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Abstract

A criterion of exact controllabilty using the resolvent of the state space operator is given for linear control

system in Hilbert space . Only surjectivity of the semi-group operators is assumed. This condition is necessary

for exact controllability, so the criterion is quite general. Relations between exact controllability and complete

stabilizability are specified.
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1 Introduction

We are concerned with systems described by equation

ẋ = Ax+Bu, (1)

where x and u lie in Hilbert spaces X and U respectively. A and B are linear operators. B is bounded and A is the
infinitesimal generator of a C0-semi-group of bounded operators S(t), t ≥ 0. The function u is square integrable
in the sense of Bochner. The mild solution of the system (1) is given by

x(t, x0, u) = S(t)x0 +

∫ t

0

S(t− τ)Bu(τ)dτ. (2)

Definition 1.1 The system (1) is said to be exactly controllable if there exists a time T such that for all x0, x1 ∈ X

and for some control u(t), we have x(T ) = x(T, x0, u) = x1.

It is well-known (see [1, 2, 7]) that a necessary and sufficient condition of exact controllability is given by:

∫ T

0

‖B∗S∗(τ)x‖2dτ ≥ δT ‖x‖
2 (3)

for some δT > 0 and for all x ∈ X. This means that the operator KT defined by

KTx =

∫ T

0

S(τ)BB∗S∗(τ)xdτ (4)

is a uniformly positive definite operator and then invertible, i.e. K−1
T is defined on X and bounded.

If the operator A is bounded, then this condition is equivalent to [4]:

∃ k ∈ N such that Im [B AB . . . AkB ] = X. (5)
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This condition was used in [11] for a construction of the steering control functions which differs from the construction
of [4].
When the operator A is unbounded, the situation is much more complicated. Korobov and Sklyar [3] gave a
generalization of the criterion (5) for the case of an unbounded operator A which is the generator of a group.
In this paper (Section 2) we extend this result for a semi-group of surjective operators. The surjectivity of the
operators S(t), t ≥ 0 is a necessary condition for exact controllability [5, 8].
In Section 3 we consider the relation between the exact controllability and complete stabilizability, i.e. exponential
stabilizability with arbitrary decay rate. We give an extension of Zabczyk’s result on the relation between exact
controllabilty and complete stabilizability [12] (see also [13], p. 229).

Let ω0(A) stands for the scalar given by

ω0(A) = lim
t→0

ln ‖S(t)‖

t
.

Then for all ω > ω0(A) there exists Mω such that ‖S(t)‖ ≤ Mωe
ωt. If ω0(A) = −∞, then ω ∈ R may be choosen

arbitrarily.

2 Exact Controllability

Note that the criterion (5) gives exact controllability for arbitrary time T . This condition is too strong for the case
of unbounded operator. The criterion (4) depends explicitly on time T which is a priori unknown. However, from
this criterion, we can give a necessary and sufficient condition where the time T does not appear.

In all the paper, the real scalar λ is assumed to be positive and λ > ω0(A).

The operator K(λ) given by

K(λ)x =

∫

∞

0

e−2λtS(t)BB∗S∗(t)xdt, x ∈ X,

is well defined and is called the extended controllability gramian (see [2]).

Proposition 2.1 The system (1) is exactly controllable if and only if the operator K(λ) is invertible.

Proof. Note that the exact controllability of the system (1) is equivalent to the exact controllability of the system
(see for instance [2]):

ẋ = (A− λI)x+Bu, (6)

which is characterized by the condition:

∫ T

0

‖e−λtB∗S∗(t)x‖2dt ≥ e−λT δT (λ)‖x‖
2. (7)

Suppose that K(λ) is invertible. As it is a non negative operator then, for some δ(λ) > 0, 〈K(λ)x, x〉 ≥ δ(λ)‖x‖2,
where 〈., .〉 denote the inner product in X. Then

∫ T

0

‖e−λtB∗S∗(τ)x‖2dτ ≥ δ‖x‖2 −

∫

∞

T

e−2λt‖B∗S∗(t)x‖2dt.

In the other hand, for ω such that λ > ω > ω0(A), one has
∫

∞

T

e−2λt‖B∗S∗(t)x‖2dt ≤
‖B‖2M2

ω

2(λ− ω)
e−2(λ−ω)T ‖x‖2.

