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I. INTRODUCTION

R ECONSTRUCTING a sparse signal from a small set of measurements via compressed sensing [START_REF] Donoho | Compressed sensing[END_REF] has attracted significant attention in the last few years. A -sparse signal , i.e., a signal with at most nonzero values, is observed indirectly through a shorter measurement vector and obtained from the linear equations where is an measurement matrix, with .T h et a s k of compressed sensing is to recover from .T h efirst approach to solve the compressed sensing problem is to find a signal with the smallest -norm. The -norm minimization of compressed sensing is NP-hard [START_REF] Donoho | For most large underdetermined systems of linear equations, the minimal l1 norm solution is also the sparsest solution[END_REF], [START_REF] Natarajan | Sparse approximate solutions to linear systems[END_REF]. Instead, the -norm minimization solution based on linear programming (LP) was introduced to reconstruct .TheLPtechnique [START_REF] Feldman | Using linear programming to decode binary linear codes[END_REF] for the compressed sensing problem, called Basis Pursuit [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF], [START_REF] Candes | Decoding by linear programming[END_REF], has a remarkable performance, but its high complexity and running time makes it impractical in some applications which require fast reconstruction, or when the dimension of a measurement matrix is large. To tackle the issue of complexity, message-passing algorithms for compressed sensing have been proposed, originating from channel coding. Sarvothan et al. [START_REF] Sarvotham | Compressed sensing reconstruction via belief propagation[END_REF] were amongst the first who introduced a reconstruction algorithm based on belief propagation. Another application of belief propagation in compressed sensing was presented by Pham et al. in [START_REF] Pham | Sublinear compressive sensing reconstruction via belief propagation decoding[END_REF] where the authors provided two low-complexity algorithms, list decoding and multiple-based belief propagation. The iterative thresholding algorithm, also called approximate message passing, was proposedbyDonohoet al. [START_REF] Donoho | Message passing algorithms for compressed sensing[END_REF]. This algorithm can be viewed as the variant of the bit-flipping algorithm which is used for the decoding of low-density parity-check (LDPC) codes. A message passing algorithm, to which we refer in this paper as the Interval-Passing Algorithm (IPA), was introduced by Chandar et al. [START_REF] Chandar | A simple message-passing algorithm for compressed sensing[END_REF]. This is a simple iterative algorithm inspired by the parallel bit-flipping decoding algorithm to reconstruct a non-negative vector . In the binary measurement matrix case, the performance of this algorithm in both noise-free and noisy measurements was presented in [START_REF] Ravanmehr | On iterative compressed sensing reconstruction of sparse non-negative vectors[END_REF], and a comparison between the IPA, the verification decoding algorithm [START_REF] Zhang | Compressed sensing and linear codes over real numbers[END_REF], [START_REF] Zhang | On the iterative decoding of high-rate LDPC codes with applications in compressed sensing[END_REF] and Basis Pursuit was given in [START_REF] Danjean | Iterative reconstruction algorithms in compressed sensing[END_REF].

Krishnan et al. [START_REF] Krishnan | Graph-based iterative reconstruction of sparse signals for compressed sensing[END_REF] modified the IPA and showed that the IPA fails on the stopping sets which are the well-known configurations for the failure of the iterative decoding of LDPC codes over the binary erasure channel (BEC). Moreover, they showed that the IPA may fail even if the nonzero values of the signal do not contain a stopping set. In this paper, we analyze the recovery of the IPA in stopping sets and provide sufficient conditions for reconstructing a sparse signal with sparsity less than the size of as t o pp i ng set.

The rest of the paper is organized as follows. Section II provides preliminaries on compressed sensing, LDPC based measurement matrices, and a brief introduction to some iterative reconstruction algorithms. Section III provides a detailed explanation of the IPA. While the original version of the IPA uses binary measurement matrices, we modify this algorithm to work with non-negative sparse measurement matrices and present a comparison of the IPA with two other reconstruction techniques, namely the LP reconstruction, and the verification decoding. In Section IV, we give a theoretical analysis of the IPA recovery and provide sufficient conditions on the recovery of signals whose nonzero values are a subset of a stopping set. In Section V, we provide simulation results exhibiting the IPA reconstruction performance using some LDPC matrices as the measurement matrices and link this performance with the stopping set distribution of theses matrices. Finally, a conclusion and discussion are provided in Section VI.

