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Interval-Passing Algorithm for Non-Negative

Measurement Matrices: Performance and

Reconstruction Analysis
Vida Ravanmehr, Ludovic Danjean, Bane Vasić, Fellow, IEEE, and David Declercq, Senior Member, IEEE

Abstract—We consider the Interval-Passing Algorithm (IPA), an
iterative reconstruction algorithm for reconstruction of non-nega-
tive sparse real-valued signals from noise-free measurements. We
first generalize the IPA by relaxing the original constraint that the
measurement matrix must be binary. The new algorithm operates
on any non-negative sparsemeasurementmatrix.We give a perfor-
mance comparison of the generalized IPA with the reconstruction
algorithms based on 1) linear programming and 2) verification de-
coding. Then we identify signals not recoverable by the IPA on a
given measurement matrix, and show that these signals are related
to stopping sets responsible to failures of iterative decoding algo-
rithms on the binary erasure channel (BEC). Contrary to the re-
sults of the iterative decoding on the BEC, the smallest stopping set
of ameasurementmatrix is not the smallest configuration on which
the IPA fails. We analyze the recovery of sparse signals on subsets
of stopping sets via the IPA and provide sufficient conditions on
the exact recovery of sparse signals. Reconstruction performance
of the IPA using the IEEE 802.16e LDPC codes as measurement
matrices are given to show the effect of stopping sets in the perfor-
mance of the IPA.

Index Terms—Compressed sensing, interval-passing algorithm,

iterative reconstruction algorithm, low-density parity-check codes,

message-passing algorithm, stopping sets.

I. INTRODUCTION

R ECONSTRUCTING a sparse signal from a small set of

measurements via compressed sensing [1] has attracted

significant attention in the last few years. A -sparse signal

, i.e., a signal with at most nonzero values, is ob-

served indirectly through a shorter measurement vector

and obtained from the linear equations where

is an measurement matrix, with . The task

of compressed sensing is to recover from . The first ap-

proach to solve the compressed sensing problem is to find a
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signal with the smallest -norm. The -norm minimiza-

tion of compressed sensing is NP-hard [2], [3]. Instead, the

-norm minimization solution based on linear programming

(LP) was introduced to reconstruct . The LP technique [4] for

the compressed sensing problem, called Basis Pursuit [5], [6],

has a remarkable performance, but its high complexity and run-

ning time makes it impractical in some applications which re-

quire fast reconstruction, or when the dimension of a measure-

ment matrix is large. To tackle the issue of complexity, mes-

sage-passing algorithms for compressed sensing have been pro-

posed, originating from channel coding. Sarvothan et al. [7]

were amongst the first who introduced a reconstruction algo-

rithm based on belief propagation. Another application of belief

propagation in compressed sensing was presented by Pham et

al. in [8] where the authors provided two low-complexity algo-

rithms, list decoding andmultiple-based belief propagation. The

iterative thresholding algorithm, also called approximate mes-

sage passing, was proposed by Donoho et al. [9]. This algorithm

can be viewed as the variant of the bit-flipping algorithm which

is used for the decoding of low-density parity-check (LDPC)

codes. A message passing algorithm, to which we refer in this

paper as the Interval-Passing Algorithm (IPA), was introduced

by Chandar et al. [10]. This is a simple iterative algorithm in-

spired by the parallel bit-flipping decoding algorithm to recon-

struct a non-negative vector . In the binary measurement ma-

trix case, the performance of this algorithm in both noise-free

and noisy measurements was presented in [11], and a compar-

ison between the IPA, the verification decoding algorithm [12],

[13] and Basis Pursuit was given in [14].

Krishnan et al. [15] modified the IPA and showed that the

IPA fails on the stopping sets which are the well-known config-

urations for the failure of the iterative decoding of LDPC codes

over the binary erasure channel (BEC). Moreover, they showed

that the IPA may fail even if the nonzero values of the signal do

not contain a stopping set. In this paper, we analyze the recovery

of the IPA in stopping sets and provide sufficient conditions for

reconstructing a sparse signal with sparsity less than the size of

a stopping set.

