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B-Spline Explicit Active Surfaces: An
Efficient Framework for Real-Time
3-D Region-Based Segmentation

Daniel Barbosa, Student Member, IEEE, Thomas Dietenbeck, Student Member, IEEE, Joel Schaerer,
Jan D’hooge, Member, IEEE, Denis Friboulet, Member, IEEE, and Olivier Bernard

Abstract—A new formulation of active contours based on explicit
functions has been recently suggested. This novel framework al-
lows real-time 3-D segmentation since it reduces the dimensionality
of the segmentation problem. In this paper, we propose a B-spline
formulation of this approach, which further improves the compu-
tational efficiency of the algorithm. We also show that this frame-
work allows evolving the active contour using local region-based
terms, thereby overcoming the limitations of the original method
while preserving computational speed. The feasibility of real-time
3-D segmentation is demonstrated using simulated and medical
data such as liver computer tomography and cardiac ultrasound
images.

Index Terms—Active contours, B-splines, image segmentation,
real-time image processing, variational method.

I. INTRODUCTION

INCE their first introduction in [1], active contours have
S proven to be very powerful in the field of image processing
[2]-[5]. In image segmentation, active contour-based methods
correspond to a class of deformable models where the shape to
be recovered is captured by propagating an evolving interface.
The evolution of the interface is generally derived through a
variational formulation: the segmentation problem is expressed
as the minimization of an energy functional that reflects the
properties of the objects to be recovered. In this energy func-
tional, the terms corresponding to image features (usually called
data attachment terms) may be broadly classified according two
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categories: edge-based or region-based terms. Edge-based ac-
tive contour models use image gradients in order to identify ob-
ject boundaries [6]. This type of approach is adequate in some
situations, but is generally sensitive to image noise. In order
to overcome these limitations, Chan and Vese introduced the
concept of region-based active contours, where the properties
of the regions inside and outside the object under segmentation
drive the contour evolution [7]. This work yielded many exten-
sions through different region-based energy functionals (based
on mean separation [8], histogram separation [9], and Bayesian
model [10]). Nevertheless, these approaches may fail when the
region properties are computed in a global way (i.e., using the
whole inner or outer regions), as soon as these features are not
spatially invariant. In this context, Lankton and Tannenbaum
have recently proposed a framework well suited to detect objects
having heterogeneous properties by localizing the region-based
approach [11]. Their model presents promising results in chal-
lenging images and clearly shows the advantages of localizing
the energy functional while dealing with nonhomogeneous ob-
jects.

Active contours may be also categorized according to the rep-
resentation of the evolving interface. With this respect, level-
set-based methods have become one of the most popular ap-
proaches. This approach consists in representing the interface
as the zero levet-set of a higher dimensional smooth function,
which is usually called the level-set function. The underlying
formulation allows working in a Eulerian framework and nat-
urally deals with topology changes, making level-set methods
able to segment multiple unconnected regions. However, the
fact that levet-sets are built by adding a dimension to the orig-
inal problem has a drawback: it increases the computational
cost, making 3-D real-time applications difficult. In this con-
text, Duan et al. have recently proposed to represent the inter-
face using an explicit representation in order to tackle this com-
putation burden problem [12], [13]. This approach was called
active geometric functions (AGF). An immediate consequence
of using such explicit formulation is the loss of topological flex-
ibility, which is shown as the price to pay for increasing speed.
Note, however, that this topological limitation is a mild con-
straint in many applications, such as medical imaging (i.e., when
the goal is to segment one simply connected object), and thus
where the topological flexibility of levet-sets is not desired or at
least not always needed. The initial AGF framework has never-
theless left open some questions. First, localizing region-based
data attachment terms is difficult to handle without ad hoc ap-
proximations. Furthermore, there is no explicit control on the



interface smoothness, which is simply done through undersam-
pling of the surface function.

Starting from the framework developed by Duan et al. [12],
[13], we have expanded it to a B-spline formulation that we will
denote as B-spline explicit active surfaces (BEAS) in the sequel.
The derived model has the following conceptual advantages.

1) By formally relating the explicit and implicit formulation
of the region-based evolution terms, it expands the frame-
work of Duan et al. and allows using local or global re-
gion-based energy initially designed in the level-set frame-
work.

2) It allows explicitly controlling the smoothness of the in-
terface through the scale factor of the underlying B-spline
formulation.

3) These properties are obtained while preserving real-time
performance for 3-D data due to the fact that the active con-
tour evolution can be expressed as a succession of simple
1-D convolutions.

Moreover, thanks to the continuous B-spline formulation, the
analytic computation of differential properties-related quantities
of the interface (i.e., defining the normal direction and local cur-
vature) is straightforward.

