms of input and output. Hence, a Web service consists of a set of operations 
with their parameters. Thereafter we use the following notations. A Web service 
is a set of operations. Its name is represented by a greek letter. Each operation 
numbered by a digit contains a set of input parameters noted I and a set of output 
parameters noted O. 
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Figure 1 represents a Web service α with two operations 1 and 2, input 

parameters ,  and output parameters , 

. In a syntactic description, each input or output parameter is 
described by a string that we designate by name. In a semantic description, each 
parameter is described by an ontological concept that we designate by concept. 
From this model, we can derive several networks describing the composition 
process. Indeed, nodes can be either parameters, operations or Web services. 
When nodes are Web services or operations, links represent an elementary 
composition between two operations or between two Web services. In the case of 
parameters, the links represent the dependency relation between input and output 
parameters. In this paper, we focus on the parameter network and the operation 
network. In a network whose nodes are parameters, the links represent the 
operations. In a network whose nodes are operations, the links represent the 
parameters that allow operations to interact. Although these networks are very 
different in nature, we call them interaction networks. Indeed, they reflect in 
different ways the interaction relationships between a set of Web services in a 
composition process.  

 
 

Figure 1. Schematic representation of a Web service α, two operations 1 and 2. 

, , ,  
 
 
2.1 Interaction network of parameters  
 
An interaction parameter network is defined as a directed graph in which nodes 
represent the set of parameters and links materialize operations. In other words, a 
link is created between each of the input parameters of an operation and each of 
its output parameters. In this context, each operation i can be defined as a triplet 

(Ii, Oi, Ki), where Ii is the set of input parameters, Oi is the set of output 

parameters and Ki is the set of links dependency. To build the set of 
interdependencies, we consider that each output parameter of an operation 
depends on each input parameter of the same operation. The left side of Figure 2 
shows three Web services α, β and γ. Their four operations are numbered 1, 2, 3 
and 4. The nine input and output parameters are labeled from a to i. As an 
example of the dependency relationships between the parameters, consider the 

operation number 2. It is defined by (I2, O2, K2) where I2 = {c}, O2 = {e, f}, K2 
= {(c, e), (c, f)}. Figure 2 (Right side) represents the parameter network 
corresponding to the three operations on the left. Connectivity within an 
interaction network of parameters is partly due to the fact that some parameters 
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can be used by several operations. Moreover, they can be used as input 
parameters by some operations and as output parameters by others. For example, 
in Figure 2 (Left side), {d, f, g} parameters appear more than once, either as 
input or as output of several operations. d is an output of operation 1 and an input 
of operation 4, f is an output of 2 and input 3, g is an output of 3 and an input of 
4. These parameters are represented by a single node in the network. 
 
 
2.2 Interaction network of operations 
 
An interaction network of operations is defined as a directed graph in which 
nodes represent all the Web service operations and relationships materialize an 
information flow between operations. Let i be an operation described by its sets 
of input and output parameters (Ii, Oi). To translate an interaction relationship 
between this source operation to a target operation j described by the (Ij, Oj), a 
link is created from i to j if and only if for each input parameter of operation j, 
there is an similar output parameter of i. In other words, the link exists if 
operation i is able to provide all the input data required by operation j. For 
example, consider the set of three Web services represented in Figure 2 (Left 
side). Web services are named α, β and γ, operations are numbered from 1 to 4, 
the input and output parameters are labelled from a to i. The right side 
corresponds to the associated interaction network. All entries of operation 3, i.e., 
I3 = {f}, are included in the outputs of operation 2, O2 = {e, f}, what we translate 

by O2 ⊂ I3. For this reason, there is a link from operation 2 to operation 3 in the 
interaction network (Right side). In this example, no other operation is able to 
provide all the input parameters needed by the other operations.  
 

 
 
Figure 2. Interaction network of parameters with 9 nodes labelled from a to i and 
interaction network of operations with 4 nodes labelled from 1 to 4 (Right side) 
obtained from four operations (Left side). 
 