The rest of the paper is organized as follows. Section II pro-

vides preliminaries on compressed sensing, LDPC based mea-

surement matrices, and a brief introduction to some iterative re-

construction algorithms. Section III provides a detailed expla-

nation of the IPA. While the original version of the IPA uses bi-

nary measurement matrices, we modify this algorithm to work

with non-negative sparse measurement matrices and present a

comparison of the IPAwith two other reconstruction techniques,

2156-3357/$31.00 © 2012 IEEE
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namely the LP reconstruction, and the verification decoding.

In Section IV, we give a theoretical analysis of the IPA re-

covery and provide sufficient conditions on the recovery of sig-

nals whose nonzero values are a subset of a stopping set. In

Section V, we provide simulation results exhibiting the IPA

reconstruction performance using some LDPC matrices as the

measurement matrices and link this performance with the stop-

ping set distribution of thesesmatrices. Finally, a conclusion and

discussion are provided in Section VI.

II. PRELIMINARIES

In this section, we provide the notations used throughout the

paper regarding compressed sensing and LDPC codes.

A. Compressed Sensing

Here we give definitions and main results related to com-

pressed sensing. Let be an -dimensional -sparse

signal, and let be a measurement matrix. Compressed

sensing concerns the recovery of from measurements

where and . The first approach to

recover from the measurements , is to find a -sparse signal

from all the -sparse possible signals which is known to be

an NP-hard problem [2], [3]. This problem is called the -min-

imization, and it is given by

(1)

Throughout this paper, for a column vector

, ,

and . The LP technique introduced by Chen

et al. [5], called Basis Pursuit, provides a minimum -norm

for . This problem is called the -minimization, as well as

the recovery via convex optimization and it is given by

(2)

Candes et al. [6] showed that if the measurement matrix satis-

fies a condition, namely the restricted isometry property (RIP),

Basis Pursuit can recover a sufficiently sparse signal. Roughly, a

measurement matrix satisfies the RIP if it does not significantly

distort the -norm of any sufficiently sparse vector.

B. LDPC Codes

Low-density parity-check (LDPC) codes [16] are widely used

in channel coding. Let denote an binary LDPC

code. is defined as the null space of a parity check matrix

of size . is known to be the adjacency matrix of

its equivalent bipartite graph , called the Tanner graph [17].

The Tanner graph of an LDPC code is defined as

, where is the set of variable nodes

corresponding to the columns of , and is

the set of check nodes corresponding to the rows of .

is the set of edges in , and an edge connects the variable node

to the check node iff where is the element

at the th row and th column in . The code is said to be

-left-regular if all variable nodes in have the same degree

(or equivalently if all the columns in have weight ). The

code is said to be -right-regular if all check nodes in have

the same degree (or equivalently if all the rows in have

Fig. 1. Parity check matrix and Tanner graph of a (2, 3)-regular LDPC code.

weight ). The code is said to be -regular when it is both

-left-regular and -right-regular. The girth of a the Tanner

graph is the length of the shortest cycle in . In the graphical

representation of , a white circle represents a variable node,

and a white square represents a check node. Fig. 1 shows a small

example of a girth-6 (2, 3)-regular LDPC matrix with its related

Tanner graph. In this paper, we only consider -regular

LDPC codes with .

C. Message-Passing Algorithms

The relation between LDPC codes and compressed sensing

was studied in [18] and [19] where the authors showed that

good LDPC matrices are also good for compressed sensing

using Basis Pursuit. Following the natural relation between

measurement matrices for compressed sensing and LDPC

matrices, several iterative algorithms have recently been pro-

posed to recover sparse signals using message-passing. The

first message-passing algorithms were introduced by Donoho

et al. in [9] for noise free measurements. These algorithms,

such as the second algorithm of [9], called the Approximate

Message-Passing (AMP) algorithm, are iterative thresholding

algorithms, i.e., at each iteration it ensures to provide the

sparsest estimate of . These algorithms can be analyzed, as

in [20], using the phase transition diagram. In this diagram the

failure or success of the AMP is given as a function of different

parameters of the system ( ).