II. PRELIMINARIES

In this section, we provide the notations used throughout the paper regarding compressed sensing and LDPC codes.

A. Compressed Sensing

Here we give definitions and main results related to compressed sensing. Let be an -dimensional -sparse signal, and let be a measurement matrix. Compressed sensing concerns the recovery of from measurements where and .T h efirst approach to recover from the measurements ,istofind a -sparse signal from all the -sparse possible signals which is known to be an NP-hard problem [START_REF] Donoho | For most large underdetermined systems of linear equations, the minimal l1 norm solution is also the sparsest solution[END_REF], [START_REF] Natarajan | Sparse approximate solutions to linear systems[END_REF]. This problem is called the -minimization, and it is given by [START_REF] Donoho | Compressed sensing[END_REF] Throughout this paper, for a column vector , , and

. The LP technique introduced by Chen et al. [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF], called Basis Pursuit, provides a minimum -norm for . This problem is called the -minimization, as well as the recovery via convex optimization and it is given by (2) Candes et al. [START_REF] Candes | Decoding by linear programming[END_REF] showed that if the measurement matrix satisfies a condition, namely the restricted isometry property (RIP), Basis Pursuit can recover a sufficiently sparse signal. Roughly, a measurement matrix satisfies the RIP if it does not significantly distort the -norm of any sufficiently sparse vector.

B. LDPC Codes

Low-density parity-check (LDPC) codes [START_REF] Gallager | Low Density Parity Check Codes[END_REF] are widely used in channel coding. Let denote an binary LDPC code. is defined as the null space of a parity check matrix of size . is known to be the adjacency matrix of its equivalent bipartite graph , called the Tanner graph [START_REF] Tanner | A recursive approach to low complexity codes[END_REF]. The Tanner graph of an LDPC code is defined as ,where is the set of variable nodes corresponding to the columns of ,and is the set of check nodes corresponding to the rows of . is the set of edges in , and an edge connects the variable node to the check node iff where is the element at the th row and th column in . The code is said to be -left-regular if all variable nodes in havethesamedegree (or equivalently if all the columns in have weight ). The code is said to be -right-regular if all check nodes in have the same degree (or equivalently if all the rows in have weight ). The code is said to be -regular when it is both -left-regular and -right-regular. The girth of a the Tanner graph is the length of the shortest cycle in . In the graphical representation of , a white circle represents a variable node, and a white square represents a check node. Fig. 1 shows a small example of a girth-6 (2, 3)-regular LDPC matrix with its related Tanner graph. In this paper, we only consider -regular LDPC codes with .

C. Message-Passing Algorithms

The relation between LDPC codes and compressed sensing was studied in [START_REF] Dimakis | LP decoding meets LP decoding: A connection between channel coding and compressed sensing[END_REF] and [START_REF] Dimakis | LDPC codes for compressed sensing[END_REF] where the authors showed that good LDPC matrices are also good for compressed sensing using Basis Pursuit. Following the natural relation between measurement matrices for compressed sensing and LDPC matrices, several iterative algorithms have recently been proposed to recover sparse signals using message-passing. The first message-passing algorithms were introduced by Donoho et al. in [START_REF] Donoho | Message passing algorithms for compressed sensing[END_REF] for noise free measurements. These algorithms, such as the second algorithm of [START_REF] Donoho | Message passing algorithms for compressed sensing[END_REF], called the Approximate Message-Passing (AMP) algorithm, are iterative thresholding algorithms, i.e., at each iteration it ensures to provide the sparsest estimate of . These algorithms can be analyzed, as in [START_REF] Maleki | Analysis of approximate message passing algorithm[END_REF], using the phase transition diagram. In this diagram the failure or success of the AMP is given as a function of different parameters of the system ( ). Other message-passing algorithms exist in the literature, such as the list decoding and multiple-basis belief propagation from Pham et al. [START_REF] Pham | Sublinear compressive sensing reconstruction via belief propagation decoding[END_REF]. Chandar et al. [START_REF] Chandar | A simple message-passing algorithm for compressed sensing[END_REF] introduced a simple message passing algorithm that we investigate and modify in Section III.