Note that one can use a less restrictive constraint to draw a link between two 
operations. We can consider that we can build a composition even if just a subset 
of the input parameters needed to invoke an operation is provided.  
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2.3 Parameters similarity  
 
In an interaction network of parameters, we must assess the similarity between 
two parameters. Similarly, in an interaction network of operations we must 
decide whether two parameters, one being an output of a source operation and the 
other being an input of a target operation, are the same. To do so, one must 
define a matching function. For syntactic described Web services, the matching 
consists in assessing the similarity between two parameters name. Hence, the 
syntactic matching consists in measuring the similarity between two strings. 
Many distance function between strings can be used. In our experiment we 
consider the strict equality of strings. 
In real-world Web services, each provider can use its own naming policies. 
Therefore, parameters with identical names can convey different information. 
Similarly, parameters with different names can convey the same information. To 
tackle this problem, the use of ontological concepts in the semantic descriptions 
allows more accurate matching. The semantic matching is then based on the 
notions of similarity between ontological concepts. We compare in this case the 
concept associated to the parameters. The comparison of two concepts can be 
achieved by exploring the ontological hierarchy. The matching function can be 
based on the classical subsumption relationships (Cherifi, 2011). In the 
following, we only consider networks built with the exact operator. In this case, 
two parameters are similar if they are described by the same ontological concept. 
 
 
3. Community structure  

 
Many community detection algorithms have been proposed in recent years. Their 
analysis demonstrates that the objective assessment of the algorithms quality is a 
complex issue and until now, there is no satisfactory answer to the question of 
choosing the most appropriate algorithm in the context of a given network and 
target application. Indeed, depending on the properties of the network, algorithms 
tend to perform particularly well or particularly poorly. Furthermore, it appears 
that extrapolating algorithm behaviour on artificial data to real data is not easy. It 
sometimes leads to contradictory situations, highlighting the structural difference 
between artificial and real-world networks. Uncovering the community structure 
of a network therefore cannot rely on a single algorithm. A comparative analysis 
of outputs of a set of community detection algorithms is more reliable to assess 
the structural properties of the network. In order to elucidate this issue in our 
context, we selected a set of community detection methods based on different 
principles (Fortunato, 2010) among those who received the most attention from 
the scientific community. 
 
 
3.1 Community detection algorithms 
 
As a representative of the agglomerative hierarchical algorithms, we retain 
Louvain (Blondel et al., 2008) which is more stable than Fast Greedy regarding 
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the nature of the data (Navarro and Cazabet, 2010). It also appears much more 
efficient than Fast Greedy on artificial data in (Orman, Labatut, and Cherifi, 
2011).  
For divisive hierarchical algorithms, we retain EdgeBetweenness (Girvan and 
Newman, 2002) that behaves relatively well on artificial data when the 
community size has the particularity to be heterogeneous (Pons, 2007).  
For dynamic random walks based algorithms, we retain Walktrap  (Pons and 
Latapy, 2005) and Infomap (Rosvall and Bergstrom, 2008) that generally perform 
well. It is shown that Walktrap behaves relatively well on artificial data in (Pons, 
2007) although it performs poorly with small real-world networks (Steinhaeuser 
and Chawla, 2010). Walktrap and Infomap prove to be the best performing in the 
comparisons conducted in (Navarro and Cazabet, 2010) and (Orman et al., 2011) 
on artificial networks.  
For the spectral properties based algorithms we use Eigenvector (M E J Newman, 
2006a). Finally, we retain Spinglass (Reichardt and Bornholdt, 2006) as a 
representative of the simulated annealing optimization approach and 
LabelPropagation (Raghavan, Albert, and Kumara, 2007) which uses the concept 
of neighbourhood nodes.  
 
 
3.2 Comparing two community structures 

 
Several metrics can be used to measure the similarity between communities 
delivered by a pair of algorithms. A lot of these measures are strongly correlated 
(Labatut and Cherifi 2011; Junjie, Hui, and Jian, 2009). We choose to use the 
normalized mutual information because it is the most commonly used metric in 
the literature. It has been defined in the context of classical clustering to compare 
two different partitions of the same data set. Furthermore its interpretation is 
straightforward.  If the community structures are identical, the measure value is 
1. If both partitions are independent, the value is 0. 
 