Other message-passing algorithms exist in the literature, such

as the list decoding and multiple-basis belief propagation from

Pham et al. [8]. Chandar et al. [10] introduced a simple message

passing algorithm that we investigate and modify in Section III.

We also present another kind of message-passing based al-

gorithm used for comparison in our simulation results.1 Zhang

and Pfister’s verification algorithm [13] is an iterative algorithm

to reconstruct strictly sparse signals. In this algorithm, summa-

rized in Appendix A, the messages correspond to the vertices

(variable and check nodes in the factor graph) and not to the

edges. However, due to its extreme low complexity ( ) it is

a good comparison for our simulation results.

III. INTERVAL-PASSING ALGORITHM

Chandar et al. [10] introduced a simple message passing

algorithm for reconstructing non-negative signals using sparse

binary measurement matrices. We refer to this algorithm

as the IPA [11], [14], [15]. We modify this algorithm in

order to deal with non-negative real-valued measurement

matrices. From [10], the complexity of the algorithm is

1This algorithm is presented in detail in [14].
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Fig. 2. IPA: Updating messages from the variable node to the measurement
node .

Fig. 3. IPA: Updating messages from the measurement node to the variable
node .

which is a good trade-off between

the polynomial complexity of the LP reconstruction, and the

linear complexity of the simple verification decoding [13].

A. Description of the Algorithm

The IPA is an iterative algorithm, and thus messages are as-

sociated with the graphical representation of the measurement

matrix to perform reconstruction. Let and

be respectively the sets of variable nodes

and measurement nodes2 in the graphical representation of the

measurement matrix for and .

The graphical representation of is actually the Tanner graph of

the binary image3 of , whose edges are labeled by real values

at the nonzero position in . The graphical representation of

has the flavor of a nonbinary LDPC code Tanner graph [21],

[22].

In the IPA, the messages passing through edges are intervals

corresponding to the lower and upper bounds of the es-

timation of the connected variable node. At each iteration , the

message update from the variable to the measurement node

is given by

(3)

(4)

2Analogous to check nodes in LDPC codes.

3Amatrix is said to be the binary image of a matrix
if if and if

and the messages from the measurement node to the variable

node are updated as

(5)

(6)

where (resp. ) is the set of measurement (resp. vari-

able) nodes which are the neighbors of (resp. ) in the Tanner

graph of . Updating messages from a variable (resp. measure-

ment) node to a measurement (resp. variable) node is shown in

Figs. 2 and 3 , respectively.

The IPA is formally given in the Algorithm 1, where rep-

resents the maximum number of reconstruction iterations. The

reconstruction process stops when the maximum number of it-

erations is reached, or the lower bound and the upper bound of

the interval from variable nodes to check nodes has converged

to a common value for every variable node. This common value

is set as the estimate of each connected variable node value.
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Fig. 4. Simulation results using the designed measurement matrix .

B. Comparison Results

We now compare the IPA performance using the non-nega-

tive real valued measurement matrix with the complex LP re-

construction algorithm, and with simple verification decoding.

We used the LDPC matrix design from an array of permutation

matrices from [23]. We designed a (2, 3)-regular LDPC matrix

with and and then substituted the nonzero

elements in by a random number drawn from the uniform

distribution in to obtain the matrix .

For each sparsity , at least 75 random -sparse signals are

generated and 50 reconstruction iterations are performed. The

proportion of correct reconstruction results are summarized in

the plot of Fig. 4 for the IPA, the verification decoding algo-

rithm, and the complex LP. A random -sparse vector is said to

be correctly recovered if each of its samples are correctly es-

timated as close as . We can see then that the IPA is a good

trade-off between performance and complexity.

