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Non-Gaussian fluctuations of the giant cluster

for percolation on random recursive trees

Jean Bertoin∗†

Abstract

We consider a Bernoulli bond percolation on a random recursive tree of size n ≫ 1,

with supercritical parameter pn = 1− c/ ln n for some c > 0 fixed. It is known that with

high probability, there exists then a unique giant cluster of size Gn ∼ e−c. We show here

that Gn has non-gaussian fluctuations. The approach relies on the analysis of the effect

of percolation on different phases of the growth of recursive trees.

Key words: Random recursive tree, giant cluster, fluctuations, super-critical percolation.

1 Introduction and main result

A famous result due to Erdös and Rényi shows that Bernoulli bond percolation on the complete

graph with n vertices and with parameter c/n for c > 1 fixed, produces with high probability

as n → ∞, a unique giant cluster of size Γn ∼ θ(c)n, where θ(c) is the strictly positive solution

to the equation x + e−cx = 1. It has been known since the work of Stepanov [20] that the

fluctuations of Γn are normal, in the sense that

Γn − θ(c)n√
n

=⇒ N (0, σ2
c ),

where as usual N (0, σ2
c ) denotes a centered Gaussian variable with variance σ2

c , and ⇒ means

convergence in law. See also e.g. Pittel [18] and Barraez et al. [1] for alternative proofs

and refinements. Since then, several results have appeared in the literature, establishing the
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asymptotic normality of giant components for various random graph models. We refer in

particular to Behrisch et al. [2], Bollobàs and Riordan [6], and Seierstad [19].

The purpose of the present work is to point at a much different asymptotic behavior for the

giant cluster resulting from supercritical bond percolation on a large random recursive tree.

Recall that a tree on an ordered set of vertices, say [n] = {1, . . . , n}, is called recursive if when

rooted at 1, the sequence of vertices along any branch from the root to a leaf increases. The

terminology stems from the fact that such trees can be constructed recursively, incorporating

each vertex one after the other in the natural order to built a growing tree. See Drmota [9] for

background and further references.

We denote by Tn a recursive tree picked uniformly at random amongst the (n−1)! recursive

trees on [n]. Equivalently, Tn can be constructed recursively by creating for ℓ = 1, . . . , n − 1

an edge between the vertices ℓ + 1 and uℓ, where uℓ has the uniform distribution on [ℓ] and

u1, . . . , un−1 are independent. Given Tn, we then perform a Bernoulli bond percolation with

parameter

pn = 1− c

lnn

where c > 0 is some fixed parameter. It is easy to show that this choice of the percolation

parameter corresponds precisely to the supercritical regime, in the sense that with high prob-

ability for n ≫ 1, the cluster containing the root is giant with size Gn ∼ e−cn. At this point,

it may be interesting to briefly sketch the proof of this result, referring to [4] for details.

Pick a vertex un uniformly at random in [n], and denote its distance to the root by hn.

Then it is well known that hn ∼ lnn, and since the first moment of n−1Gn coincides with the

probability that un is connected to the root, one gets

E(n−1Gn) = E

(

(

1− c

lnn

)hn
)

∼ e−c.

Similarly, if vn denotes a second uniform vertex chosen independently of the first, then the easy

fact that the height of the branch point of un and vn remains stochastically bounded yields

the second moment estimate E((n−1Gn)
2) ∼ e−2t, from which the law of large numbers for Gn

follows.

Since it is also well-known that hn is asymptotically normal (see Devroye [8]), this might

suggest that the same could also hold for Gn. The main result of this work shows that, as a

matter of fact, this is not the case. In order to give a precise statement, recall that a real-valued

random variable Z has the so-called continuous Luria-Delbrück law when its characteristic
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function is given by

E(eiθZ) = exp
(

−π

2
|θ| − iθ ln |θ|

)

, θ ∈ R .

This distribution arises in limit theorem for sums of positive i.i.d. variables in the domain of

attraction of a completely asymmetric Cauchy process; see e.g. Geluk and de Haan [11], Möhle

[16], and further references therein. Its role in the context of large random recursive trees was

observed first by Drmota et al. [10] and Iksanov and Möhle [12], in relation with a random

algorithm for the isolation of the root. See also the comments (a) and (b) in the forthcoming

Section 4.

Theorem 1 There is the weak convergence

(

n−1Gn − e−c
)

lnn− ce−c ln lnn =⇒ −ce−c (Z + ln c) ,

where the variable Z has the continuous Luria-Delbrück distribution.