This paper is structured as follows. In Section II, we focus on
the general formulation of image segmentation problems using
B-splines and derive the minimization of the resulting functional
in terms of the B-spline coefficients. In particular, we show
that both global and localized region-based approaches can be
used within the proposed framework. In Section III, we dis-
cuss the implementation issues of our method. In particular, we
present an efficient implementation, which allows performing
region-based segmentation in real-time. In Section IV, we eval-
uate the performance of the method using both simulated and
real images. We give the main conclusions and perspectives of
this paper in Section V.

II. METHODOLOGY

A. General Setting

The key idea of the framework is to model the interface '
as an explicit function. Geometrically, this implies that one of
the coordinates of the points of the interface is expressed as a
function of the remaining coordinates. Let us note x € R" a
point of coordinates {x1,...,%,} in an n-dimensional space
and x* € R" ! a point of coordinates {5, ...,r,} in the as-
sociated (n — 1)-dimensional subspace. Formally, an explicit
function can then be defined as

YR S R, h(xt) = 2. (1)

Let us define the associated function in R™ as
B(x) = p(x*) — 21. 2)

Using these definitions, the interface can either be shown as
an explicit surface or as the zero level of the higher dimensional
implicit function ¢, i.e.,

T x eRd(z1,- -, 2n) = 0. 4

Obviously, the explicit form of I' (3) intrinsically limits the
topology, which does not happen in the original level-set frame-
work. However, this can be also shown as introducing prior in-
formation in the model since the segmented object will always
have the topology induced by the chosen coordinate system.

Let us now consider a function f(x) in R™, and let us note f
as the restriction of f over interface T, i.e.,

fx) = f((x7),x7). ©)

Let us moreover consider a functional depending on f(x) and
evaluated over the interface I'. Using the above definition and
the properties of the 1-D delta Dirac function 6(-), we have

[ ro0suxax= [ Focjax (©)

where T is an open bounded subset of R™, §,(x) = 6(¢(x)),
dx = dx1---dx,, and dx* = dxs - - - dz,,.

This expression thus relates the explicit and implicit formu-
lations of the functional. As shown in the sequel, this property
will allow using the region-based terms initially designed for
levet-sets in the explicit framework.

B. B-Spline Representation of the Explicit Function

Inspired by the recent work proposed by Bernard et al. in
[14], we propose to express the explicit functions as the linear
combination of B-spline basis functions [15], i.e.,

g (’%—k) ™

kezn—1

r1 = '(/J(x27"'7xn) =

where x* € R"~! is a point of coordinates {2, ...,z,} and
B3%(-) is the uniform symmetric n — 1-dimensional B-spline of
degree d. This function is separable and is built as the product of
n — 1 1-D B-splines so that #%(x*) = ];_, #*(x;). The knots
of the B-splines are located on a rectangular grid defined on the
chosen coordinate system, with a regular spacing given by h.
The coefficients of the B-spline representation are gathered in
c[k].

C. Global Region-Based Energy Formulation

We now turn back to the problem of segmenting one object
from the background of image I(x) using region-based terms.
In the level-set framework, a general expression of the energy
functional to be minimized can be formulated as [16]

Eg = /F(x7 H,;(x))dx 8)
Q
where F' is given by

F (%, Hy(x))= fin (1(x)) Hy (%) + four (1(x)) (1—H¢(X)()9)
and Hy(x) = H(¢4(x)), where H is the Heaviside function.

In (9), fin and f,u¢ provide energy criteria attached to the
inside and outside regions delimited by interface I, respectively.
In the sequel, the smoothness of the interface will be implicitly
enforced through the underlying B-spline representation, and
therefore, the energy functional given in (9) does not include



the usual regularization term. As an example, for the classical
Chan—Vese functional [7], we have

{fin (I1(x)) = (I(x) = u)Qé
Jour (I(x)) = (I1(x) = v)

where u and v are the mean image value inside and outside the
interface.

In a classical active contour framework, calculus of variations
is employed to minimize the energy criterion. In contrast with
these approaches, we make use of our formulation and perform
the minimization of the energy with respect to B-spline coef-
ficients ¢[k]. Such minimization implies computing the deriva-
tives of (8) with respect to each B-spline coefficient c[k;]. We
show in Appendix A that these derivatives may be simply ex-

(10)

pressed as
alE'G — %\ ad x* *
(= [aeo (k) e an
Oclk;) r/ h
where
7(x") = fin (I(x")) = four (I(x")) - (12)

g(x*) thus reflects the features of the object to be segmented
and is evaluated over interface I'. g will be called the feature
function in the sequel. For clarity sake, I(x*) corresponds to
the image value at position x = {¢(x*),z2,...,2,}. Equa-
tion (11) yields an interesting interpretation of the minimiza-
tion process. Let us define 3{(x*) = p¢(x*/h), which is the
B-spline of degree d upscaled by factor h. The expression of
the energy gradient is then given by

JdF¢

Vere = aa

= /g(x*)ﬁ,’f(x*—hk)dx*. (13)

T

This last equation shows that the computation of the gradient
of FE¢ with respect to a set of B-spline coefficients may be in-
terpreted as convolving feature function §(x*) with B-spline
B¢ (x*) and sampling the result with period A.

