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In this article we prove that every convex cone V of a real vector space X possessing an uncountable
Hamel basis may be expressed as the cone of all the half-lines contained within some convex subset C of
X (in other words, V is the infinity cone to C). This property does not hold for lower-dimensional vector
spaces; more precisely, a convex cone V in a vector space X with a denumerable basis is the infinity cone
to some convex subset of X if and only if V is the union of a countable ascending sequence of linearly
closed cones, while a convex cone V in a finite-dimensional vector space X is the infinity cone to some
convex subset of X if and only if V is linearly closed.
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1. Statement of the problem

It has been noticed for a long time (Steinitz, [?]) that each and every convex subset C of
X which is closed with respect to some vector space topology on X possess the following
geometric property that we refer hereafter as exactness: For every two points x, y ∈ C
and every vector d ∈ X, the statements (x + R+ d) ⊂ C and (y + R+ d) ⊂ C hold or fail
together.

Steinitz’s theorem (originally stated in the finite-dimensional setting, but valid with no
modification for any topological real vector space) is arguably at the origin of the recession
analysis, a basic tool in today convex analysis and optimization. For a detailed account of
this field, as well as for an impressive list of applications to problems in convex geometry,
optimization and PDE, the reader is refereed to the classical Rockafellar’s monograph [?],
or to the recent publication of Attouch, Buttazzo and Michaille, [?]; the non-convex setting
is addressed by Auslender and Teboulle, [?].

Of course, exactness is not a property reserved to closed convex sets. Open half-spaces
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obviously have it, and since an easy to prove statement reads that the class of all the exact
sets is closed with respect to nonvoid intersection, it follows that every evenly convex set,
that is, (see [?], for a detailed analysis of the finite-dimensional case, and [?], for the study
of this notion in the Banach setting) every set which may be expressed as the intersection
of a family of open half-spaces, is also an exact set.

On the other hand, exactness may fail, even for convex sets in finite-dimensional spaces.
Consider for instance the convex cone W of R× R, defined as

W = {(0, 0)} ∪ R
⋆
+ × R

⋆
+,

and take x = (0, 0), y = (1, 1) and d = (1, 0). It is easy to see that the half-line (y+R+ d) =
[1,+∞) × {1} is completely included in W , while its translate (x + R+ d) = R+ × {0} is
not.

In order to address the case of non-exact sets, it is customary to provide a more detailed
analysis of the class of half-lines contained within a given set. To this respect, let us
associate (we adopt the definitions and notation from [?, p. 327]) to every pair consisting
of a nonempty subset A of a real vector space X, and of a point a of A, the inscribed cone
at a to A, denoted I0(a,A), and defined as the union between all the rays (i.e. half-lines
issuing from θ, the null vector of X) whose translates stemming from a are completely
contained in A, to which we add the singleton {θ}:

I0(a,A) = {v ∈ X : a+ R+ v ⊂ A}.

The recession cone, R(A), to the set A is the intersection of all the inscribed cones to A,
that is,

R(A) =
⋂

a∈A

I0(a,A);

their union,

I(A) =
⋃

a∈A

I0(a,A),

is usually called the infinity cone to A. Using this notation, exactness requires that the
recession and the infinity cones to a set coincide.

It is easy to prove that both the recession and the infinity cones to a non-empty convex
set are convex. This article addresses the following problem:
(P) Let X be a real vector space; characterize all the convex cones which can be expressed
as the infinity cone to some convex subset of X.

In more geometrical terms, this problem request to find, for a given convex cone V from
a real vector space X, a way to rebuild all the rays from V into a convex subset C of X
in such a manner that no half-line, other than the translates of rays from V , be contained
within C.

Let us first remark that problem (P ) is not trivial, since the infinity cone to a given convex
cone V may be larger than V , and thus the cone V itself is not always an answer to (P ).
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Consider for instance the case of the previously defined coneW ⊂ R
2, W = {(0, 0)} ∪R

⋆
+×

R
⋆
+. An easy calculation yields that the inscribed cone at (0, 0) to W amounts to W , while

at any point (x, y) of W such that (x, y) 6= (0, 0), it holds that I0((x, y),W ) = R+ × R+.
Accordingly, I(W ) = R+ × R+, which is a convex cone properly containing V .

More precisely, if we denote by κ(A) the Klee envelope of a set A, that is, the union
between A and all the vectors x ∈ X which are linearly accessible from A, that is, all the
points x /∈ A such that an open segment emanating from x lies entirely within A (notion
initially defined in [?]), it holds (see [?]) the following characterization of the infinity cone
to a convex cone.

Proposition 1.1 For every convex cone V we have I(V ) = κ(V ).

It results that a convex cone V coincides with its infinity cone, and thus that problem (P )
is simple to prove, if and only if V is linearly closed, that is, V = κ(V ) (notice that in
a finite dimensional setting, a convex set is linearly closed if and only if it is closed with
respect to the Euclidean topology on X.)