IV. ANALYSIS

In this section, we study the recovery of the IPA on non-nega-

tive real-valued signals. We present the analysis on binary mea-

surement matrices for the sake of clarity, but the extension of

these results to non-negative real-valued measurement matrices

is straightforward. First, we give a theorem given in [15] which

proves the failure of the IPA on stopping sets. A stopping set is

defined as follows.

Definition 1 [24]: A stopping set is a subset of the set of

variable nodes such that all neighbors of are connected to

at least twice.

The cardinality of a stopping set is called the size of the

stopping set.

Theorem 1 [15]: Let be a binary measurement matrix.

The IPA fails on the recovery of a signal if the nonzero entries

contain a stopping set in

Proof: We prove that if all variable nodes in have

nonzero values, the IPA cannot recover them. In other words,

we prove that the bounds of the intervals passing through

the edges of the graphical representation of never con-

verges, i.e., we show that such that , then

, .

Suppose , , from the definition of a stopping

set , . Then, at the initialization ( )

we have

(7)

At the first iteration we have

(8)

(9)

Now consider the update at the measurement node. For the

lower bound of the interval we have

(10)

(11)

(12)

The last equation stands from the initialization

. Similarly, for the upper bound at the measurement node

we have

(13)

(14)

(15)

The last equation results from the initialization

.

Thus, we obtain . For the

messages from variable nodes to check nodes are simply the

intersection of intervals from the check nodes at the previous

iteration, and then we still have . The

proof is completed by induction for every .

Theorem 1 also indicates that the IPA fails on reconstruction

of a signal whose nonzero values form the smallest stopping

set in the measurement matrix . However, as we explain in the

following example, the smallest stopping set is not the smallest

configuration on which the IPA fails.

Example 1: Consider a stopping set of size four as given in

Fig. 5. According to Theorem 1, the IPA cannot recover a signal

with nonzero values on . The algorithm also

fails on a two-sparse signal whose nonzero values are

or , which implies that the variable nodes forming a

smallest stopping set are not necessarily the smallest configu-

ration on which the IPA fails. However, the IPA can recover a

two-sparse signal with nonzero values on or .

Example 1 shows the main difference between the iterative

decoding on the BEC and the signal recovery of the iterative

IPA in compressed sensing. The iterative decoder over the BEC

fails if and only if the erasures contain a stopping set, while the

IPA fails even if the nonzero values do not involve a stopping

set. The following results identify recoverable signals whose
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Fig. 5. Stopping set of size 4.

nonzero values are subsets of stopping sets. First, we show that

every zero-value variable node is recoverable by the IPA. In this

paper, we say that a node is zero if its value is equal to zero.

Lemma 1: The IPA can recover all zero variable nodes.

Proof: Suppose is a variable node with value 0 and

is the set of the measurement neighboring

nodes of with measurement values . At

each iteration of the IPA, the message which is sent from

( ) to is either or where

. If receives at least one from one of its

neighbors, the value of is recovered as 0. If all messages

from every to are , the decision rule of the algorithm

leads to recover the value of to the maximum value of lower

bounds of the intervals , which is 0.

Since all zero variable nodes are recovered by the IPA, it is

enough to study the recovery of nonzero variable nodes.We note

that reconstruction of all zero variable nodes does not neces-

sarily result that the IPA can be used to estimate the support of

the signal, since it is possible that the IPA fails to recovery of

a nonzero variable node and recovers the value of the nonzero

variable node to zero.

Definition 2: A set of variable nodes is called a minimal

stopping set, if forms a stopping set and it does not contain a

smaller stopping set.

It is clear that the smallest stopping set in a measurement

matrix is a minimal stopping set while a minimal stopping

set is not necessarily the smallest stopping set. The size of the

smallest stopping set is called the stopping distance [25] and

plays a significant role in iterative decoding of LDPC codes over

the BEC.

Theorem 2: Let be a binary measurement matrix and

be a subset of variable nodes forming

a minimal stopping set. Let be a set of non-negative real

vectors in and be a signal

with at most nonzero values, i.e., , such

that the set of nonzero variables is a subset of . Then, the IPA

can recover if there exists at least one zero measurement node

among the neighbors of .