We also present another kind of message-passing based algorithm used for comparison in our simulation results. 1 Zhang and Pfister's verification algorithm [START_REF] Zhang | On the iterative decoding of high-rate LDPC codes with applications in compressed sensing[END_REF] is an iterative algorithm to reconstruct strictly sparse signals. In this algorithm, summarized in Appendix A, the messages correspond to the vertices (variable and check nodes in the factor graph) and not to the edges. However, due to its extreme low complexity ( )itis a good comparison for our simulation results.

III. INTERVAL-PASSING ALGORITHM

Chandar et al. [START_REF] Chandar | A simple message-passing algorithm for compressed sensing[END_REF] introduced a simple message passing algorithm for reconstructing non-negative signals using sparse binary measurement matrices. We refer to this algorithm as the IPA [START_REF] Ravanmehr | On iterative compressed sensing reconstruction of sparse non-negative vectors[END_REF], [START_REF] Danjean | Iterative reconstruction algorithms in compressed sensing[END_REF], [START_REF] Krishnan | Graph-based iterative reconstruction of sparse signals for compressed sensing[END_REF]. We modify this algorithm in order to deal with non-negative real-valued measurement matrices. From [START_REF] Chandar | A simple message-passing algorithm for compressed sensing[END_REF], the complexity of the algorithm is which is a good trade-off between the polynomial complexity of the LP reconstruction, and the linear complexity of the simple verification decoding [START_REF] Zhang | On the iterative decoding of high-rate LDPC codes with applications in compressed sensing[END_REF].

A. Description of the Algorithm

The IPA is an iterative algorithm, and thus messages are associated with the graphical representation of the measurement matrix to perform reconstruction. Let and be respectively the sets of variable nodes and measurement nodes 2 in the graphical representation of the measurement matrix for and . The graphical representation of is actually the Tanner graph of the binary image 3 of , whose edges are labeled by real values at the nonzero position in . The graphical representation of has the flavor of a nonbinary LDPC code Tanner graph [START_REF] Davey | Low-density parity check codes over[END_REF], [START_REF] Declercq | Decoding algorithms for nonbinary LDPC codes over[END_REF].

In the IPA, the messages passing through edges are intervals corresponding to the lower and upper bounds of the estimation of the connected variable node. At each iteration ,the message update from the variable to the measurement node is given by

(3) (4) 
2 Analogous to check nodes in LDPC codes. 3 Amatrix is said to be the binary image of a matrix if if and if

and the messages from the measurement node to the variable node are updated as

(5) (6) 
where (resp.

) is the set of measurement (resp. variable) nodes which are the neighbors of (resp. )intheTanner graph of . Updating messages from a variable (resp. measurement) node to a measurement (resp. variable) node is shown in Figs. 2 and3 , respectively.

The IPA is formally given in the Algorithm 1, where represents the maximum number of reconstruction iterations. The reconstruction process stops when the maximum number of iterations is reached, or the lower bound and the upper bound of the interval from variable nodes to check nodes has converged to a common value for every variable node. This common value is set as the estimate of each connected variable node value. 