D. Localized Region-Based Energy Formulation

As previously mentioned, Lankton and Tannenbaum have
recently introduced a mathematical framework for localizing
region-based energies in level-set segmentation methods,
overcoming the problems associated with global segmentation
functionals. These localization strategies can be adapted to
our framework. First, we consider the general localized re-
gion-based energy functional proposed in [11] as

Er= [ 8,00 [ Booy)Fe (3, Ho(y) dydx  (14)
[

where Fr,(y,Hs(y)) is an image criteria and B(x,y) corre-
sponds to a mask function in which the local parameters that
drive the evolution of the interface are estimated. Energy cri-
teria F7, is still given by (9) above; however, its parameters now
have to be locally estimated at each x in neighborhood B. Using
again the Chan—Vese functional as an example, the energy cri-
teria is still given through (10), where parameters u and v are

now replaced by their localized version, i.e., u, and v,, which
can be written as

fQ B(x,y)Hs (y)I(y)dy
fo B(x,y)Hy(y)dy

Uy =
(15)
_ Jo B (=Hs3)I(9)dy
[ Bey)(1=Hy(y))dy

Uz

The original method of Lankton and Tannenbaum suggests
the use of a radial mask around interface point x under evalua-
tion. However, in order to maintain low computation costs, we
propose in this paper to restrict the region defined by B to the
set of points belonging to the normal direction of the interface
at point x and whose distance to x is smaller than a parameter
p. Let us note that this framework has been recently proposed
and studied by Mille [17]. His results show that this does not
negatively affect the segmentation results, as compared with the
original formulation.

The corresponding mask function B(x,y) can be defined as
B(x,y):{l’ ify:?<+kxN,k€[—p,p] (16)

0, otherwise

where N is the normal vector to the interface at position x and
p the radius of the local neighborhood.

We show in Appendix B that the minimization of (14) with
respect to B-spline coefficients c[k;] leads to the following ex-

pression:
8EL _ d X*
_ * R P *
s = [t (5~ ) ax
r

where gr,(x*) reflects the features of the object to be segmented.

Finally, the expression of the localized region-based energy gra-

dient is thus given by
oEr

Ve delg

a7

/ gr(x")Bi (x* = hk)dx*.  (18)
T

As for the global region-based case, the computation of the
gradient of E';, with respect to a set of B-spline coefficients may
be thus interpreted as convolving feature function g, (x*) with
B-spline 3 (x*) and sampling the result with period .

In this paper, we will use a localized formulation of the
Chan—Vese functional to produce the results given in Section IV.
In this case, gr(x*) = (I(x) — uz)? — (I(x) — v,)?, and
expression (17) may be written as

oF = = x*

o = (6= = (16 =) (3 s
' (19)

where u, and v, now represent the intensity means in the in-

terior and exterior of the evolving interface localized by B at

point x.

In the same way, other classical energy functional such as the
one proposed by Yezzi et al. in [8] or Michailovich ef al. in [9]
can be easily formulated into localized versions and integrated
within our B-spline explicit framework.
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Fig. 1. Illustrative 3-D surface compact representation through an explicit function in the spherical domain. (a) Correspondence between the Cartesian and spher-
ical domains. (b) Explicit function in the spherical domain. (c) Explicit function converted to the Cartesian space.

III. IMPLEMENTATION

A. Coordinate System

The choice of the coordinate system should be done ac-
cording to the topology of the object to be segmented. For
instance, taking the simple example of a closed 3-D object, a
possible choice could be the use of an explicit surface defined
in spherical coordinates. In such case, the radius of the points
within the boundary surface would be given as a function of
both the azimuth and zenith angles. Obviously, this formulation
implies that all the boundary points can be “seen” from the
origin of the coordinate system. This limits the degree of
complexity of the shapes that can be accurately represented by
such an explicit function. On the other hand, the dimensionality
reduction is quite obvious since a 3-D surface can be compactly
represented by a 2-D function defined on a rectangular grid in
the spherical domain. This is shown in the example presented
in Fig. 1. Naturally, the choice of an appropriate coordinate
system should be accompanied with the proper definition of
the origin since the representation of some shapes might be
impossible otherwise.