Proof: Let , be the

set of measurement nodes connected to . Suppose that is

the only zero measurement node. Since forms a stopping

set, there exist at least two zero variable nodes, say , con-

necting to and there exist nonzero value measurement nodes

connected to . Moreover, is a minimal stopping set,

so there exists at least one measurement node,

with only one neighbor in , namely . Otherwise,

will be a smaller stopping set, which is a contradic-

tion. Suppose has the value . At the first iteration, sends

to and and and send to their neighbors.

Based on the above explanation, is a neighbor of or

or both of them with only one neighbor in . At the

second iteration, will send to the only variable node .

So, the value of the variable node is recovered to . Since

the value of this variable node is recovered, we can consider

this variable node to have value zero by subtracting from the

value of all measurement nodes which are the neighbors of .

Now, we have three variable nodes whose values have

been determined. Again, with the same discussion, there exists

a measurement node with only one neighbor

in which can be recovered in the next iteration.

Continuing the same process will recover all variable nodes.

Example 2: Fig. 6 illustrates the previous theorem consid-

ering the recovery of a signal with four nonzero variable nodes

in a minimal stopping set of size 6 in which there exists one zero

measurement node and two zero variable nodes and .

Let be the nonzero values of and ,

respectively. Note that is one the measurement nodes with ex-

actly one neighbor among . At initialization, the

zeromeasurement node sends to and . And sends

to and . At the first iteration, sends to

which causes sends to . Thus, the value of is recov-

ered as . Another measurement node with only one neighbor

in is . Again this measurement node sends

to and so the value of is recovered as . The same process

results in the recovery of all variable nodes.

In Theorem 2, we proved that the existence of at least one zero

measurement node is enough to reconstruct a signal whose

nonzero values are a subset of aminimal stopping set. Aswewill

show in the following Lemma and Corollary, in regular mea-

surement matrices we can give an upper bound on the number

of variable nodes forming a subset of a minimal stopping set

such that there exists at least one measurement node among

the neighbors of with no connection to this subset of variable

nodes. This result shows that in a minimal stopping set, if the

number of nonzero values is bounded by a fixed number, the

IPA can recover the signal .

Lemma 2: Let be a binary -regular measure-

ment matrix and let be the girth of the Tanner graph

corresponding to . Then, every subset of variable nodes

such that

(16)

contains a measurement node which does not have any neighbor

in .

Proof: The proof is obtained by using lower bounds on the

number of measurement nodes given in [26]. According to this

bound

(17)

Now, suppose is a subset of variable nodes. Since the ma-

trix is regular, the maximum number of measurement nodes
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Fig. 6. Reconstruction of a signal with nonzero elements in a minimal stopping set of size 6 with the IPA when there exists one zero measurement node. (a) First
messages sending from measurement nodes to variable nodes. (b) Messages from the measurement nodes to variable nodes in the first iteration (recovery of ). (c)
Message to in the second iteration (recovery of ). (d) Message to in the third iteration (recovery of ). (e) Message to in the fourth iteration (recovery
of ).

that can be connected to the variable nodes in is at most

. If which

results , there ex-

ists at least one measurement node which does not have any

connection to .

Corollary 1: Suppose is a binary -reg-

ular measurement matrix with girth . Let be

a subset of variable nodes that forms a minimal stop-

ping set. If ,

then the IPA can recover a signal with nonzero values

in . In the case that the girth is 6, is bounded by

. If the girth is 8, is

bounded by .

The following theorem gives a sufficient condition on exact

recovery of a signal whose support is a subset of a minimal stop-

ping set and all neighboring measurement nodes are nonzero.

Theorem 3: Let be a binary measurement matrix and

be a subset of variable nodes forming

a minimal stopping set. Let be a

signal with at most nonzero values, i.e.,

such that the set of nonzero variables is a subset of . Suppose

all measurement nodes have nonzero values. Then, the IPA can

recover if

1) there exists at least one measurement node such that the

variable nodes which are connected to

have nonzero values and do not share a measurement node

other than ;

2) the measurement nodes connected to

do not have nonzero neighboring vari-

able nodes excluding .