B. Comparison Results

We now compare the IPA performance using the non-negative real valued measurement matrix with the complex LP reconstruction algorithm, and with simple verification decoding. We used the LDPC matrix design from an array of permutation matrices from [START_REF] Nguyen | On the construction of structured LDPC codes free of small trapping sets[END_REF]. We designed a (2, 3)-regular LDPC matrix with and and then substituted the nonzero elements in by a random number drawn from the uniform distribution in to obtain the matrix . For each sparsity , at least 75 random -sparse signals are generated and 50 reconstruction iterations are performed. The proportion of correct reconstruction results are summarized in the plot of Fig. 4 for the IPA, the verification decoding algorithm, and the complex LP. A random -sparse vector is said to be correctly recovered if each of its samples are correctly estimated as close as . We can see then that the IPA is a good trade-off between performance and complexity.

IV. ANALYSIS

In this section, we study the recovery of the IPA on non-negative real-valued signals. We present the analysis on binary measurement matrices for the sake of clarity, but the extension of these results to non-negative real-valued measurement matrices is straightforward. First, we give a theorem given in [START_REF] Krishnan | Graph-based iterative reconstruction of sparse signals for compressed sensing[END_REF] which proves the failure of the IPA on stopping sets. A stopping set is defined as follows.

Definition 1 [START_REF] Di | Finitelength analysis of low-density parity-check codes on the binary erasure channel[END_REF]: A stopping set is a subset of the set of variable nodes such that all neighbors of are connected to at least twice.

The cardinality of a stopping set is called the size of the stopping set.

Theorem 1 [START_REF] Krishnan | Graph-based iterative reconstruction of sparse signals for compressed sensing[END_REF]: Let be a binary measurement matrix. The IPA fails on the recovery of a signal if the nonzero entries contain a stopping set in Proof: We prove that if all variable nodes in have nonzero values, the IPA cannot recover them. In other words, we prove that the bounds of the intervals passing through the edges of the graphical representation of never converges, i.e., we show that such that ,t h e n , .

Suppose , , from the definition of a stopping set , . Then, at the initialization ( ) we have [START_REF] Sarvotham | Compressed sensing reconstruction via belief propagation[END_REF] At the first iteration we have (8) [START_REF] Donoho | Message passing algorithms for compressed sensing[END_REF] Now consider the update at the measurement node. For the lower bound of the interval we have [START_REF] Chandar | A simple message-passing algorithm for compressed sensing[END_REF] (11) [START_REF] Zhang | Compressed sensing and linear codes over real numbers[END_REF] The last equation stands from the initialization . Similarly, for the upper bound at the measurement node we have [START_REF] Zhang | On the iterative decoding of high-rate LDPC codes with applications in compressed sensing[END_REF] (14) [START_REF] Krishnan | Graph-based iterative reconstruction of sparse signals for compressed sensing[END_REF] The last equation results from the initialization . Thus, we obtain .F o r the messages from variable nodes to check nodes are simply the intersection of intervals from the check nodes at the previous iteration, and then we still have .T h e proof is completed by induction for every . Theorem 1 also indicates that the IPA fails on reconstruction of a signal whose nonzero values form the smallest stopping set in the measurement matrix . However, as we explain in the following example, the smallest stopping set is not the smallest configuration on which the IPA fails.

Example 1: Consider a stopping set of size four as given in Fig. 5. According to Theorem 1, the IPA cannot recover a signal with nonzero values on . The algorithm also fails on a two-sparse signal whose nonzero values are or , which implies that the variable nodes forming a smallest stopping set are not necessarily the smallest configuration on which the IPA fails. However, the IPA can recover a two-sparse signal with nonzero values on or . Example 1 shows the main difference between the iterative decoding on the BEC and the signal recovery of the iterative IPA in compressed sensing. The iterative decoder over the BEC fails if and only if the erasures contain a stopping set, while the IPA fails even if the nonzero values do not involve a stopping set. The following results identify recoverable signals whose nonzero values are subsets of stopping sets. First, we show that every zero-value variable node is recoverable by the IPA. In this paper, we say that a node is zero if its value is equal to zero.