 
3.3 Community topological properties 
 
We can distinguish three types of properties. The global properties are related to 
the community structure and embody the modularity and the community size 
distribution. The local properties are related to the communities themselves and 
encompass the community size, the scaled density, the distance and the hub 
dominance. Finally one can investigate the “semantic properties”, i.e. the 
operations inside the communities. These properties provide information on how 
a network is partitioned into communities and on the structural properties of each 
community.  
The modularity (Newman and Girvan, 2004) compares the actual proportion of 
community internal edges to the expected edges proportion if links are randomly 
distributed. Its value ranges from -1 to 1. For network exhibiting no community 
structure or when communities are no better than a random partition, the 
modularity value is negative or equal to 0. In the case of a community structure, 
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the modularity value is between 0 and 1. Practically, a value between 0,3 and 0,7 
is considered to be high (M E J Newman 2006b). Modularity’s main advantage is 
that it can be calculated using the network connectivity, in the absence of any 
node label or other information. Besides, the modularity is very often used as a 
reference measure in the context of community detection to evaluate the quality 
of a network partitioning.   
The community size distribution is an important feature of a community structure. 
The studies conducted so far on real-world networks tend to show that the 
community size distribution follows a power law (M E J Newman 2004; Guimerà 
et al., 2003) with an exponent between 1 and 2. In other words, community size 
is heterogeneous with the presence of a few large communities and many small 
ones. 
Local properties reveal how well a node is connected to his community and how 
communities are interconnected. The density of a community is defined as the 
ratio of links it actually contains, to the number of links it could contain if all its 
nodes were connected. The scaled density is a variant obtained by multiplying 
the density by the community size. When compared to the overall network 
density, the scaled density allows assessing the cohesion of the community. A 
community is supposed to be denser than the network it belongs to. If the 
community is a tree, the scaled density value is 2. If it is a clique, then it is equal 
to the community size. Some real-world networks such as the Internet or 
communication networks exhibit tree-like communities. On the contrary, for 
other classes like social and information networks, the scaled density increases 
with the community size. Biological networks exhibit hybrid behaviour, their 
small communities being tree-like, whereas the large ones are denser and close to 
cliques (Lancichinetti et al., 2010). 
The average distance of a community can also assess its cohesion. In real-world 
networks, small communities, smaller than 10, are supposed to have the small 
world property. So the average distance should increase logarithmically with the 
size of the community (Lancichinetti et al., 2010). For larger communities, the 
average distance increases, but more slowly, or stabilizes for certain categories of 
networks such as communication networks. A small average distance can be 
explained by a high density in social networks, by the presence of hubs in 
communication networks and the Internet, or even both in biological networks or 
information networks. 
The hub dominance reveals the presence of a central hub in a community. It 
corresponds to the ratio of the maximal internal degree found in a community, to 
the maximal degree theoretically possible, given the community size. The hub 
dominance therefore reaches 1 when at least one node is connected to all others 
in the community. It can be 0 only if no nodes are connected, which is unlikely 
for a community. In real-world networks, we observe different behaviours. For 
communication networks, the value is high in most of communities, 
independently of their size. This reflects the presence of hubs in all communities. 
Considering that their structure is sparse and tree form, we can deduce that 
communities have rather a star structure. This phenomenon is less marked for 
other types of large real-world networks. One can even notice that the hub 
dominance decreases while community size increases (Lancichinetti et al., 2010). 
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4. Experimental results 
 