Proof: Suppose have nonzero values

. Since are connected

to zero variable nodes except for and

are not shared by more than one variable

node in , the value of every measurement node

in lies in . There exists a mea-

surement node in that has only one neighbor in

. Otherwise, will be

a smaller stopping set. Without loss of generality, suppose

is a measurement node with this property which is connected

to with the value . In the first iteration, sends

to its neighbors in and sends to its

neighbors. In the second iteration, sends to

and and other neighbors of send intervals with the upper

bound to which results that the message is sent

from to its neighbors. Thus, the value of is recovered as

and all measurement nodes which are the neighbors of

are satisfied. So, is satisfied and its value can be considered

as zero. The recovery of other variable nodes is followed from

Theorem 2 which implies that existence of at least one zero

measurement node is enough to recovery of all variable nodes

in a configuration forms as a stopping set.

The following example shows how the IPA can recover a

vector under the conditions of the Theorem 3.

Example 3: Fig. 7 depicts the recovery of the three nonzero

variable nodes in a minimal stopping set of size 5 in

which all measurement nodes are nonzero. First, note that the

measurement node and the variable nodes , , satisfy

the two conditions of Theorem 3. Thus, if the nonzero variable

nodes , , have values , , , then has value
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Fig. 7. Reconstruction of a signal with nonzero elements in a support of a stop-
ping set of size 5 with IPA and with no zero measurement node. (a) First mes-
sages which are sent from check nodes to variable nodes. (b) Messages from
variable nodes in the first iteration. (c) Messages from check nodes in the second
iteration.

and other measurement nodes , , , have

the values , , , and , respectively. For simplicity, we just

show how the value of the variable node is recovered. At

initialization, sends to and sends

to . In the first iteration, receives and from

and , respectively, and receives from .

Then, sends to and sends or

to . In the second iteration,

sends to its neighbors which makes is satisfied and can

be considered as a zero measurement node. Now, there exists a

zero measurement node in this minimal stopping set. Theorem 2

results the recovery of other variable nodes.

Theorems 2 and 3 give sufficient conditions on the recovery

of signals whose nonzero values form a subset of a minimal

stopping set. To show how small stopping sets affect the per-

formance of the IPA, we provide simulation results of the per-

formance of the IPA in the next section.

V. SIMULATION RESULTS

In this section, we provide simulation results of the recon-

struction performance of the IPA by establishing the link with

the analysis done previously related to stopping sets. From The-

orem 1, we know that if the support of the signal is, or con-

tains, a stopping set, the IPA cannot recover it. The stopping sets

in the measurement matrix are then responsible for most of

the failures of the reconstruction via the IPA.

Fig. 8. IPA performance on the IEEE 802.16e LDPC codes of length .

TABLE I
STOPPING DISTANCE FOR THE LENGTH LDPC CODES FROM
THE IEEE802.16 STANDARDWITH DIFFERENT RATES . THE NUMBER OF
STOPPING SETS OFWEIGHT IS DENOTED (FROM [28] AND [30])

Orlitsky et al. derived a formula to obtain the average distri-

bution for any size of stopping sets for a -regular

LDPC code of size [27]

(18)

where denotes the coefficient of in the poly-

nomial . The average distribution of stopping sets can the-

oretically be computed using the previous formula, however

it has to be done by numerical methods due to its large com-

plexity. To be able to practically find stopping sets, algorithms

have been proposed as in [28] and [29] in the channel coding

context. In their recent work, Rosnes et al. [28], [30] provide

the stopping set repartition on various LDPC codes based on

their algorithm to find small stopping sets. In [30] they focused

more specifically on the LDPC codes from the IEEE 802.16e

standard [31], referred as the WiMax codes. These codes are

circulant-based LDPC codes, and the IEEE standard provides

the design of codes for 19 different lengths. Also, one model

matrix to design codes with rates 1/2, and 5/6 is provided, and

two model matrices are provided for codes with rates 2/3 and

3/4 (denoted by A and B). We generated all the codes of length

according to the IEEE standard and we remind the

stopping set distribution of these codes in Table I in which we

adopted the notation of Rosnes et al. [30]. We used these six

codes as measurement matrices for which the stopping set dis-

tribution is available and simulate the recovery performance via

the IPA. The simulation results are shown in Fig. 8 where the

proportion of correct reconstruction of sparse signals are plotted

versus the sparsity measure . For each sparsity and for
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eachmatrix, 500 -sparse signals are generated, and amaximum