Then for some δT (λ) > 0 we have (7).
Conversely, if the system (1) is exactly controllable, then for some T > 0, the operator:

KT (λ)x =

∫ T

0

e−2λtS(t)BB∗S∗(t)xdt, x ∈ X,
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is a uniformly positive definite operator and then the same holds for the operator K(λ) since 〈K(λ)x, x〉 ≥
〈KT (λ)x, x〉. Hence K(λ) is invertible.

The property of exact controllability means there exists a time T for which each state x1 is reachable from each
state x0. We may also consider the exact controllability when the time T (x0, x1) depends on x0 and x1. However,
as it was pointed out by Rolewicz (see [9]), there exists a universal time T of exact controllability.
From the criterion of exact controllability, one can also show that a necessary condition for exact controllability is
that the operators S(t) are onto (see also [5, 8]). Indeed, we have

K(λ) =

∫ ǫ

0

e−2λtS(t)BB∗S∗(t)dt+

∫

∞

ǫ

e−2λtS(t)BB∗S∗(t)dt.

For exact controllability the last operator, say Kǫ(λ), must be onto for some ǫ > 0. But

Kǫ(λ) = S(ǫ)

∫

∞

0

e−2λ(t+ǫ)S(t)BB∗S∗(t+ ǫ)dt

and this means that S(ǫ) must be surjective. The surjectivity of S(ǫ) implies the surjectivity of S(t) for all t (see
[8]).
The following result is a consequence of Lemma 4.1.24 in [2] (a similar result may be found in [10] for the case of
a group S(t)).

Proposition 2.2 For all x ∈ D(A∗) we have K(λ)x ∈ D(A) and

(A− λI)K(λ)x+K(λ)(A∗ − λI)x = −BB∗x. (8)

Let Rλ = (A− λI)−1 be the resolvent of A and Tλ = ARλ = I + λRλ. As in [3] we have the following statement.

Corollary 2.3 The operator K(λ) may be written as

K(λ) = 2λR2λBB∗R∗

2λ + T2λK(λ)T ∗

2λ. (9)

Proof. From (8) we get (A− 2λI)K(λ)x+K(λ)(A∗ − 2λI)x+ 2λK(λ)x = −BB∗x for all x ∈ D(A∗). Then for
all y ∈ X, we have R∗

2λy ∈ D(A∗) and

(A− 2λI)K(λ)R∗

2λy +K(λ)y + 2λK(λ)R∗

2λy = −BB∗R∗

2λy.

This gives the operator equality:

2λK(λ)R∗

2λ + 2λR2λK(λ) + 4λ2R2λK(λ)R∗

2λ = −2λR2λBB∗R∗

2λ.

Replacing 2λR2λ by T2λ − I in the left hand side of this equality then completes the proof.

From the Corollary 2.3 we can obtain the following expansion for K(λ):

K(λ) = 2λ

n−1
∑

k=0

R2λT
k
2λBB∗T ∗k

2λR
∗

2λ + Tn
2λK(λ)T ∗n

2λ . (10)

Lemma 2.4 Suppose that S(t) t ≥ 0, are surjective, then for all x ∈ X we have

lim
n→∞

T ∗n
2λ x = 0

and then

K(λ)x = 2λ

∞
∑

k=0

R2λT
k
2λBB∗T ∗k

2λR
∗

2λx. (11)
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Proof. The proof is similar to the proof given in [3, 10] for the operator A(A+λI)−1, where A is the infinitesimal
generator of a group of linear operators. Here we use the equivalent norm:

‖x‖0 =
√

〈K0(λ)x, x〉, K0(λ) =

∫

∞

0

e−2λtS(t)S∗(t)dt.

The operator K0(λ) being uniformly positive definite since S(t) is assumed to be surjective.
From (9), with B = I, we have

〈K0(λ)x, x〉 = 〈2λR2λR
∗

2λx, x〉+ 〈T2λK(λ)T ∗

2λx, x〉 = 2λ‖R∗

2λx‖
2 + ‖T ∗

2λ‖
2
0. (12)

Then, for the given norm, ‖T2λx‖0 < ‖x‖0, for x 6= 0, i.e. T2λ is a completely non-unitary contraction (see [6]). In
the other hand, a direct computation yields that the spectrum of T2λ is given by

σ(T2λ) = {1} ∪ {
µ

µ− 2λ
, µ ∈ σ(A)}.