Lemma 1: The IPA can recover all zero variable nodes. Proof: Suppose is a variable node with value 0 and is the set of the measurement neighboring nodes of with measurement values .A t each iteration of the IPA, the message which is sent from ( )t o is either or where .I f receives at least one from one of its neighbors, the value of is recovered as 0. If all messages from every to are , the decision rule of the algorithm leads to recover the value of to the maximum value of lower bounds of the intervals ,whichis0. Since all zero variable nodes are recovered by the IPA, it is enough to study the recovery of nonzero variable nodes. We note that reconstruction of all zero variable nodes does not necessarily result that the IPA can be used to estimate the support of the signal, since it is possible that the IPA fails to recovery of a nonzero variable node and recovers the value of the nonzero variable node to zero.

Definition 2: A set of variable nodes is called a minimal stopping set, if forms a stopping set and it does not contain a smaller stopping set.

It is clear that the smallest stopping set in a measurement matrix is a minimal stopping set while a minimal stopping set is not necessarily the smallest stopping set. The size of the smallest stopping set is called the stopping distance [START_REF] Schwartz | On the stopping distance and the stopping redundancy of codes[END_REF] and plays a significant role in iterative decoding of LDPC codes over the BEC.

Theorem 2: Let be a binary measurement matrix and be a subset of variable nodes forming a minimal stopping set. Let be a set of non-negative real vectors in and be a signal with at most nonzero values, i.e., ,such that the set of nonzero variables is a subset of . Then, the IPA can recover if there exists at least one zero measurement node among the neighbors of .

Proof: Let , be the set of measurement nodes connected to . Suppose that is the only zero measurement node. Since forms a stopping set, there exist at least two zero variable nodes, say , connecting to and there exist nonzero value measurement nodes connected to . Moreover, is a minimal stopping set, so there exists at least one measurement node, with only one neighbor in , namely .Otherwise, will be a smaller stopping set, which is a contradic-tion. Suppose has the value .Atthefirst iteration, sends to and and and send to their neighbors. Based on the above explanation, is a neighbor of or or both of them with only one neighbor in .Atthe second iteration, will send to the only variable node . So, the value of the variable node is recovered to .S i n c e the value of this variable node is recovered, we can consider this variable node to have value zero by subtracting from the value of all measurement nodes which are the neighbors of . Now, we have three variable nodes whose values have been determined. Again, with the same discussion, there exists a measurement node with only one neighbor in which can be recovered in the next iteration. Continuing the same process will recover all variable nodes.

Example 2: Fig. 6 illustrates the previous theorem considering the recovery of a signal with four nonzero variable nodes in a minimal stopping set of size 6 in which there exists one zero measurement node and two zero variable nodes and .

Let be the nonzero values of and , respectively. Note that is one the measurement nodes with exactly one neighbor among . At initialization, the zero measurement node sends to and .And sends to and .A tt h efirst iteration, sends to which causes sends to . Thus, the value of is recovered as . Another measurement node with only one neighbor in is . Again this measurement node sends to and so the value of is recovered as . The same process results in the recovery of all variable nodes.

In Theorem 2, we proved that the existence of at least one zero measurement node is enough to reconstruct a signal whose nonzero values are a subset of a minimal stopping set. As we will show in the following Lemma and Corollary, in regular measurement matrices we can give an upper bound on the number of variable nodes forming a subset of a minimal stopping set such that there exists at least one measurement node among the neighbors of with no connection to this subset of variable nodes. This result shows that in a minimal stopping set, if the number of nonzero values is bounded by a fixed number, the IPA can recover the signal .

Lemma 2: Let be a binary -regular measurement matrix and let be the girth of the Tanner graph corresponding to . Then, every subset of variable nodes such that [START_REF] Gallager | Low Density Parity Check Codes[END_REF] contains a measurement node which does not have any neighbor in .

Proof: The proof is obtained by using lower bounds on the number of measurement nodes given in [START_REF] Hoory | The size of bipartite graphs with a given girth[END_REF]. According to this bound [START_REF] Tanner | A recursive approach to low complexity codes[END_REF] Now, suppose is a subset of variable nodes. Since the matrix is regular, the maximum number of measurement nodes that can be connected to the variable nodes in is at most .I f which results

,t h e r ee xists at least one measurement node which does not have any connection to .