The details of the proof of Theorem 1 combined with earlier results in the literature provide

explanations for the anomalous fluctuations of Gn. In the sequel, it will be convenient to agree

that the edges are enumerated naturally in the order induced by the construction, i.e. the ℓ-th

edge refers to the edge linking the vertex ℓ to its parent uℓ−1. Roughly speaking, one can then

distinguish three phases.

Because in percolation, each edge is removed with probability c/ lnn, the first edges which

are removed correspond to an early phase when the growing tree has size of order lnn. During

this phase, only a stochastically bounded number of edges are removed, and it has been shown

in [5] that the percolation clusters corresponding to those edges will eventually have size of

order n/ lnn when the construction is completed. Informally, this is the source of the random

fluctuations involving the Luria-Delbrück variable in Theorem 1.

There is then an intermediate phase when the tree grows from a size of order lnn to the

size ⌊ln4 n⌋, during which about c ln3 n edges are removed. Each of the percolation cluster born

during this phase has only size o(n/ lnn) at the end of the process. However, the cumulative

effect of these clusters is nonetheless visible and yields the deterministic correction involving

the iterated logarithm factor in Theorem 1.

In the final phase when the recursive tree grows from size ⌊ln4 n⌋ to size n, the root cluster

grows essentially regularly, i.e. without inducing further fluctuations. We point out that the

threshold ln4 n appearing in this work is somewhat arbitrary, and lnα n with α close to 4 would
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work just as well. It is however crucial to choose a threshold which is both sufficiently high so

that fluctuations are already visible and spread afterwards quite regularly, and also sufficiently

low so that one can estimate the germ of fluctuations with the desired accuracy.

The rest of this paper is mainly devoted to the proof of Theorem 1. The starting point of our

analysis is that it is useful to incorporate percolation during the recursive construction of Tn,

rather than first constructing completely Tn and then performing percolation. In Section 2, we

interrupt the construction of the random recursive tree when it attains the size k = ⌊ln4 n⌋ and
perform a percolation on Tk with parameter pn. We obtain a precise estimate of the number

∆k of vertices of Tk which are disconnected from the root; this can be viewed as the germ of

the anomalous fluctuations for ∆n. In Section 3, we resume the construction of the random

recursive tree from the size k = ⌊ln4 n⌋ to the size n. Using the basic connexion between random

recursive trees and Yule processes, we show that the germ of the anomalous fluctuations ∆k

spread regularly. Finally, Section 4 contains some miscellaneous comments.

2 The germ of anomalous fluctuations

Imagine that we interrupt the construction of the random recursive tree when it reaches size

k = ⌊ln4 n⌋; plainly this yields a random recursive tree of size k which we denote by Tk. Our

purpose in this section is to estimate precisely the number of vertices which are disconnected

from the root when one performs a bond percolation on Tk with parameter pn. It is convenient

to work with the parameter k rather than n, that is we write pn = qk and note the change in

the asymptotic regime of the percolation parameter as a function of the size of the tree :

qk = 1− ck−1/4 + o(k−1). (1)

We shall establish the following limit theorem in law.

Proposition 1 As k → ∞, there is the weak convergence

k−3/4∆k −
3

4
c ln k =⇒ c (Z + ln c)

where Z has the continuous Luria-Delbrück distribution

The rest of this section is devoted to the proof of Proposition 1. Our guiding line is similar

to that in [3], although the percolation parameter there had a different asymptotic behavior.

Namely we shall work with a continuous-time version of percolation in which edges are removed
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independently one of the others at a given rate, and consider the process that counts the number

of vertices which are disconnected from the root as time passed. It suffices to focus on the cuts

made to the root-cluster, and we interpret the latter as a continuous-time version of a random

algorithm introduced by Meir and Moon [14, 15] for the isolation of the root. In turn, this

enables us to use a coupling due to Iksanov and Möhle [12] and reduces the problem to the

analysis of the asymptotic behavior of a remarkable random walk in the domain of attraction

of a completely asymmetric Cauchy distribution.

We shall follow the route sketched above, but in the reverse order for an easier articulation

of the argument. To start with, we recall briefly an asymptotic result on a random walk which

plays an important role in the study of the isolation of the roof for random recursive trees. Let

ξ denote an integer-valued random variable with law

P(ξ = j) =
1

j(j + 1)
, j = 1, 2, . . . (2)

We consider the random walk

Sℓ = ξ1 + · · ·+ ξℓ , ℓ ∈ N ,

where the ξi are independent copies of ξ. According for instance to [11], there is the weak

convergence

ℓ−1Sℓ − ln ℓ =⇒ Z (3)

where Z has the continuous Luria-Delbrück law.