B. Problem Discretization

In order to make it computationally tractable, the segmenta-
tion problem has to be discretized. Indeed, the image informa-
tion is available only on a discrete grid, which implies the dis-
cretization of the chosen feature function g(x*). Furthermore,
the number of points within the interface needs to be defined in
order to discretize convolution integrals (11) and (18) driving
the interface evolution. We assume here that the explicit sur-
face is defined over an n—1-dimensional rectangular grid in the
chosen coordinate system. This grid is then discretized in a uni-
form way using N, points. Two main factors drive the choice of
number of discretization points:

1) The complexity of shape to be recovered: N; should be
indeed large enough to capture the level of shape detail
required for the application;

2) The complexity of the image properties: whenever the im-
ages features are spatially inhomogeneous, it is desirable
to use a discretization grid which guarantees that the image
information is extracted in a dense manner for the interface
evolution.

Taking the examples shown in the sequel, 1024 points (32x32
grid) were used to segment the relatively simple shapes corre-
sponding to 3-D liver tumors and left ventricles (see Figs. 6 and
7), whereas 16,384 points (128 x 128 grid) were needed to seg-
ment the more complex shape corresponding to the 3-D squirrel
(see Fig. 5).

C. Surface Evolution

In order to minimize the energy criterion, a modified version
of the gradient descent with feedback step adjustment algorithm
was used [18]. The B-spline coefficients will evolve as

(1) — o™ 4 A2F

clk] = c[k]'" + Aac[k](t)'

At each step, the energy associated with the update of the
B-spline coefficients to ¢[k](**1) is calculated. If this leads to
a decrease in the energy criterion, the update is considered suc-
cessful and B-spline coefficients c[k](**1) are kept to the next
iteration and step size A is multiplied by factor ay > 1. If not,
c[k]*+1) are still kept, but the step size of the next iteration will
be more conservative by dividing the step size by ny > 1. If
a new energy minimum is not found in a few iterations, the al-
gorithm exits, and the last energy minimum is taken as the seg-
mentation result. This way, the algorithm is still able to escape
small local minima and better converge to the optimal solution.

(20)

D. Algorithm Implementation

In order to provide an overview of the key processing blocks
of the proposed method and to potentiate its reproducibility, the
different steps of the algorithm are shown in Table 1.

For the sake of clarity, A is the update step, as defined in
(20), whereas ItSThreshola corresponds to the number of iter-
ations that the algorithm is allowed to continue without finding
a new energy optimum.

E. Computational Cost

The complexity of our algorithm depends on the support of
the discrete B-spline kernel. More specifically, it essentially de-
pends on its chosen degree d. The support of a 1-D discrete
B-spline of degree d expanded by factor h is given by (d +
1)h. Calling n the dimensionality of the image data and con-
sidering that the object contour can be effectively represented
by an n — 1-dimensional explicit surface discretized over N™ 1
points, the number of spline knots is then (N/h)"~!. The cost of



TABLE I
BEAS ALGORITHM IMPLEMENTATION

e Define an appropriate coordinate system (e.g.: a polar
for a 2D closed contour)

o Define the origin of the chosen coordinate system

o Initialize ¥ (x*) and sample the surface at the chosen
discretization grid

o [Initialize final segmentation result v f;,,4; (X*)=1(x*)

o Set the gradient descent parameters:Aryi¢ial, 17 and
ItsThreshold

Initialize

While ([ts<Itsprq, and counter <ItSTpreshold)

o Estimate image feature for the current interface posi-
tion, g(x*), from the set of discretized points

o Compute energy gradient, V.E, with respect to the
B-spline coefficients c[k;], as shown in (13)

« Update B-spline coefficients c[k;], as shown in (20)

o Re-sample 1)(x*) to get the new discretized interface
points

o If the update leads to a decrease in the energy criteria

o counter =0
o A= )‘Initial

o ¢final(X*) = T/J(X*)

Run

o Else
o counter = counter + 1
o A=A+n5

e End If

o Its=1Its+1

End While

computing one update (20) of the B-spline coefficients ¢[k](**+1)
is dominated by convolution (13). Because of separability, the
downsampling can be applied on the fly, and the overall cost for
updating all coefficients in (20) is

(1— A1)

Kexp = NN e 2
P (d+ ) (1_h,1)

2D

IV. EXPERIMENTS

A. Segmentation Parameters

In order to evaluate the proposed algorithm, several exper-
iments were carried out on both simulated and real data. The
following settings are applied to all experiments.

1) We use a cubic B-spline function as basis for the BEAS
representation. This function provides a good tradeoft be-
tween smoothing properties and computational cost.