Corollary 1: Suppose is a binary -regular measurement matrix with girth

.L e t be as u b s e to f variable nodes that forms a minimal stopping set. If , then the IPA can recover a signal with nonzero values in . In the case that the girth is 6, is bounded by . If the girth is 8, is bounded by . The following theorem gives a sufficient condition on exact recovery of a signal whose support is a subset of a minimal stopping set and all neighboring measurement nodes are nonzero.

Theorem 3: Let be a binary measurement matrix and be a subset of variable nodes forming a minimal stopping set. Let be a signal with at most nonzero values, i.e., such that the set of nonzero variables is a subset of . Suppose all measurement nodes have nonzero values. Then, the IPA can recover if 1) there exists at least one measurement node such that the variable nodes which are connected to have nonzero values and do not share a measurement node other than ; 2) the measurement nodes connected to do not have nonzero neighboring variable nodes excluding .

Proof: Suppose have nonzero values .S i n c e are connected to zero variable nodes except for and are not shared by more than one variable node in , the value of every measurement node in lies in . There exists a measurement node in that has only one neighbor in .O t h e r w i s e , will be a smaller stopping set. Without loss of generality, suppose is a measurement node with this property which is connected to with the value .Inthefirst iteration, sends to its neighbors in and sends to its neighbors. In the second iteration, sends to and and other neighbors of send intervals with the upper bound to which results that the message is sent from to its neighbors. Thus, the value of is recovered as and all measurement nodes which are the neighbors of are satisfied. So, is satisfied and its value can be considered as zero. The recovery of other variable nodes is followed from Theorem 2 which implies that existence of at least one zero measurement node is enough to recovery of all variable nodes in a configuration forms as a stopping set.

The following example shows how the IPA can recover a vector under the conditions of the Theorem 3.

Example 3: Fig. 7 depicts the recovery of the three nonzero variable nodes in a minimal stopping set of size 5 in which all measurement nodes are nonzero. First, note that the measurement node and the variable nodes , , satisfy the two conditions of Theorem 3. Thus, if the nonzero variable nodes , , have values , , ,t h e n has value and other measurement nodes , , , have the values , , , and , respectively. For simplicity, we just show how the value of the variable node is recovered. At initialization, sends to and sends to .I nt h efirst iteration, receives and from and , respectively, and receives from . Then, sends to and sends or to . In the second iteration, sends to its neighbors which makes is satisfied and can be considered as a zero measurement node. Now, there exists a zero measurement node in this minimal stopping set. Theorem 2 results the recovery of other variable nodes.

Theorems2and3givesufficient conditions on the recovery of signals whose nonzero values form a subset of a minimal stopping set. To show how small stopping sets affect the performance of the IPA, we provide simulation results of the performance of the IPA in the next section.