The main result of our article (Theorem ??, Section ??) provides a complete characteri-
sation of the convex cones which can be expressed as infinity cones to convex sets.

When X is of finite dimension, we prove that a cone V is the infinity cone to some convex
set if and only if V is linearly closed, and thus closed with respect to the Euclidean topology
on X (in other words, in finite dimensional spaces there is no other solution to problem
(P ) than the trivial one.)

In the setting of vector space of denumerable (that is, countable and infinite) dimension,
the class of convex cones V for which V = I(C) for some convex set C is larger than the
class of linearly closed convex cones. Namely, V is the infinity cone to some convex set if
and only if V is the union of an ascending sequence of linealy closed and convex cones.

Finally, Theorem ?? shows that every convex cone V of a real vector space X of uncount-
able dimension may be expressed as the infinity cone to some convex subset of X.

The situation depicted by Theorem ?? goes along with our geometrical intuition: in lower-
dimensional spaces there is less room to “correctly” spread the rays composing a given
cone into a convex set with no half-lines “in excess”, so the lower will be the dimension of
the underlying space, the larger will be the class of cones for which problem (P ) cannot
be solved.

On the other hand, Theorem ?? proves that three apparently unrelated sets of convex
cones, namely the class of linearly closed and convex cones of a finite-dimensional space,
the class gathering all the cones which can be represented as the union of an ascending
sequence of linearly closed and convex cones in a vector space of denumerable dimension,
and the class of all the convex cones in a vector spaces with an uncountable dimension,
are the only cones which can be expressed as the infinity cone to some convex set, being
thereof closely connected.

The interplay between these three classes is made clear in Section ??, where we define and
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study the notion of spreading cover for a convex cone, and prove that (Proposition ??)
the three above-defined classes are precisely the classes of all the convex cones admitting
a spreading cover. Finally, Propositions ?? and ?? show that a convex cone is the infinity
cone to some convex set if and only if it possess a spreading cover.

2. Spreading covering

The main object of this section is to provide necessary conditions ensuring that a convex
cone is the infinity cone to some set. To this end, we must conduct a detailed analysis of
the family of inscribed cones to a given convex set.

To begin with, let us collect several evident properties of the inscribed and infinity cones
to a set, as well as of the Klee envelope of a convex set.

Lemma 2.1 Let P and K be two convex sets. Then

i) For any x ∈ P it holds that I0(x, P ) ⊂ I0(x,K) provided that P ⊂ K,

ii) If P ⊂ K, then I(P ) ⊂ I(K),

iii) For any vector x ∈ X, we have I(P ) = I(x+ P ),

iv) κ(P ∩K) ⊂ κ(P ) ∩ κ(K).

Let us now consider C a convex subset of X, and set V for its infinity cone. Since
V =

⋃

x∈C I0(x,C), the class of all the inscribed cones to C form a cover of V composed
by convex cones.

It worths to be noticed that this covering of V may admits sub-coverings composed from
significantly fewer elements; indeed, one does not always need to unite all the inscribed
cones to C in order to get V . To illustrate this fact, let us, once more, consider the cone
W = (0, 0) + R

⋆
+ × R

⋆
+, and notice that

I0((1, 1),W ) = R+ × R+ = I(W ).

Even if such a spectacular gap between the cardinal number of C and the cardinal number
of the class of points of C actually nedded to achieve its infinity cone cannot always be
expected, we still can prove that the infinity cone to a convex set can be obtained by
uniting a family of inscribed cones whose cardinal number does not exceed the dimension
of X.

Proposition 2.1 Let C be a non-empty convex subset of the real vector space X. Then
there is D, a (non-necessarily convex) subset of C of cardinal number less or equal to the
dimension of X, such that

I(C) =
⋃

x∈D

I0(x,C).

Proof of Proposition ??: When the dimension of X is greater or equal to the cardinal
number of the real line, it is well-known that the cardinal number of the set X itself is
equal to the dimension of X; the requirements of Proposition ?? can thus be fulfilled by
simply takeing D = C.



E. Ernst, M. Volle / Infinity cones to convex sets 753

By the Continuum Hypothesis it results that all what it remains to be addressed is the
case when the dimension of X is countable.

Before considering this case, let us recall the notion of pseudo relative interior of a convex
set A, pri(A), that is, the set of all points x ∈ A such that the cone R+(A−x) is in fact a
linear space (for an ample discution of this notion, see [?]). Remark also that in the finite
dimensional setting, the pseudo relative interior reduces to the familiar concept of relative
interior of a convex set A, that is the interior of A with respect to the topology induced
on the affine span of A by the Euclidean topology of the underlying space.

The following technical result will be used repeatedly.