4.1 Data 
 
Different benchmarks of publically available Web services description 
collections are available. They are provided by different entities like the ICEBE 
organisation (ICEBE’05, 2005), the ASSAM WSDL Annotator project (Hess, 
Johnston, and Kushmerick, 2004), SemWebCentral (InfoEther and Technologies, 
2004), OPOSSum (Küster, König-Ries, and Krug, 2008) or even the authors of 
(Fan and Kambhampati, 2005). SAWSDL-TC1 (SAWSDL Test Collection 1) is 
a provided by the SemWebCentral community. We choose to concentrate on this 
collection for different reasons. First of all, although re-sampled, it is the only 
one which contains real-world descriptions with both syntactic and semantic 
information. It allows performing a comparative analysis between the two types 
of descriptions. Although it is designed to evaluate Web services discovery 
algorithms, it is a representative sample of Web services that may interact within 
a composition. Furthermore, in this benchmark, 654 descriptions among the 894 
are classified into seven domains. Three of them (economy, education, travel) 
contain more than 80% of the descriptions. The other four classes 
(communication, food, medical, weapon) contain less descriptions and are 
relatively uniform. Moreover, among the highly populated domains, the economy 
domain seems to be more heterogeneous. It is characterized by the fact that the 
Web services share the same parameter (or concept) “price”. This notion of 
domain allows us to link the classical notion of communities used in the Web 
service classification literature, to our alternative approach. 
 
 
4.2 Complex Web service networks  
 
From SAWSDL-TC1 collection, we extracted two parameter networks and two 
operation networks (one syntactic and one semantic for each node type) using 
WS-NEXT, a network extractor toolkit specifically designed for this purpose 
(Cherifi, Rivierre, and Santucci, 2011). The networks are represented on Figure 
3, where isolated nodes have been discarded. Globally, all four networks are very 
similar. A giant component stands next to some small components and isolated 
nodes. Most real-world networks have such a component structure. The presence 
of a giant component reflects the fact that the number of possible interactions is 
high, allowing a large proportion of operations to participate in a composition. As 
it is commonly done for complex networks exhibiting such a component 
structure, we focus on the giant component to study the network topological 
properties (Girvan and Newman, 2002; Oh, 2006).  
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(a) Syntactic parameter network 

 
 

(b) Semantic parameter network 

 
 

(c) Syntactic operation network 

 
 

(c) Semantic operation network 
 
Figure 3. Four Web service networks extracted from SAWSDL-TC1 collection. 
Syntactic parameter network (a), Semantic parameter network (b), Syntactic 
operation network (c), Semantic operation network (d). 
 
Networks known as “complex” are generally the result of a decentralized and 
unplanned evolution. From microscopic mechanisms (i.e. at nodes and links 
level), such a self-organisation results in the emergence of macroscopic statistical 
properties. Many complex networks representing very diverse systems share 
common characteristics. In particular, many of these systems are “small-world”. 
This property popularised by Milgram's experimental study of the structure of 
social networks, reflects the fact that there is a short path length between any two 
nodes of the networks. In “small world” networks, the average distance is low 
and it varies very slowly with the total number of sites (typically as a logarithm).  
Another important feature is the fact that many networks have few nodes with a 
very high degree and plenty of nodes with a low degree. This preferential 
attachment process is commonly illustrated by the expression “the rich get 
richer”. This feature is described by a power law degree distribution and the 
corresponding networks are said to be “scale-free”. 
Table 1 shows the measured parameters values allowing to decide if the Web 
service interaction networks exhibit these two typical properties. All the Web 
services networks exhibit a smaller average distance as compared to the same 
size Erdös-Réyni networks and hence have the small-world property. 
Nevertheless, this property is more pronounced for the semantic networks. This 
highlights their greater effectiveness for Web service composition. The parameter 
networks have the scale-free property. To assert this, we conducted Kolmogorov-
Smirnov goodness-of-fit tests. Resulting p-values for global degrees are over 
0.80, allowing us to conclude that the degree distributions follow a power law 
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distribution. This hypothesis is not confirmed for the operation networks as we 
observe very low p-values. This may be a consequence of the collection re-
sampling. Indeed, we performed the same experiment on the syntactic Public 
Web Services collection (Fan and Kambhampati, 2005). It appears that for this 
collection, the power-law degree distribution is a plausible hypothesis with a 
global degree p-value of 0.79. Though we can consider that interaction Web 
service networks exhibit the small-world and the scale-free properties. 
 