V. S IMULATION RESULTS

In this section, we provide simulation results of the reconstruction performance of the IPA by establishing the link with the analysis done previously related to stopping sets. From Theorem 1, we know that if the support of the signal is, or contains, a stopping set, the IPA cannot recover it. The stopping sets in the measurement matrix are then responsible for most of the failures of the reconstruction via the IPA. Orlitsky et al. derived a formula to obtain the average distribution for any size of stopping sets for a -regular LDPC code of size [START_REF] Orlitsky | Stopping set distribution of LDPC code ensembles[END_REF] (18) where denotes the coefficient of in the polynomial . The average distribution of stopping sets can theoretically be computed using the previous formula, however it has to be done by numerical methods due to its large complexity. To be able to practically find stopping sets, algorithms have been proposed as in [START_REF] Rosnes | An efficient algorithm to find all small-size stopping sets of low-density parity-check matrices[END_REF] and [START_REF] Richter | Finding Small Stopping Sets in the Tanner Graphs of LDPC Codes[END_REF] in the channel coding context. In their recent work, Rosnes et al. [START_REF] Rosnes | An efficient algorithm to find all small-size stopping sets of low-density parity-check matrices[END_REF], [START_REF] Rosnes | Addendum to: An efficient algorithm to find all small-size stopping sets of lowdensity parity-check matrices[END_REF] provide the stopping set repartition on various LDPC codes based on their algorithm to find small stopping sets. In [START_REF] Rosnes | Addendum to: An efficient algorithm to find all small-size stopping sets of lowdensity parity-check matrices[END_REF] they focused more specifically on the LDPC codes from the IEEE 802.16e standard [START_REF]2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1[END_REF], referred as the WiMax codes. These codes are circulant-based LDPC codes, and the IEEE standard provides the design of codes for 19 different lengths. Also, one model matrix to design codes with rates 1/2, and 5/6 is provided, and two model matrices are provided for codes with rates 2/3 and 3/4 (denoted by A and B). We generated all the codes of length according to the IEEE standard and we remind the stopping set distribution of these codes in Table I in which we adopted the notation of Rosnes et al. [START_REF] Rosnes | Addendum to: An efficient algorithm to find all small-size stopping sets of lowdensity parity-check matrices[END_REF]. We used these six codes as measurement matrices for which the stopping set distribution is available and simulate the recovery performance via the IPA. The simulation results are shown in Fig. 8 where the proportion of correct reconstruction of sparse signals are plotted versus the sparsity measure . For each sparsity and for each matrix, 500 -sparse signals are generated, and a maximum of 50 iterations of the IPA for the reconstruction are done. These results emphasize the connection between the stopping set distribution and the performance of the IPA from the theorems of the previous section. For instance, it is clear from Table I and Fig. 8 that the stopping set distribution are responsible for most of the failures of the IPA. Indeed at a constant rate (e.g., 2/3), the measurement matrix with higher stopping distance has a slightly better performance. However, we can see that even if the matrix A with rate 3/4 has a better stopping distance than the rate 5/6 matrix, it performs better. This observation comes from the stopping set distribution as matrix A with rate 3/4 has only 16 stopping sets of weight 4, and the next ones have weight 7 (and there are a few of them) whereas for the rate 5/6, the number of stopping sets of weight 6 or 7 are very numerous. Then, although the stopping set distribution gives an insight of the performance of the IPA on a given measurement matrix, it is not obvious to foresee this performance because it depends on the stopping distance and on the number of stopping sets of each weight.

VI. CONCLUSION AND DISCUSSION

In this paper, we described in details the IPA that we modified in order to deal with the non-negative measurement matrices. As expected this algorithm presents better results than the simple verification decoding, and is less complex than the l -minimization reconstruction via the LP. Wealsoprovidedananalysisfor the signal recovery of the IPA on stopping sets. Indeed the IPA fails to recover nonzero values when these values correspond with a stopping set of the measurement matrix. However, we provided results that give sufficient conditions on which the IPA can recover a -sparse signal in a minimal stopping set of size whose support is a subset of the stopping set and . Simulation results on structured LDPC measurement matrices whose stopping set distribution is known demonstrate the relation between the stopping sets and the performance of the IPA. However, the exact influence of the stopping distance and the number of stopping sets present in the measurement matrix will be addressed in future publication.

Future work also includes to analyze the failure of the IPA in presence of noise and find a scheme to recover at least the support of the signal . Finding configurations on which the IPA fails when the measurements are noisy might help to construct better measurement matrices free of topological structures that leads to failures of reconstruction.

APPENDIX VERIFICATION DECODING

In the verification algorithm, each variable node can have two states; one unverified state (no value has yet been estimated at the corresponding variable node), and one verified state (the variable node has been estimate d ) .O n c eav a r i a b l en o d eh a s been estimated the assigned value cannot be modified. The algorithm is summarized in the next four steps.

Step 1) Verify as 0 the variable nodes which are the neighbors of zero-value measurement nodes. Step 2) Verify variable nodes connected to measurement nodes with degree one (only one edge connected) as the value of the measurement node.