Lemma 2.2 Let D be a subset of the non-empty convex set C, and consider x ∈ pri(co(D)).
Then

I0(x,C) ⊂ I0(x,C) ∀x ∈ D. (1)

In particular,

I(C) = I0(w,C) ∀w ∈ pri(C). (2)

Proof of Lemma ??: Let x ∈ pri(co(D)); all what we have to prove in order to establish
relation (??) is that, for any x ∈ D and v ∈ I0(x,C), we have

x+ r v ∈ C ∀ r ≥ 0. (3)

The definition of the pseudo relative interior implies that there is a point y ∈ co(D) such
that x lies in the open segment of extremities x and y:

∃y ∈ co(D), λ ∈ (0, 1) x = λx+ (1− λ)y. (4)

Recall that v ∈ I0(x,C), that is, x+ R+ v ∈ C, and in particular that

x+
r

λ
v ∈ C. (5)

As an easy consequence of relation (??), we see that

x+ r v = λ
(

x+
r

λ
v
)

+ (1− λ)y; (6)

combine relations (??) and (??) to get relation (??), and hence relation (??).

Let us now consider a point w ∈ pri(C). Applyied for D = C, relation (??) implies that
I0(x,C) ⊂ I0(w,C) for any x ∈ C. Accordingly, it holds that I(C) ⊂ I0(w,C), and, as
the reverse inclusion is obvious, relation (??) is proved. �

Let us return to the proof of Proposition ??. We address the first of the two remaining
cases, namely the one assuming that the dimension of the space X is finite. We know
([?, Corollary 6.4]) that the relative interior and the pseudo relative interior of the non-
empty finite-dimensional convex set C coincide, and that ([?, Corollary 6.2]) the relative
interior of C is non-empty. It is hence possible to pick w ∈ pri(C); Lemma ?? (relation
(??)) establishes that I(C) = I0(w,C), and Proposition ?? is proved by simply takeing
D = {w}.
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Finally, let us consider C, a non-empty convex subset of X, a space of denumerable
dimension. When C reduces to the singleton {θ}, there is nothing to prove, so let us
assume that C contains a non-null vector, say w. Consider B = {bi : i ∈ N} one of the
Hamel basis of X such that b1 = w, and set Xn for the subspace of X spanned by the first
n vectors in B. Put Cn = C ∩ Xn; as b1 ∈ C, we infer that each and every set (Ci)i∈N is
non-empty and convex.

As already observed, it is possible to pick xi ∈ pri(Ci). We claim that the countable
subset of C obtained by gathering all the points xi meets the requirements of Proposition
??, that is,

I(C) =
⋃

i∈N

I0(xi, C). (7)

By virtue of Lemma ?? (relation ??) applied with C = Ci, it follows that

I(Ci) = I0(xi, Ci) ∀ i ∈ N.

Apply i) of Lemma ?? with x = xi, P = Ci and K = C to infer that

I0(xi, Ci) ⊂ I0(xi, C) ∀ i ∈ N;

combine the two previous relations to get

⋃

i∈N

I(Ci) ⊂
⋃

i∈N

I0(xi, C) ⊂ I(C). (8)

Let us also remark that, for any finite-dimensional convex subset L of X, and in particular
for any half-line, it holds that M ⊂ Xn for some n ∈ C. Thus any half-line contained in
C must lie within one of the sets Ci:

I(C) ⊂
⋃

i∈N

I(Ci). (9)

From relations (??) and (??) it results that

I(C) ⊂
⋃

i∈N

I(Ci) =
⋃

i∈N

I0(xi, Ci) ⊂ I(C);

all the inclusions in the previous line are in fact equalities, thereof relation (??) holds
true. �

We have thus proved that:

P 1) The covering V =
⋃

x∈C I0(x,C) always admits a sub-covering whose cardinal num-
ber does not exceed the dimension of X.

To state another important property of this covering, let {xi : 1 ≤ i ≤ n} be a finite
family of points in C. As V is convex and it contains all the cones I0(xi, C), it follows

that V contains the set co
(

⋃

1≤i≤n I0(xi, C)
)

.

The following lemma shows that V actually contains more than the set co
(

⋃

1≤i≤n I0(xi, C)
)

,

namely its Klee envelope.
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Lemma 2.3 Let C be a convex set, and let (xi)1≤i≤n ⊂ C be a finite family of points.
Then

κ



co





⋃

1≤i≤n

I0(xi, C)







 ⊂ I(C). (10)

Proof of Lemma ??: As already remarked, the pseudo relative interior of any convex set
of finite dimension is non-empty; it is thus possible to pick x ∈ pri (co({xi : 1 ≤ i ≤ n})).

Apply Lemma ?? (relation ??) for the subset D = {xi : 1 ≤ i ≤ n} of the convex set C
to deduce that

I0(xi, C) ⊂ I0(x,C) ∀ 1 ≤ i ≤ n.