Network designation Network size Average 
distance 

Average Distance 
Erdös-Réyni 

Power-law 
exponent 

p-value 

Syntactic Parameter 269 2,75 6,29 3,15 0,81 

Semantic Parameter 268 1,97 6,24 3,04 0,84 

Syntactic Operation 395 2,19 3,91 2,96 0,028 

Semantic Operation 341 1.87 2,76 2, 17 0,085 

 
Table 1. Topological properties of parameter and operation networks of the 
SAWSDL-TC1collection: size, average distance, Erdös-Réyni networks average 
distance, power-law exponent, p-value. 
 
In order to position Web service networks into the complex networks landscape, 
we recall common topological properties of typical real-world complex networks 
from various domains, along with values measured on the giant component of the 
four Web service interaction networks, in Table 2. The considered real-world 
complex networks are example of information/communication, biological and 
social networks (Boccaletti et al., 2006). AS2001 and Routers are two 
information/communication networks. AS2001 stands for the Internet at the 
autonomous system (AS) level as on April 16th, 2001, while Routers indicate the 
router level graph representation of the Internet. Gnutella is a peer-to-peer 
network provided by Clip2 Distributed Search Solutions. Finally, the World 
Wide Web (WWW) is a directed network formed by the hyperlinks between 
different Web pages. Each Web page has a number of incoming links and a 
number of outgoing links pointing to other Web pages. The protein–protein 
interaction network in the yeast and a network of metabolic reactions are two 
biological networks. The nodes of the first network are proteins, with two nodes 
being linked together by an edge if the corresponding proteins physically interact, 
e.g. if two amino acid chains are binding to each other. Metabolic reaction 
networks are directed networks whose nodes are chemicals that are connected to 
one another through the existence of metabolic reactions. Finally, Actors and 
Math1999 are two examples of social networks. A social network is formally 
defined as a set of individuals or social entities linked through some kind of 
interactions among them. Here we consider the collaborations graph of 
mathematicians defined by paper co-authorships, the movie actor collaboration 
network based on the Internet Movie Database (a network made up of actors that 
have casted together in a same movie). Independently from their nature, all the 
networks exhibit a small average distance and a power-law degree distribution. 
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High transitivity coefficients are observed in AS2011 and Actors networks. The 
networks also differ in their degree correlation.  
If we look at the small-world property, semantic parameter network and 
operation networks have an average distance of the magnitude of that of the 
protein network. The degree distribution of the semantic parameter network is 
similar to the one of the World Wide Web. We note that the World Wide Web, 
the metabolic network and the Web services interaction networks are directed 
networks; the two values of the power-law exponent, respectively represent the 
in/out-degree exponents of the power-law. The low transitivity of the four 
networks is similar the one of the router network. Finally, like the network of 
autonomous systems, Gnutella and biological networks, parameter and operation 
interaction networks have a disassortative degree correlation. 
 

Network 
Designation 

Network size Average 
distance 

Transitivity 
coefficient 

Power-law 
exponent 

Degree 
correlation 

AS2001 11174 3.62 0.24 2.38 <0 

Routers 228263 9.5 0.03 2.18 >0 

Gnutella  709 4.3 0.014 2.19 <0 

WWW 2x108 16 0.11 2.1/2.7 -- 

Protein 2115 2.12 0 .07 2.4 <0 

Metabolic 778 7.40 0.7 2.2/2.1 <0 

Math 1999 57516 8.46 0.15 2.47 >0 

Actors 225226 3.65 0.79 2.3 >0 

Syntactic Parameter  269 2,75 0,039 3,15/2,01 <0 

Semantic Parameter 268 1,97 0.031 2.99/3.45 <0 

Syntactic Operation  395 2,19 0,032 -- <0 

Semantic Operation 341 1.87 0.022 -- <0 

 
Table 2. Basic topological properties of Web service networks and of a number 
of information/communication, biological and social networks from the real-
world: vertices number, average distance, transitivity coefficient, exponent of the 
degree distribution, and type of correlation. 
 