As λ > ω0 ≥ ℜµ, where ℜµ is the real part of µ, one can easely verify that σ1 = σ(T2λ)∩{α ∈ C : |α| = 1} = {1}.
The measure of σ1 is 0. Then, by a theorem of Cz.-Nagy and Foiaş (see [6], Proposition II. 6. 7) we have:

∀x ∈ X, lim
n→∞

T ∗n
2λ x = 0, lim

n→∞

Tn
2λx = 0.

From this and (10) we get (11).

Let l2(U) be the Hilbert space of all sequences {uk, k = 0, 1, . . .}, with uk ∈ U such that
∑

∞

k=0 ‖uk‖
2 < ∞.

Consider the operator Cλ(A,B) defined by

Cλ(A,B)w =
∞
∑

k=0

R2λT
k
2λBuk, w = {uk, k = 0, 1, . . .},

It is easy to see that Cλ(A,B) is bounded and, from (11), that K(λ) = 2λCλ(A,B)C∗

λ(A,B). This yields the
following statement.

Theorem 2.5 The system (1) is exactly controllable if and only if Cλ(A,B) is surjective, i.e. iff, for all x ∈ X

there exists a square summable sequence {ui, i = 0, 1, . . .} such that

R2λBu0 +R2λT2λBu1 + . . .+R2λT
k
λBuk + . . . = x.

Proof. The operator Cλ(A,B) is surjective if and only if for some constant c and for all x ∈ X, we have
‖C∗

λ(A,B)x‖2 ≥ c‖x‖2. This equivalent to

(K(λ)x, x) ≥ 2λc‖x‖2,

which means that K(λ) is uniformly positive definite and therefore invertible.

For the case of a bounded operator, the theorem gives the criterion (5). The proof is given in [3, 10].

3 Complete Stabilizability

We first give a precise definition of the complete stabilizability.

Definition 3.1 The system (1) is said to be completely stabilizable if for all ω ∈ R there exists a linear bounded
operator F : X → U and a constant M > 0 such that the semi-group generated by A+BF , say SF (t), verifies:

‖SF (t)‖ ≤ Meωt for t ≥ 0.
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Exact controllability implies complete stabilizability (see [13]). The converse was established ([12, 13]) for a group.
Our result holds for surjective semi-group, with a minimal assumption.

If S(t) are surjective, then for all t ≥ 0, for δt = inf{σ(S(t)S∗(t)), t ≥ 0} and for all x ∈ X, we have:

‖S∗(t)x‖2 ≥ δt‖x‖
2.

We make the following assumption.
Assumption A: There exists α > −∞ such that

inf{
ln δt
t

, t > 0} = α.

Theorem 3.2 If the system (1) is completely stabilizable and S(t) is a semi-group of surjective operators satisfying
Assumption A, then the system is exactly controllable.

Proof. Suppose that the system is completely stabilizable. Then for arbitrary ω ∈ R there exists M > 0 and F

such that
‖S∗

F (t)x‖ ≤ Meωt

for all x, ‖x‖ = 1. The semi-group S∗

F (t) may be expressed by (see for example [1]):

S∗

F (t)x = S∗(t)x+

∫ t

0

S∗(t− τ)F ∗B∗S∗(τ)xdτ, x ∈ X.

This gives

‖S∗(t)x‖ −

∫ t

0

‖S∗(t− τ)F ∗B∗S∗(τ)x‖dτ ≤ ‖S∗

F (t)x‖ ≤ Meωt.

And then

‖S∗(t)x‖ −

(
∫ t

0

‖S∗(t− τ)F ∗‖2dτ

)1/2 (∫ t

0

‖B∗S∗(τ)x‖2dτ

)1/2

≤ ‖S∗

F (t)x‖ ≤ Meωt.

Assume by contradiction that the system is not exactly controllable, then for all t > 0, for all c > 0, there exists
x, ‖x‖ = 1, such that

∫ t

0

‖B∗S∗(τ)x‖2dτ < c.

Hence
‖S∗(t)x‖ ≤ Meωt.

Since S(t) is surjective and by Assumption A, we get

e
α

2
t ≤

√

δt ≤ ‖S∗(t)x‖ ≤ Meωt,

which is impossible since ω ∈ R is arbitrary. This complete the proof.

Remark The Assumption A is not very restrictive. However, it is not clear if this condition is necessary.

4 Conclusion

The result given in this paper are quite general in the case of a bounded control operator B. The case of an
unbounded control operator, which include some systems described by partial differential equation with boundary
control, is now under study.
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