The cone I0(x,C) is convex; we may use the previous inclusion to show that

co





⋃

1≤i≤n

I0(xi, C)



 ⊂ I0(x,C),

whence we infer that

κ



co





⋃

1≤i≤n

I0(xi, C)







 ⊂ κ (I0(x,C)) . (11)

Applying Proposition ?? to the cone I0(x,C) we deduce that

κ (I0(x,C)) = I (I0(x,C)) ; (12)

use iii) Lemma ?? for x = x and P = I0(x,C) to obtain that

I (I0(x,C)) = I (x+ I0(x,C)) , (13)

and ii) Lemma ?? for P = x+ I0(x,C) and K = C, to infer that

I (x+ I0(x,C)) ⊂ I(C). (14)

Relation (??) follows from relations (??), (??), (??) and (??). �

Lemma ?? implies that:

P 2) The convex cone V contains the Klee envelope of the union of any finite family of
cones from the covering (I0(x,C))x∈X .

In view of Properties P 1) and P 2), statements which are fulfilled by each and every
covering of form V =

⋃

x∈C I0(x,C), let us intoduce the main notion of this section.

Definition 2.1 Given V a convex cone in X, a family (Vj)j∈J of convex cones is called
spreading cover over V if the following three conditions hold true:

a) (Vj)j∈J is a cover of V ,

b) V contains the Klee envelope of the convex hull of any finite collection of cones from
the family (Vj)j∈J ,
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c) The cardinal number of the set J is less or equal to the dimension of X.

The notion of spreading cover allows us to restate Proposition ?? and Lemma ??, and to
establish the following result.

Proposition 2.2 If a convex cone V is the infinity cone to a convex set, then it possesses
a spreading cover.

We conclude this section with a proposition which achieves a complete characterization of
the convex cones admitting spreading covers.

Proposition 2.3 The following three statements are true:

i) Any convex cone admits a spreading cover provided that the underlying space X has an
uncountable dimension,

ii) When X has a denumerable dimension, a convex cone of X has a spreading cover if
and only if it is the union of an ascending sequence of linearly closed and convex cones,

iii) A cone of a finite-dimensional space admits a spreading cover if and only if it is linearly
closed (and thus closed with respect to the Euclidean topology on X.)

Moreover, each time when a cone possesses a spreading cover, it also admits a spreading
cover composed only of finite-dimensional convex cones.

Proof of Proposition ??: i) Let V be a convex cone from X, a real vector space with
an uncountable dimension. Consider Vx = R+ x for any x ∈ V , a family of convex cones
which obviously fulfills conditions a) and b) from Definition ??. As already noticed, the
Continuum Hypothesis implies that the setX has a cardinal number equal to its dimension;
as C is a subset of X, the third condition of the definition is also satisfied. Also, all the
members of this covering are finite-dimensional sets.

ii) Let X be a real vector space of denumerable dimension, and V the union of the
ascending sequence of linearly closed and convex cones (Wi)i∈N. Fix B = {bi : i ∈ N}
a Hamel basis of X, and set, as above, Xn for the subspace of X spanned by the first n
vectors in B, to define Yi = Wi∩Xi. It is obvious that (Yi)i∈N is an ascending sequence of
finite-dimensional linearly closed and convex cones whose union amounts to V , and thus
is a spreading cover over V composed by finite-dimensional convex cones.

Reciprocally, consider (Vj)j∈J a spreading cover over V ; point c) from Definition ?? implies
that J is countable (finite or denumerable), so there is a one-to-one mapping f : J → N.
Define

Ui =





⋃

f(j)≤i

Vj



 ∩Xi ∀ i ∈ N,

and

Zi = κ (co(Ui)) ∀ i ∈ N.

Obviously, Zm ⊂ Zn provided that m ≤ n, and for each and every i ∈ N, Zi is a convex
cone. Moreover, being the Klee envelope of the finite-dimensional convex cone co(Ui), Zi

is linearly closed ([?]).
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It results that (Zi)i∈N is an ascending sequence of linearly closed and convex cones. All
what it remains to be proved is that (Zi)i∈N is a cover for V , that is,

V =
⋃

i∈N

Zi. (15)

As V =
⋃

j∈J Vj (point a) of Definition ??) and X =
⋃

i∈N
Xi, it follows that V amounts

to the union of all the cones from the family (Ui)i∈N, and since Ui ⊂ Vi it results that

V =
⋃

i∈N

Ui ⊂
⋃

i∈N

Zi. (16)

Finally, use iv) of Lemma ?? with P =
⋃

f(j)≤i Vj and K = Xi, and the obvious fact that

κ(Xi) = Xi, in order to get

Zi = κ (co(Ui)) = κ



co





⋃

f(j)≤i

Vj



 ∩Xi



 ⊂ κ



co





⋃

f(j)≤i

Vj







 ∩Xi.