of 50 iterations of the IPA for the reconstruction are done.

These results emphasize the connection between the stopping

set distribution and the performance of the IPA from the theo-

rems of the previous section. For instance, it is clear from Table I

and Fig. 8 that the stopping set distribution are responsible for

most of the failures of the IPA. Indeed at a constant rate (e.g.,

2/3), the measurement matrix with higher stopping distance has

a slightly better performance. However, we can see that even if

the matrix A with rate 3/4 has a better stopping distance than

the rate 5/6 matrix, it performs better. This observation comes

from the stopping set distribution as matrix A with rate 3/4 has

only 16 stopping sets of weight 4, and the next ones have weight

7 (and there are a few of them) whereas for the rate 5/6, the

number of stopping sets of weight 6 or 7 are very numerous.

Then, although the stopping set distribution gives an insight of

the performance of the IPA on a given measurement matrix, it

is not obvious to foresee this performance because it depends

on the stopping distance and on the number of stopping sets of

each weight.

VI. CONCLUSION AND DISCUSSION

In this paper, we described in details the IPA that we modified

in order to deal with the non-negativemeasurement matrices. As

expected this algorithm presents better results than the simple

verification decoding, and is less complex than the l -minimiza-

tion reconstruction via the LP. We also provided an analysis for

the signal recovery of the IPA on stopping sets. Indeed the IPA

fails to recover nonzero values when these values correspond

with a stopping set of the measurement matrix. However, we

provided results that give sufficient conditions on which the IPA

can recover a -sparse signal in a minimal stopping set of size

whose support is a subset of the stopping set and .

Simulation results on structured LDPC measurement matrices

whose stopping set distribution is known demonstrate the rela-

tion between the stopping sets and the performance of the IPA.

However, the exact influence of the stopping distance and the

number of stopping sets present in the measurement matrix will

be addressed in future publication.

Future work also includes to analyze the failure of the IPA

in presence of noise and find a scheme to recover at least the

support of the signal . Finding configurations on which the IPA

fails when the measurements are noisy might help to construct

better measurement matrices free of topological structures that

leads to failures of reconstruction.

APPENDIX

VERIFICATION DECODING

In the verification algorithm, each variable node can have two

states; one unverified state (no value has yet been estimated at

the corresponding variable node), and one verified state (the

variable node has been estimated). Once a variable node has

been estimated the assigned value cannot be modified. The al-

gorithm is summarized in the next four steps.

Step 1) Verify as 0 the variable nodes which are the neigh-

bors of zero-value measurement nodes.

Fig. 9. Verification decoding algorithm: First step (left); third step (right).

Step 2) Verify variable nodes connected to measurement

nodes with degree one (only one edge connected)

as the value of the measurement node.

Step 3) Verify a single variable node connected to two mea-

surement nodes with the same measurement value

as the common value of the measurement nodes.

Step 4) Subtract the values of the verified variable nodes

from the neighboring measurement nodes and then

remove all verified variable nodes and edges con-

nected to them on the factor graph.

Steps 1 to 4 are repeated until the success of the reconstruc-

tion or until no more progress in the reconstruction is witnessed.

Fig. 9 sketchs the Steps 1 and 3. The justification of Step 3

is based on the observation that over large alphabets the prob-

ability that two independent measurements are equal is quite

small. Then, any two common measured values are likely to

be generated by the same set of nonzero data. This observation

holds for large alphabets and for real numbers, too.
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