2) Except otherwise mentioned, the segmentation functional
is the localized Chan—Vese functional.

3) The parameters that adjust the steps of the gradient descent
are fixed as A = Ajpitial = 1, @y = 1, and ny = 1.1.

The number of points used to discretize the interface, in polar
(2-D experiments) or spherical coordinates (3-D experiments),
as well as the scale parameters, which are denoted by N, and h,
respectively, are specified for each result. The size of neighbor-
hood B(z,y), i.e., p, is also indicated when the local version of
the algorithm is used.

We also give the CPU time of the computation, performed on
a 2.8-GHz Core Duo laptop, with 3-GB random access memory
running Ubuntu. Except otherwise mentioned, these CPU times
refer to a C++ implementation.

Fig. 2. Influence of the scale factor on the smoothness of the final segmen-
tation result. (a) Ground truth (contour in green and initialization in red).
(b)—(f) Segmentation results using the (yellow contour) proposed BEAS
approach for varying scales (1, 2, 4, 8, and 16, respectively). IV, is set to 256
for this experiment.

B. Interface Smoothness Control

The first experiment aims at illustrating the intrinsic smooth-
ness control through the scale factor in the B-spline kernel. To
this end, the proposed method was applied to a binary leaf image
containing various levels of details using the global version of
the approach, as given in (13), and the Chan—Vese functional.
As shown in Fig. 2, the increase in the scale parameter clearly
controls the degree of smoothness of the curve, acting, there-
fore, in a similar way as curvature-related penalties.

C. BEAS Versus Original AGF Formulation

In order to demonstrate the computational advantages of the
use of B-spline basis, instead of the ones used in the original
AGF framework, we used the same example image as Duan
et al. [12]. This test image is made of two regions having dif-
ferent standard deviation separated by a sinusoidal boundary.
The segmentation energy used by Duan et al. is based on this
standard deviation difference and is given as

{ fin=(o(x) - 3)22
Jfout = (0(x) — 1)

where o(x) is the local standard deviation computed in a 7x7
neighborhood around x and s and ¢ are the average standard de-
viation of the inside and outside regions. The original AGF were
tested using two different expression of the explicit contour (i.e.,
a sine function or a cubic Hermite polynomial) and two different
initializations (i.e., close and far from the solution).

In order to provide a consistent comparison with the original
AGF framework, we performed the segmentation using the
global version of our approach using the same functional given
in (22). The segmentation results are shown in Fig. 3. Table II
provides the related quantitative results in terms of accuracy
(measured as the root mean square error) and computation
times. Note that, in this particular experiment, all computation
times correspond to a simple MATLAB implementation of
our approach in order to provide a consistent comparison with

(22)



Fig. 3. Segmentation of a simulated image using the BEAS algorithm. (a) Re-
sult using a close initialization. (b) Result using a far initialization. (Green) The
true boundary, (yellow) the initial contour, and (red) the segmentation result
(N, = 16,h = 4).

TABLE II
COMPARISON BETWEEN BEAS AND ORIGINAL AGF FRAMEWORK

. . . Sine Cubic
Surface basis Cubic B-Spline Function2! | Hermite [12!
Initialization Close Far Close  Far | Not referred
Number of iterations 25 58 10 25 Not referred
Total CPU time (ms)| 32.7 104.0 210 425 3590
RMSE (px.) 1.22 1.56 1.26 1.40 1.66

the MATLAB implementation used in [12]. Note that no C++
routines are called in our MATLAB code.

Table II shows that the proposed B-spline explicit framework
yields a computational speedup when compared with the orig-
inal formulation while presenting comparable accuracy. This is
related with the convolution-based evolution of the segmenta-
tion energy in the B-spline framework. In particular, even when
the AGF uses a sine function as the explicit contour, which im-
plies a strong a priori, the B-spline formulation presents smaller
computational burden.

D. B-Spline Explicit Active Surface Versus Fast Level-Sets

In order to show the computation speed of the pro-
posed approach, the BEAS algorithm was compared with
a state-of-the-art approximation of level-set-based segmen-
tation method for real-time segmentation, i.e., the so-called
FTC algorithm recently proposed by Shi and Karl [19]. In the
FTC, the level-set evolution is separated into two cycles: 1) one
cycle for the data-dependent term and 2) a second cycle for
the smoothness regularization. The speed of the FTC algorithm
then results from two main features: 1) It uses a discrete ap-
proximation of a narrow-band levet-set that yields evolution
without the need of solving partial differential equations, and
2) the smoothing curvature term is approximated by Gaussian
filtering of the interface. The FTC algorithm is controlled via
four parameters: 1) the number of iterations of the data-depen-
dent cycle N,; 2) the number of iterations of the smoothing
cycle N,; 3) the variance of the Gaussian filter JZ; and 4) the
number of points used to numerically approximate filter N,.