By virtue of point b) of Definition ??, it follows that

co





⋃

f(j)≤i

Vj



 ⊂ V ;

combine the last two relations to deduce that

Zi ⊂ V ∀ i ∈ N. (17)

Relation (??) follows from relations (??) and (??).

iii) Let us address the case when the dimension of X is finite. For each and every linearly
closed convex cone V of X, it is easy to see that the one-member collection consisting
from V alone fulfills the conditions of a spreading cover, and its only member is of finite
dimension.

Conversely, if the convex cone V admits a spreading cover (Vi)j∈J , then, by combining
condition a) of Definition ?? and the fact that V is convex, it results that

V =
⋃

j∈J

Vj ⊂ co





⋃

j∈J

Vj



 = co(V ) = V.

Accordingly, V = co
(

⋃

j∈J Vj

)

. By virtue of point c) of Definition ??, J is a finite set;

we may thus apply condition b) from Definition ?? to the family (Vj)j∈J to infer that V

contains κ
(

co
(

⋃

j∈J Vj

))

, and hence κ(V ). The cone V is consequently linearly closed.

�
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3. A theorem on �nite type collections of convex sets

Once a spreading cover (Vj)j∈J over some convex cone V is given, it remains to describe
a way to translate each and every cone from the covering (Vj)j∈J in such a way that the
convex hull of the union of all these translates does not contain more half-lines than the
rays of V .

In order to illustrate the major difficulty in achieving our objective, let us take (Ai)i∈I ,
a family of convex sets. It is obvious that any point x from the convex hull of the union
of sets Ai can be expressed as a convex combination of points from a finite collection of
sets Ai, that is, x ∈ co

(
⋃

i∈K Ai

)

for a finite subset K of I. This fact is no longer true for

subsets of co
(
⋃

i∈I Ai

)

; indeed, a subset D of the convex hull of the union of sets Ai may

not be contained in any of the sets of form co
(
⋃

i∈K Ai

)

, where K is a finite subset of I,
even when D itself is of finite dimension.

Let, for instance, X = R, and, for every i ∈ N, define Ai = [0, i]. Then, the half-line
R+ is contained in the convex hull of the union of sets Ai (in fact it coincides with this
convex hull), but the convex hull of any union of a finite collection of sets Ai is a bounded
segment of the real axis, and cannot thus contain any half-line.

We are thus lead to introduce the main two notions of this section.

Definition 3.1 The family (Ai)i∈I of convex sets is called of finite type if any subset D
of finite dimension from the convex hull of the union of sets Ai is contained in a set of
form co

(
⋃

i∈K Ai

)

, for some K, finite subset of I.

Definition 3.2 A collection (vj)j∈J is called spreading sole of the spreading cover (Vj)j∈J

over V , if the family of convex sets (vj + Vj)j∈J is of finite type.

The following result proves that if a convex cone V possesses both a spreading cover and
a spreading sole, then it can be represented as the infinity cone to some convex set.

Proposition 3.1 Consider V a convex cone, (Vj)j∈J a spreading cover over V , and
(vj)j∈J a spreading sole of (Vj)j∈J . Then

I(C) = V, (18)

where C stands for the convex set co
(

⋃

j∈J(vj + Vj)
)

.

Proof of Proposition ??: As, for any j ∈ J , it holds that Vj ⊂ I0(vj , C), it follows that

Vj ⊂ I(C) ∀ j ∈ J,

and thus that
V =

⋃

j∈J

Vj ⊂ I(C). (19)

To the end of establishing the reverse inclusion, let us consider v ∈ I(C); accordingly,
the half-line L = x̂ + R+ v is completely contained within C for some x̂ ∈ C. As L is a
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set of finite dimension and vj is a spreading sole, we deduce that there is a finite subset
F of J such that

L = x̂+ R+ v ⊂ co





⋃

j∈F

(vj + Vj)



 .

Accordingly,

v ∈ I



co





⋃

j∈F

(vj + Vj)







 ∀ v ∈ I(C). (20)

We need the following result, which computes the infinity cone to the convex hull of a
family of translates of convex cones.

Lemma 3.1 Let (Vi)1≤i≤n be a finite collection of convex cones, and consider {vi : 1 ≤

i ≤ n} a finite set of vectors. Set C = co
(

⋃

1≤i≤n(vi + Vi)
)

and V = co
(

⋃

1≤i≤n Vi

)

.

Then
I(C) = κ (V ) . (21)

Proof of Lemma ??: As already noticed, it is always possible to pick a vector x ∈
pri (co ({xi : 1 ≤ i ≤ n})). In view of Lemma ?? (relation ??) applied for D = {xi : 1 ≤
i ≤ n}, it holds that

Vi ⊂ I0(xi, C) ⊂ I0(x,C) ∀ i ∈ {1, ..., n};

as I0(x,C) is a convex cone, we can thus infer that V ⊂ I0(x,C). Accordingly,

κ(V ) ⊂ κ (I0(x,C)) ;

use Proposition ?? to prove that

κ (I0(x,C)) = I (I0(x,C)) ,

and combine the conclusions of iii) of Lemma ?? with x = x and P = I0(x,C) and of ii)
of the same Lemma, used for P = x+ I0(x,C) and K = C, to infer that

I (I0(x,C)) ⊂ I(C).