 
4.3 Community structure in Web service networks 
 
Since we do not have any information about the reality of the networks 
community structure, we proceed by comparison between the partitioning 
identified by the different algorithms on the different networks. To do this, we 
have three degrees of freedom: the seven algorithms, the description type 
(syntactic, semantic) and the network node type (parameter, operation). 
We first look at the number of detected communities and then we compare the 
discovered community content. Table 3 gives the community number for each 
algorithm and for each network. Statistical trends are described by mean values 
and standard deviations. Overall, a community structure is revealed in all the 
cases. In other words, in every situation more than one community is identified. 
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If we compare the number of communities between a parameter and an operation 
network using the same description type, it appears that the number of 
communities is lower in parameter networks than in operation networks. 
Furthermore, variability of the number of detected communities is much greater 
in operation networks. We now consider a comparison according to the 
description type. In other words, we compare parameter networks between them 
and operation networks between them. In parameter networks, differences are 
statistically insignificant for the average number of detected communities except 
for EdgeBetweenness. For all the others, the results are very similar. In operation 
networks, the average number of detected communities is also very comparable.  
If we focus on comparing the different algorithms behaviours, one can notice that 
in parameter networks, EdgeBetweenness, Louvain, Spinglass and 
Labelpropagation seem very close in terms of community number. For operation 
networks, the variability is much greater. One can identify four groups. In an 
increasing order in terms of community number, we have Eigenvector and 
Louvain, Spinglass and LabelPropagation, Walktrap and Infomap, and finally 
Edgebetweness which find eight times more communities than the first group. 

 
 PARAMETER NETWORK OPERATION NETWORK 

 Syntactic  Semantic  Syntactic Semantic 

EDGEBETWEENNESS 9 14 48 43 

LOUVAIN 10 10 8 9 

SPINGLASS 9 12 12 12 

EIGENVECTOR 15 12 6 5 

WALKTRAP 17 16 23 20 

INFOMAP 17 18 21 20 

LABELPROPAGATION 10 13 9 13 

Mean 12,4 13,5 18,14 17,42 

Standard deviation 3,7 2,7 14,69 12,52 

 
Table 3. Community number on parameter and operation networks from the 
SAWSDL-TC1collection, for the community partitioning obtained with seven 
community detection algorithms. 
 
In order to evaluate the agreement regarding the partitioning content, we compare 
the partitioning generated by the algorithms in the semantic networks. We use the 
normalized mutual information measured between partitions identified by the 
seven algorithms taken two by two. Results are presented in Table 4 under the 
form of a symmetric matrix which assesses the degree of coherence between the 
different partitions. Although the number and size of the partitions are generally 
quite different, it appears that algorithms agree on the contents of these partitions. 
Eigenvector is the one that stands out most of the others, regardless of network 
type. LabelPropagation also tends to differ from the others in the operation 
network. The most consensual algorithms are Spinglass and Walktrap in the 
parameter network. Indeed, they have the highest (0.85) normalized mutual 
information average value. In the operation network, Spinglass, Infomap and 
Louvain are the most in agreement.  
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 Parameter network Operation network 

 SPI WAL INF LOU LAB EIG EDG SPI WAL INF LOU LAB EIG EDG 

SPI 1,00 0,85 0,86 0,87 0,82 0,73 0,88 1,00 0,84 0,91 0,93 0,80 0,58 0,83 

WAL 0,85 1,00 0,85 0,83 0,83 0,75 0,85 0,84 1,00 0,89 0,80 0,79 0,47 0,82 

INF 0,86 0,85 1,00 0,80 0,74 0,78 0,88 0,91 0,89 1,00 0,89 0,82 0,60 0,88 

LOU 0,87 0,83 0,80 1,00 0,77 0,69 0,81 0,93 0,80 0,89 1,00 0,78 0,58 0,78 

LAB 0,82 0,83 0,74 0,77 1,00 0,70 0,80 0,80 0,79 0,82 0,78 1,00 0,52 0,80 

EIGE 0,73 0,75 0,78 0,69 0,70 1,00 0,74 0,58 0,47 0,60 0,58 0,52 1,00 0,59 

EDG 0,88 0,85 0,88 0,81 0,80 0,74 1,00 0,83 0,82 0,88 0,78 0,80 0,59 1,00 

 
Table 4. Normalized mutual information between partitioning in semantic 
parameter and operation networks. Each box gives the NMI between two 
partitioning. The name of the algorithms is abbreviated in rows and columns. The 
i
th
 column corresponds to the algorithm presented on the i

th
 line. 