In order to evaluate the methods, two simulated data sets cor-
responding to the 3-D squirrel shape were generated. The first
data set is simply a 3-D binary image of the squirrel, whereas
the second corresponds to an inhomogeneous version of the

Fig. 4. Segmentation of the 3-D squirrel data set. (a) Three-dimensional ren-
dering of the binary data. (b) XZ and (c) YZ slices through the inhomogeneous
3-D data set.

squirrel, obtained by linearly varying the gray levels of the ob-
ject and the background in the z-direction, as shown in Fig. 4.
The dimensions of these two data sets are 296 x 215 x 296.

The parameters of the two approaches were set as follows.
Concerning the FTC, parameters N,, N, og, and N, were set
to 30, 3, 1, and 3, respectively, as in the original paper [19]. The
proposed BEAS approach was applied using the global energy
criterion and the scale set to one (h = 2), and the interface was
evolved through two strategies: 1) direct evolution, i.e., the ex-
plicit surface was modeled using a 128 x 128 points grid and the
segmentation was performed by directly evolving this surface,
and 2) two-steps evolution, i.e., a fast and approximate solution
was first obtained using a 32 x32 grid. This solution was then
upsampled and used as the initialization to the evolution of the
final 128 x 128 grid.

Both methods were first applied to the binary squirrel using
the same threshold-based functional described in [19], and
the same initialization (a box around the squirrel) was used.
Fig. 5(c)—(d) display the obtained segmentations and qualita-
tively show a very close agreement between the FTC and the
proposed approach. Table IIT (first three columns) shows the
performances of the two methods, in terms of accuracy (mea-
sured as the Dice coefficient) and computation times. The Dice
coefficients confirm the agreement between FTC and BEAS
(0.9878 for the direct evolution and 0.9863 for the two-step
evolution). Table III also indicates that the proposed BEAS
approach yields significantly reduced computation times, as
compared with FTC (speed up factor of about 25 and 46 for the
direct evolution and two-step evolution, respectively), allowing
real-time 3-D segmentation.

In order to test the influence of the region term localization
in terms of accuracy and speed, the BEAS approach, equipped
with the local Chan—Vese functional (see Section II-D), was
then applied to the inhomogeneous squirrel (p = 7). Only the
two-step evolution was tested since it provides more robust-
ness regarding the initialization and reduces the computational
burden of the method. Fig. 5(e) displays the obtained segmen-
tation, and Table III (last column) shows the resulting perfor-
mances. These results show that the agreement with the ref-
erence is in the same order as in the above global case. The
inclusion of the local Chan—Vese functional has a significant
impact on the computational times (0.636 s for the two-step
evolution). Nevertheless, it allows segmenting this challenging
data while still being almost five times faster than the FTC



Fig. 5. Segmentation results of the 3-D squirrel data. (a) Initialization. (b) FTC [binary + threshold functional]. (¢) BEAS [binary + threshold functional +
direct evolution]. (d) BEAS [binary data+threshold functional+two-step evolution]. (¢) BEAS [inhomogeneous+local ChanVese functional+two-step evolution].

h = 2 for all the BEAS results.

TABLE III
COMPARISON OF SEGMENTATION PERFORMANCE BETWEEN BEAS AND FTC

. BEAS BEAS BEAS
Algorithm Direct Evolution 2 steps Evolution FIC [19] 2 steps Evolution
Functional Threshold Threshold Threshold Local Chan-Vese

Data Reference Reference Reference Inhomogeneous
Dice 0.9878 0.9863 1 (Reference) 0.9875
CPU time (s) 0.118 0.067 3.1 0.636

method applied on homogeneous data and using a much sim-
pler threshold-based functional. It is important to stress that for
this case, the segmentation is not truly real-time. Nonetheless,
this is a very challenging case that requires a large sampling grid
to capture all the shape details. In real-life applications, as the
ones presented in the next two examples, the shape of the objects
to recover are simpler, and thus, smaller sampling grids may be
used, which allows us to achieve accurate 3-D segmentation re-
sults in real-time.

Overall, these results thus show that the proposed approach
has a significantly lower computation burden than the fastest
approximation of the level-set-based method while having si-
multaneously accurate segmentation results. Note, however, that
these features are obtained in part by limiting the admissible sur-
faces to starlike shapes.