From the three previous relations it results that

κ(V ) ⊂ I(C). (22)

In order to establish the reverse inclusion, let us pick v ∈ I(C). Accordingly, the half-line
x̂+ R+ v is contained in C for some x̂ ∈ C, so

x̂+ r v =

(

i=n
∑

i=1

λr,i xi

)

+

(

i=n
∑

i=1

vr,i

)

∀ r ≥ 0, (23)

where

λr,i ≥ 0 ∀ r ≥ 0, i ∈ {1, ..., n},
i=n
∑

i=1

λr,i = 1 ∀ r ≥ 0,
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and vr,i ∈ Vi for any r ≥ 0 and i ∈ {1, ..., n}. Set Y for the linear subspace of X spanned
by x̂, v and {xi : 1 ≤ i ≤ n}, and remark that

i=n
∑

i=1

vr,i ∈
i=n
∑

i=1

Vi = V, x̂+ r v −

(

i=n
∑

i=1

λr,i xi

)

∈ Y ; (24)

from relations (??) and (??) we deduce that

x̂+ r v −

(

i=n
∑

i=1

λr,i xi

)

∈ (V ∩ Y ).

Accordingly,

v(r) = v +

(

x̂

r
−

i=n
∑

i=1

λr,i

r
xi

)

∈ (V ∩ Y );

but λr,1 ∈ [0, 1] for any r ≥ 0 and i ∈ {1, ..., n}, so v is the limit when r goes to +∞ of
v(r) (with respect to the Euclidean topology on Y ). Recall that the Euclidean closure of
a finite dimensional convex set and its Klee envelope coincide, and use iv) of Lemma ??

applied with P = V and K = Y , to infer that

v ∈ κ(V ∩ Y ) ⊂ κ(V ) ∀ v ∈ I(C). (25)

The desired relation (??) follows by combining relations (??) and (??). �

Let us now return to the proof of Proposition ?? and apply the result of the previous

lemma to the set co
(

⋃

j∈F (vj + Vj)
)

, to deduce that

I



co





⋃

j∈F

(vj + Vj)







 = κ



co





⋃

j∈F

Vj







 .

Point b) in Definition ?? implies that

κ



co





⋃

j∈F

Vj







 ⊂ V.

From the previous two relations, we conclude that

I



co





⋃

j∈F

(vj + Vj)







 ⊂ V ; (26)

finally, relations (??) and (??) prove that

I(C) ⊂ V. (27)

Relation (??) steems from relations (??) and (??). �
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It remains to address the construction of a spreading sole for a given spreading cover. Let
us first consider a more general problem.

Theorem 3.1 Let (Aj)j∈J be a family of finite dimensional convex sets from the real
vector space X. Assume that the cardinal number of J is less or equal to the dimension of
X. Then, there is a collection (aj)j∈J of vectors of X, such that the family (aj + Aj)j∈J

is of finite type.

Prior to the proof of Theorem ??, let us consider several standard properties of ordinal
and cardinal numbers nedeed in the sequel.

0.1 Initial well-ordenings: basic facts

Let us first recall that, for every set A it is possible to define a well-ordering (A,≤) of
minimal ordinal number among all the ordinal numbers of the same cardinality (such
ordinal numbers are usually called initial); for an overview of this topic, the reader is
refeered to [?, Exercise 10, page 125]. Let us collect some of the classical properties of the
initial well-orderings nedded hereafter.

Lemma 3.2 Let (A,≤) be an initial well-ordering on an infinite set of cardinal number
a. As customary, for any pair of elements a, b ∈ A such that a ≤ b, the set [a, b] = {x ∈
A : a ≤ x ≤ b} is caled the order interval of extremities a and b, and when a ≤ b and
a 6= b, we write a < b.
i) For any element a ∈ A, the set SA(a) = {x ∈ A : a < x} is non-empty; as a

consequence, we define the succesor mapping S : A → A, associating to any element
a the least element of SA(a),

ii) For any element a ∈ A, the set IA(a) = {x ∈ A : x < a} has a cardinal number
strictly lower than a,

iii) The set

FA(M) = {b ∈ A : ∃a ∈ M s.t. b ≤ a and [b, a] is finite}

is finite, provided that the subset M of A is finite.

The following standard result is proved here for the reader’s convenience.

Lemma 3.3 Let A and B be two infinite sets such that a, the cardinal number of A is
lower or equal than b, the cardinal number of B, and endow B with an initial well-ordering
(B,≤).