 
Figure 4 shows the partitioning obtained by those three algorithms. We 
effectively can observe the agreement on the community content. In the syntactic 
networks, we observe similar type of behaviours with some shades. Overall, the 
consensus is slightly lower (around 5%) in the operation networks than in the 
parameter networks. In terms of consensus, the ranking of the algorithms remains 
the same. 
 

 
Louvain 9 

 
Spinglass 12 

 
Infomap 20 

 
Figure 4. The three more consensual algorithms in the semantic operation 
network: Louvain, Spinglass and Infomap with respectively 9, 12 and 20 
communities.  
 
 
4.4 Communities topological properties  
 
As we can see in Table 5, the modularity value falls in the range of [0.3, 0.7]. It 
is higher in parameter networks than in operation networks. In other words, 
detected communities are more cohesive in parameter networks. If we consider a 
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comparison according to the description type, in parameter networks, differences 
are statistically insignificant for the average modularity. In operation networks, 
modularity is systematically higher in the semantic operation network. 
Comparing the different algorithms behaviours, one can notice that Spinglass is, 
in all cases, the algorithm that has the highest modularity value. In parameter 
networks, EdgeBetweenness, Louvain and Spinglass seem very close in terms of 
modularity. Walktrap, Eigenvector and Infomap are a notch below. For operation 
networks, Louvain, Spinglass and Infomap have the highest values of modularity.  
 

 PARAMETER NETWORK OPERATION NETWORK 

 Syntactic  Semantic  Syntactic  Semantic  

EDGEBETWEENNESS 0,621 0,624 0,477 0,506 

LOUVAIN 0,618 0,619 0,492 0,53 

SPINGLASS 0,637 0,63 0,508 0,53 

EIGENVECTOR 0,6 0,596 0,434 0,479 

WALKTRAP 0,609 0,618 0,479 0,478 

INFOMAP 0,608 0,61 0,506 0,529 

LABELPROPAGATION 0,593 0,581 0,361 0,506 

Mean 0,612 0,611 0,465 0,508 

Standard deviation 0,014 0,017 0,052 0,022 

 
Table 5. Community structure modularity on parameter and operation networks 
from the SAWSDL-TC1collection, for the community partitioning obtained with 
seven community detection algorithms. 
 
Figure 5 represents the size of the top ten "big" communities discovered by each 
algorithm in semantic parameter and operation networks. Except for the two 
biggest communities of the parameter network, the sizes of the communities 
discovered by the algorithms are quite convergent. Note that Infomap and 
Eigenvector lead to a more uniform distribution, while LabelPropagation formed 
the largest community. In the operation network, “opinions" of various 
algorithms are more convergent with respect to the communities’ size, except for 
Eigenvector which is distinguished by the size of the largest community. 
Globally, we observe for all the algorithms quite comparable values for the 
average distance. Thus, the average distance of the communities in the semantic 
interaction parameter network ranges from 1 to 2.8. Its mean value is 1.87. It is 
much smaller than the value observed for the overall network (2.75).  
The scaled density values show that small communities tend to be tree like while 
bigger communities are sparse. Indeed the scaled density ranges from 3 to 5. For 
this property we observe more variability between the algorithms. 
Globally, the hub dominance value is high. It ranges from 0.5 to 0.9. These 
values suggest the presence of hubs in most communities.  
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Figure 5. Size of ten largest communities detected by the seven algorithms in 
semantic parameter (top) and operation (down) networks from SAWSDL-TC1 
collection. 
 