E. Segmentation Performance in Clinical Data

Here, the segmentation of liver tumors in computer tomog-
raphy (CT) data is used as a clinical example of another possible
application of the proposed framework. Because these tumors
generally have different shapes and intensities, the segmentation
is not straightforward [20]. The gray values of a tumor depend
on several properties, such as the type of tumor, the delay be-
tween the contrast injection and the image acquisition, the con-
trast dose, and the patient physiology. Therefore, a simplified
energy functional as the one originally proposed in the work
of Duan et al. will not be suited for this segmentation task.
The energy functional used for this example was the localized
Chan—Vese functional given in (19).

The proposed algorithm was evaluated in ten tumors from
four patients, used as training data of the “3-D Segmentation
in the Clinic: A Grand Challenge II” in MICCAI2008 [21]. The
liver tumor data of the MICCAI2008 challenge were acquired

Fig. 6. Example of a liver tumor segmented with the proposed method. Initial-
ization in the (a) axial, (b) coronal, and (c) sagital planes. (d)—(f) Segmentation
results. (Red) BEAS. (Green) Manual reference.

on one 64-slice and two 40-slice CT scanners using a standard
four-phase contrast-enhanced imaging protocol with slice thick-
ness of 1-1.5 mm and an in-plane resolution of 0.6—0.9 mm. The
initialization was taken as a sphere centered in the tumor, with
a user-defined radius. This information was extracted from two
clicks from the user. Given the significant variations in tumor
size, radius p for the local parameter estimation was defined
as 1/3 of the radius of the initial sphere. Regarding the surface
evolution strategy, it was chosen to simply evolve it with the
aforementioned direct evolution approach, using a 32 x 32 grid.
B-spline scale parameter & was set to 4.

The proposed BEAS approach is compared with the state-of-
the-art liver tumor segmentation method by Smeets et al. [20].
Note that this algorithm was the one that performed best on the
MICCAI2008 challenge. It is important to stress that the amount
of user input is similar to the proposed method (two user clicks).



Fig. 7. Segmentation results for (1) simulated and (2) real 4-D ultrasound data [end-diastolic phase: (a) triplane view + 3-D rendering, (b) short-axis view, and

(c)—(d) long axes views].

TABLE IV
BEAS SEGMENTATION PERFORMANCE ON LIVER TUMORS

Method proposed

BEAS in [20]
Overlap error (%) 23.9 23.6
Volume Difference (%) 4.4 7.4
Mean Distance (mm) 1.6 1.2
RMS Distance (mm) 2.1 2.4
Maximum Distance (mm) 6.4 7.3

CPU time (min-max, s) 0.025-0.06 20-120

One example of a tumor segmented with the proposed al-
gorithm is shown in Fig. 6. The quantitative performances of
the two algorithms are presented in Table IV. It may be ob-
served that the accuracy of the proposed algorithm is compa-
rable to the algorithm proposed by Smeets et al. [20]. How-
ever, the BEAS framework has a significantly smaller compu-
tational burden since it took, on average, 0.035 s to converge to
the segmentation solution, whereas the algorithm proposed in
[20] yields computation times ranging from 20 s up to 2 min-
utes. Note that both algorithms use C++ implementations.

FE. Tracking Performance in Clinical Data

One of the main advantages of the low computational burden
of the proposed method is the possibility to employ it to seg-
ment temporal sequences. The original framework of Duan
et al. [12], [13] focused on the segmentation of 4-D echocar-
diographic data. Here, we thus perform a feasibility study

on the performance of the proposed method in a simulated
inhomogeneous 4-D volume and a clinically recorded data set
of regular image quality.

The BEAS method was initialized with a small ellipsoid,
which was scaled and centered in the left ventricular cavity
with user input. Note that this simple initialization can be easily
substituted by an automatic approach, as the one proposed in
[22]. The proposed algorithm segmented each frame. Moreover,
the segmentation obtained for the current frame is used as the
initialization for the next frame. The parameters used for all
experiments were N, = 32 X 32, h = 4, and p = 15.

The first example is a 4-D realistic data set of the left
ventricle, simulated using COLE, a research ultrasound sim-
ulator available at the Medical Imaging Research Center of
the Katholieke Universiteit Leuven. The size of the simulated
volumetric data is 282 x 282 x 282, with an isotropic voxel size
of 0.46 mm. Further details on the data simulation parameters
and on the simulator algorithm can be found in [23] and [24].
In the present simulation, the contrast between the myocardium
and the blood pool varies within the wall, introducing therefore
inhomogeneities in the data. Such type of artifacts are very
common in 3-D chocardiographic data in clinical practice [25].

The second example consists in a clinically recorded data
set of regular image quality. This data set was acquired from
a healthy volunteer using a GE Vivid 7 system equipped with a
3-V probe, using ECG gating over six cardiac cycles during a
single breath hold, resulting in an acquisition rate of 31.5 frames
per second.
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Fig. 8. Volume curves extracted from the tracking using the proposed method. (a) Simulated data. (b) Real data.