Step 3) Verify a single variable node connected to two measurement nodes with the same measurement value as the common value of the measurement nodes.

Step 4) Subtract the values of the verified variable nodes from the neighboring measurement nodes and then remove all verified variable nodes and edges connected to them on the factor graph. Steps 1 to 4 are repeated until the success of the reconstruction or until no more progress in the reconstruction is witnessed. Fig. 9 sketchs the Steps 1 and 3. The justification of Step 3 is based on the observation that over large alphabets the probability that two independent measurements are equal is quite small. Then, any two common measured values are likely to be generated by the same set of nonzero data. This observation holds for large alphabets and for real numbers, too.

  Interval-Passing Algorithm for Non-Negative Measurement Matrices: Performance and Reconstruction Analysis Vida Ravanmehr, Ludovic Danjean, Bane Vasić, Fellow, IEEE, and David Declercq, Senior Member, IEEE Abstract-We consider the Interval-Passing Algorithm (IPA), an iterative reconstruction algorithm for reconstruction of non-negative sparse real-valued signals from noise-free measurements. We first generalize the IPA by relaxing the original constraint that the measurement matrix must be binary. The new algorithm operates on any non-negative sparse measurement matrix. We give a performance comparison of the generalized IPA with the reconstruction algorithms based on 1) linear programming and 2) verification decoding. Then we identify signals not recoverable by the IPA on a given measurement matrix, and show that these signals are related to stopping sets responsible to failures of iterative decoding algorithms on the binary erasure channel (BEC). Contrary to the results of the iterative decoding on the BEC, the smallest stopping set of a measurement matrix is not the smallest configuration on which the IPA fails. We analyze the recovery of sparse signals on subsets of stopping sets via the IPA and provide sufficient conditions on the exact recovery of sparse signals. Reconstruction performance of the IPA using the IEEE 802.16e LDPC codes as measurement matrices are given to show the effect of stopping sets in the performance of the IPA. Index Terms-Compressed sensing, interval-passing algorithm, iterative reconstruction algorithm, low-density parity-check codes, message-passing algorithm, stopping sets.
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 1 Fig. 1. Parity check matrix and Tanner graph of a (2, 3)-regular LDPC code.
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 2 Fig. 2. IPA: Updating messages from the variable node to the measurement node .
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 3 Fig. 3. IPA: Updating messages from the measurement node to the variable node .

Fig. 4 .

 4 Fig. 4. Simulation results using the designed measurement matrix .
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 5 Fig. 5. Stopping set of size 4.
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 6 Fig. 6. Reconstruction of a signal with nonzero elements in a minimal stopping set of size 6 with the IPA when there exists one zero measurement node. (a) First messages sending from measurement nodes to variable nodes. (b) Messages from the measurement nodes to variable nodes in the first iteration (recovery of ). (c) Message to in the second iteration (recovery of ). (d) Message to in the third iteration (recovery of ). (e) Message to in the fourth iteration (recovery of ).

Fig. 7 .

 7 Fig. 7. Reconstruction of a signal with nonzero elements in a support of a stopping set of size 5 with IPA and with no zero measurement node. (a) First messages which are sent from check nodes to variable nodes. (b) Messages from variable nodes in the first iteration. (c) Messages from check nodes in the second iteration.

Fig. 8 .

 8 Fig. 8. IPA performance on the IEEE 802.16e LDPC codes of length .

Fig. 9 .

 9 Fig. 9. Verification decoding algorithm: First step (left); third step (right).

TABLE I

 I 

	STOPPING DISTANCE	FOR THE LENGTH	LDPC CODES FROM
	THE IEEE802.16 STANDARD WITH DIFFERENT RATES .THE NUMBER OF
	STOPPING SETS OF WEIGHT	IS DENOTED	(FROM [28] AND [30])

This algorithm is presented in detail in[START_REF] Danjean | Iterative reconstruction algorithms in compressed sensing[END_REF].
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