We now compare the community’s properties distribution between syntactic and 
semantic networks. For each property we compute the correlation between the 
data set obtained for the syntactic network and the data set obtained for the 
semantic network for each algorithm. In all the cases, only the eight larger 
communities are considered. Indeed, for a given algorithm, the number of 
detected communities differs between the syntactic case and the semantic case. 
Furthermore, property values can widely vary when considering small 
communities. It is preferable to minimize their influence. Table 6 contains the 
values of the correlation coefficient for each of the algorithms used in parameter 
networks and operation networks. Overall, we observe large correlation values 
for all the properties in both types of networks. This suggests that communities 
found in the syntactic networks are structurally very similar to those found in the 
semantic networks. Going further into the interpretation of these results is very 
difficult. Indeed, the differences are difficult to interpret on such a small data set. 
We complete this study by conducting a subjective analysis of communities 
identified in the networks by the different algorithms. For the operation network, 
we observe that globally, communities and domains do not overlap. Thus, if we 
focus on the three largest communities, we note that in all the partitioning, they 
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contain a large portion of operations coming from the economy domain with 
operations from travel and education domains. In medium-sized communities the 
domain repartition is more homogeneous. In other words, these communities are 
built with Web services originating from all the domains in comparable 
proportions. In parameter networks, the community structure is somewhat 
different. Indeed, in this case, communities are more domain-centred. We explain 
that by the fact networks are organized around a common vocabulary (the 
parameters), specific to each domain. From these observations, we can conclude 
that the notion of community is much richer than the notion of domain. Indeed, a 
community aggregates services that can potentially enter in a composition, while 
the notion of domain does not necessarily induce an interaction relationship. 
 

 PARAMETER NETWORKS OPERATION NETWORKS 

 Size Distance Density Hub  
Dom.  

Size Distance Density Hub  
Dom.  

WAL 0,991 0,974 0,952 0,917 0,993 0,895 0,983 0,973 

SPI 0,985 0,943 0,965 0,881 0,954 0,910 0,987 0,909 

LOU 0,877 0,924 0,931 0,896 0,951 0,852 0,984 0,963 

INF 0,955 0,989 0,985 0,871 0,985 0,902 0,989 0,942 

EDG 0,993 0,947 0,966 0,736 0,996 0,835 0,994 0,947 

EIG 0,932 0,968 0,911 0,971 0,903 0,813 0,883 0,922 

LAB 0,996 0,974 0,945 0,798 0,931 0,927 0,973 0,909 

 
Table 6. Correlation between the community property’ distributions of the 
syntactic and the semantic networks for each node type. Name of the algorithms 
is abbreviated. 
 
 
5. Conclusion 

 
In this paper, we explore the topological properties of interaction Web services 
networks based on syntactic and semantic Web service descriptions. An 
extensive analysis of four Web service interaction networks extracted from the 
SAWSDL-TC1 collection is performed. Experimental results show that the 
networks exhibit the most salient properties characterizing complex networks: 
the small-world and the scale-free properties. We investigated their community 
structure, using a set of algorithms based on a broad range of approaches. All the 
algorithms uncovered a community structure. They mainly agree on the content 
of the discovered communities. Nevertheless, some differences appear regarding 
the number of communities. Some algorithms seem to overestimate this number, 
while others to underestimate it. To better understand the community structure, 
we analyzed both global and local topological community properties. Measured 
values of the modularity confirm the community structure of the networks. 
Indeed, it ranges from 0.36 to 0.62. Those values are currently considered as 
describing a highly cohesive community structure.  Concerning the community 
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size distribution, all the algorithms give similar results except for the two biggest 
communities where they can behave differently. The average distance value 
measured in the communities is always lower than the average distance of the 
overall networks, reflecting the fact that communities are more densely 
connected. The scaled density value suggests that small communities have a tree 
structure while bigger communities are sparse. The presence of hubs in the 
communities is confirmed by the measured hub dominance values which range 
from 0.5 to 0.9. 
The main contributions of this work is to highlight a property of Web service 
networks which is found in many real-world networks, the community structure, 
and to validate a new Web service classification approach based on their ability 
to be composed. Our work is a primer and the approach opens different 
promising research directions to be investigated. A straight extension is to test 
and evaluate the proposed classification method for composition synthesis. We 
conducted preliminary research on a framework based on interaction and 
similarity networks within which the composition synthesis is guided by the 
community structure in an interaction network. A future work to be explored is 
overlapping community detection. So far, the focus in community detection has 
been on identifying disjoint communities. It is well known that in networks, there 
could be nodes that belong to more than one community. The overlapping 
community structure hypothesis can lead to more opportunities in the Web 
service composition process. 
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