Then every mapping f : A → B is dominated by some one-to-one mapping g : A → B,
in the sense that

f(a) < g(a) ∀ a ∈ A. (28)

Proof of Lemma ??: We shall construct the desired one-to-one function g : A → B by
(transfinite) induction. To this respect, let us endow A with an initial well-ordering; since
no confusion risks to occur, we denote this ordering by (A,≤). Let a0 be the least element
of A; our first objective is to define g(a0) ∈ B such that f(a0) < g(a0).

On one hand, it is obvious that the cardinal number of the singleton {f(a0)} (that is, 1)
is strictly lower than the infinite cardinal number b. On the other hand, since the ordinal
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number of (B,≤) is initial, it follows (see ii) Lemma ??) that the set IB(f(a0)) = {b ∈
B : b < f(a0)} have a cardinal number strictly lower than b.

Remark that an infinite set never amounts to the union of a finite family of sets with
strictly lower cardinal numbers than its own cardinal number. Let us apply this fact to
the infinite set B, and to the sets {f(a0)} and IB(f(a0)) of cardinal numbers strictly lower
than b, to conclude that the difference set B \ ({f(a0)} ∪ IB(f(a0))) is non-empty. It is
now sufficient to pick g(a0) within this difference to be assured that f(a0) < g(a0).

Suppose now that, for some w ∈ B, we have already defined an one-to-one mapping
g : IA(w) → B such that relation f(a) < g(a) holds for every a ∈ IA(w). We have to
prove that it is possible to pick an element g(w) inB laying both without {f(w)}∪IB(f(w))
(to ensure that f(w) < g(w)) and without g (IA(w)) (to ensure the injectivity of g). In
other words, we have to prove that

B \ (g (IA(w)) ∪ IB(f(w)) ∪ {f(w)}) 6= ∅. (29)

Use once more time the fact that the ordinal number of (B,≤) is initial, to prove (ii)
Lemma ??) that the cardinal number of the set IB(f(w)) is strictly lower than b. Similarly,
from the fact that the ordinal number of (A,≤) is initial, it results that the set IA(w) has a
cardinal number strictly lower than a. Since the mapping g : IA(w) → B is one-to-one, we
deduce that the set g (IA(w))) has the same cardinal number as IA(w), being thus strictly
lower than a. But a ≤ b; hence, the cardinal number of the set g (IA(w))) is strictly lower
than b.

Consequently, the cardinal number of each of the three subsets IB(f(w)), g (IA(w))) and
{f(w)} of the set infinite set B is strictly lower than the cardinal number of B.

As already remarked, this fact proves relation (??). �

0.2 The proof of Theorem ??

Let us turn to the proof of Theorem ??, and consider a family of convex sets (Aj)j∈J of
finite dimension from a real vector space X whose dimension is greater or equal to the
cardinal number of J . Our aim is to construct a collection (aj)j∈J of vectors such that
the family of convex sets (aj +Aj)j∈J is of finite type.

To begin with, fix {bi : i ∈ I}, a (Hamel) basis of X, and endow I with the initial well-
ordering (I,≤). As when the dimension of X is finite, the family (Aj)j∈J is finite, and
thus of finite type, we shall assume that I is an infinite set.

Define the mapping c : 2X → 2I as:

c(A) = {i ∈ I : ∃x ∈ A s.t. xi 6= 0} ∀A ⊂ X;

in order to simplify the notation, we will write c(x) instead of c({x}). Remark that, for
any j ∈ J , the set c(Aj) is finite, so it is possible to introduce the mapping b : J → I,

b(j) = max(c(Aj)) ∀ j ∈ J.

Apply Lemma ?? for A = J , B = I and f = b, to infer the existence of a one-to-one
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mapping g : J → I such that max(c(Aj)) < g(j) for any j ∈ J . Finaly, define

aj =





∑

k∈c(Aj)

bS(k)



+ bg(j) ∀ j ∈ J. (30)

The following lemma captures the main technical feature of the proof.

Lemma 3.4 Let F be a finite subset of J , and

x =
∑

j∈F

λj (aj + uj), (31)

where

uj ∈ Aj , λj > 0 ∀ j ∈ F, and
∑

j∈F

λj = 1. (32)

Then, for any j ∈ F it holds that g(j) ∈ FI(c(x)).

Proof of Lemma ??: Suppose, to the end of achieving a contradiction, that there is an
element w ∈ F such that g(w) /∈ FI(c(x)). Our aim is to find an element l ∈ I such that:

xl = 0, (33)

(uj)l = 0 ∀ j ∈ F, uj ∈ Aj , (34)

and

∃k ∈ F (ak)l = 1. (35)

Indeed, relations (??), (??), (??), (??) and (??) contradict each other, proving in this way
that our initial assumption is false.

To the purpose of constructing l, let us remark that, in view of the definition of the set
FI(c(x)), saying that g(w) /∈ FI(c(x)) means that there is some z ∈ I such that the
interval [g(w); z[= {i ∈ I : g(w) ≤ i < z} is infinite and totally misses c(x).