The segmentation results obtained for the simulated and clin-
ical data at end-diastole are shown in Fig. 7.

On average, the proposed method was able to converge to the
final result in 18.2 iterations for the simulated data and in 9.8 it-
erations for the real data, for each frame. The corresponding av-
erage computation times were 25 ms for the simulated data and
12.5 ms for the clinical data, thus surpassing the available 4-D
echocardiography image acquisition rate, which was 31.5 ms
per frame using ECG gating. The videos with the tracking are
available in the multimedia materials available with the online
version of this paper.

In order to assess the reproducibility of the segmentation, the
method was applied to three consecutive cardiac cycles and the
left ventricular volumes computed for each frame. The resulting
temporal volume evolution is shown in Fig. 8. In both cases,
there is good agreement in the volume curves of the tracking in
the subsequent cycles. Furthermore, all volume traces present
a correct physiologic shape, where the different phases of the
cardiac cycle can be easily identified.

As a quantitative measure of the quality of the tracking, the
ejection fraction (EF) values (EF = (EDV—ESV)/EDV, where
ESV is the end-sytolic volume and EDV is the end-diastolic
volume) was used since it is the main cardiac index extracted
from volume curves. The reference EF value for the simulated
data set is 60%. As it is shown in Fig. 8, the EF values ex-
tracted from the volume curves for the simulated data set are
in the range 59.8%—-60.9% and are thus very close to the refer-
ence value. For the clinical case, the extracted EF is within the
expected range for a healthy young subject.

V. CONCLUSION

We have introduced in the present paper an extension to the
original AGF framework introduced by Duan ef al., further ex-
panding the computational efficiency due to a B-spline formu-
lation, which allows expressing the interface evolution as fast
separable 1-D convolutions. The time saved in the interface evo-
lution can be then used to include more advanced segmentation
energies, which can be analytically integrated into the explicit
framework, given its intrinsic mathematical link with level-set
methods. It is to be noted that these features are obtained in part

by limiting the topology and shape of the interface. In particular,
this limitation makes the proposed approach adapted to med-
ical image segmentation tasks, where the objects to be recov-
ered have often only one connected component. This is the case
of the examples presented in this paper (3-D echocardiographic
data and CT liver tumor images) and could be easily extended
to other image modalities and organs. Moreover, the ability of
the proposed framework to efficiently deal with challenging 3-D
segmentation in real-time makes it particularly relevant in clin-
ical segmentation tasks, where such feature is often desirable to
provide a smooth workflow for the physician.

APPENDIX A
ENERGY DERIVATION FOR GENERAL REGION-BASED FORCES

We consider here the differentiation of global region-based
energy criterion E¢g (8) with respect to a given B-spline coeffi-
cient c[k;]. For brevity sake, let us skip the function arguments
and assume that f;, and f,.; do not explicitly depend on ¢.
Using differentiation with respect to parameter c[k;], we have

[t o0,
B dclk;]

JdEg
8c[ki]

(23)

Q

The derivative of region term F'(x, Hy(x)) with respect to ¢
may be expressed as

OF (x, Hy(x))
d¢

where g(X) = fin(X) — fout(X). Noting moreover that, from (2)

and (7), we have
d x*
= il
# (5 -x)

and using the general relation between levet-set and AGF given
in (6), we finally obtain (11) and (12).

= 9(x)84(x) 24)

99
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(25)

APPENDIX B
ENERGY DERIVATION FOR LOCALIZED REGION-BASED FORCES

We consider here the differentiation of general localized re-
gion-based energy criterion Fp, (14) with respect to a given



B-spline coefficient c[k;]. Using differentiation with respect to
parameter c[k;], we have

F(y, Hy(y)) 06(y)
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As suggested in [11], 8),(-) evaluates to zero near the zero
levet-set (i.e., the evolving interface I'). As such, it does not
affect the movement of the interface, and we ignore this term.
Equation (26) thus becomes

O5L_ [ b0 [ Bl LN 2 1 |

Ocfk;) a¢ [k;
Q Q
27
Noting that the derivative of the local term may be written as
OF (y, Hy(y)) _
5 91(¥)64(3) (28)
we obtain
dEr 9P(y)
=/ B 0 dy | d
Q Q

(29)

Noting that B(x, y)d,(y) is only different than zero if y = x,
we have

B(x,y)04(y) = 6(y — x). (30)

As a consequence, the inner integral can be simplified,
leading to the following expression:

aaf[ii] = /gL(x)6¢(X) gf[(lz% dx. 3D

Q

Now getting use of (6) and (25), the previous equation yields
equation (17).
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