Define the set

P =
⋃

j∈F

{i ∈ c(Aj) : [g(w); i] is finite} ,

and recall that the mapping g was defined such that max(c(Aw)) < g(w), that is, j < g(w)
for any in j ∈ c(Aw). Hence, provided that j ∈ c(Aw), the interval [g(w), j] is void, thus
finite, and so j ∈ P ; thus c(Aw) ⊂ P .

Accordingly, c(Aw) ⊂ P ⊂
⋃

j∈F c(Aj), so the set P is non-empty and finite. Set im for
its maximum; we claim that the element

l = max(g(w),S(im)) (36)

is such that relations (??), (??) and (??) are verified.

To prove relation (??), let us first notice that, since im ∈ P , it follows that the inter-
val [g(w), im] is finite. It is easy to see that, for any a, b ∈ I, it holds that [a,S(b)] ⊂
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[a, b] ∪ {S(b)}; accordingly, we deduce that the interval [g(w),S(im)] is finite (it may be
empty).

The way in which l is defined proves thus that the set [g(w), l] is finite. As [g(w), z[ is
an infinite interval, it follows that l < z; combine this fact with the obvious remark that
g(w) ≤ l to deduce that l ∈ [g(w), z[. The interval [g(w), z[ misses c(x); hence l /∈ c(x),
whence follows relation (??).

Let us now address relation (??). We have already remarked that the interval [g(w), l] is
finite; if we assume that l ∈

⋃

j∈F c(Aj), it yields that l ∈ P , which is impossible (l is
larger or equal to the successor of the largest element from P ). Thus l /∈

⋃

j∈F c(Aj), so
relation (??) is proved.

Finally, consider relation (??). The definition (??) of the set (aj)j∈J of vectors proves
that

(aj)g(j) = 1 ∀ j ∈ J,

and

(aj)k = 1 ∀ k ∈ S(c(Aj)).

Since im ∈ P ⊂
⋃

j∈F c(Aj), it follows that im ∈ c(Ajm) for some jm ∈ F ; thus l = g(w)
or l ∈ S(Ajm) (see relation (??)); it follows that

(aw)l = 1 or (ajm)l = 1,

fact which proves relation (??). �

Let us return to the proof of Theorem ??, and consider D, a finite dimensional subset of

co
(

⋃

j∈J(aj +Aj)
)

. The set c(D) is thus finite, and, by virtue of iii) Lemma ??, the

same holds for the set FI(c(D)). The mapping g : J → I being one-to-one we see that the

set G = g−1 (FI(c(D))) is a finite subset of J . We claim that D ⊂ co
(

⋃

j∈G(aj +Aj)
)

.

Let x ∈ D; all we have to prove is that

x ∈ co





⋃

j∈G

(aj +Aj)



 . (37)

Since x ∈ D ⊂ co
(

⋃

j∈J(aj +Aj)
)

, we know that, for some finite subset F of J and

elements (uj)j∈F ∈ Aj , it holds that

x =
∑

j∈F

λj (aj + uj),
∑

j∈F

λj = 1 and λj > 0 ∀ j ∈ F. (38)

Lemma ?? reads now that g(F ) ⊂ FI(c(x)). As x ∈ D implies that c(x) ⊂ c(D), it follows
that

F ⊂ g−1 (FI(c(x))) ⊂ g−1 (FI(c(D))) = G. (39)

Relation (??) follows from relations (??) and (??). �
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4. The main result

We are now in a position to prove the main result of this article.

Theorem 4.1 The following three statements are true:
i) Any convex cone is the infinity cone to a convex set provided that the underlying

space X is of uncountable dimension,
ii) When X has denumerable dimension, a convex cone of X is the infinity cone to some

convex subset of X if and only if it is the union of an ascending sequence of closed
and convex finite-dimensional cones,

iii) A cone in a finite-dimensional space is the infinity cone to a convex set if and only
if it is closed.

Proof of Theorem ??: In view of Proposition ??, we only need to prove that a convex
cone V is the infinity cone to some convex set if and only if it admits a spreading cover.
Moreover, the only if part of this equivalence is proved by Proposition ??.

In order to establish the if part, consider V a convex cone possessing a spreading cover
(Vj)j∈J . In view of Proposition ??, we can assume, without altering the generality of our
study, that all the convex cones composing the spreading covering (Vj)j∈J are of finite
dimension. Apply now Theorem ?? to the collection (Vj)j∈J composed only of finite
dimensional convex sets, to deduce that there is a family of vectors of X, say (vj)j∈J ,
such that the family (vj + Vj)j∈J is of finite type. In other words, (vj)j∈J is a spreading
sole of (Vj)j∈J , and Proposition ?? proves that V is the infinity cone to the convex set

co
(

⋃

j∈J(vj + Vj)
)

. �
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