Iksanov and Möhle have pointed at a useful coupling which connects the preceding random

walk and an algorithm of Meir and Moon [14, 15] for the isolation of the root. Following Meir

and Moon, we define recursively a decreasing sequence of subtrees

Tk = Tk(0) ⊃ Tk(1) ⊃ . . .

as follows. We pick a first edge uniformly at random amongst the k−1 edges of Tk and remove

it, which disconnects Tk into two subtrees. We denote by Tk(1) the subtree which contains the

root and imagine that the subtree which does not contain the root is set aside. Then we pick

second edge uniformly at random in Tk(1), remove it. We write Tk(2) for the subtree which

contains the root, set the other subtree aside, and iterate in an obvious way until the root is

finally isolated. We write

Dk(ℓ) = k − |Tk(ℓ)|
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for the number of vertices which have been disconnected from the root after ℓ steps, that is the

sum of the sizes of the subtrees which have been set aside.

Iksanov and Möhle [12] have observed that one may couple the random walk S and the

algorithm of isolation of the root described above in such a way that there is the identity

Dk(ℓ) = Sℓ for all ℓ < N(k) , (4)

where N(k) = min{ℓ : Sℓ ≥ k} denotes the first passage time of the random walk above level k.

See also Lemma 2 in [3] for a statement tailored for our needs. It follows easily that, provided

that the number of removed edges is relatively small, Dk(ℓ) grows nearly linearly. Here is a

rather crude bound which will be however sufficient for our purpose.

Lemma 1 Suppose that ℓ = ℓ(k) fulfills 1 ≪ ℓ ≤ k ln−2 k. Then

lim
k→∞

Dk(ℓ)

ℓ ln2 ℓ
= 0 in probability .

Proof: Indeed, it follows immediately from (3) that

lim
ℓ→∞

Sℓ

ℓ ln2 ℓ
= 0 in probability. (5)

In particular the assumption ℓ ≤ k ln−2 k ensures that ℓ < N(k) with high probability, so we

can use the coupling (4) of Iksanov and Möhle. Then (5) is precisely our statement. �

We now turn our attention to a continuous time version of bond percolation on Tk. We equip

each of its k − 1 edges with an independent exponential variable with parameter k−1/4, and

remove each edge at the time given by this variable. We define

tk = −k1/4 ln qk ,

so that the probability that a given edge has not yet been removed at time tk is exp(−k−1/4tk) =

qk, and the configuration observed at time tk is thus precisely that resulting from a bond

percolation on Tk with parameter qk. Note also from (10) that

tk = c+O(k−1/4) . (6)

As we are only interested in the number of vertices which have been disconnected from the

root at time tn, we may focus on the evolution of the cluster which contains the root. Plainly,
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if we write ρk(ℓ) for the instant when the ℓ-th edge is removed from the root-cluster in this

continuous-time percolation, then the root-cluster at time ρk(ℓ) can be identified as Tk(ℓ), the

subtree obtained by the isolation of the root algorithm after ℓ steps. We will need the following

bounds.

Lemma 2 Take any α ∈ (1/2, 3/4). Then

lim
k→∞

P
(

ρk
(

ck3/4 − kα
)

≤ tk ≤ ρk
(

ck3/4 + kα
))

= 1.

Proof: It should be clear from the dynamics of continuous-time percolation and elementary

properties of independent exponential variables that ρk(ℓ) can be expressed in the form

ρk(ℓ) =

ℓ−1
∑

j=0

k1/4

k −Dk(j)− 1
εj

where ε0, ε1, . . . is a sequence of i.i.d. standard exponential variables, which is further inde-

pendent of the algorithm of isolation of the root (the denominator in the fraction above is the

number of edges of Tk(j), and for j exceeding the number of steps needed to isolate the root,

the general term of the series becomes infinite by convention).

We take first ℓ = ck3/4 − kα and use the obvious lower-bound

ρk(ck
3/4 − kα) ≥ k−3/4

ck3/4−kα−1
∑

j=0

εj.

Elementary arguments based on the computation of first moment and variance show that the

right-hand side can be bounded from below by c − 2kα−3/4 with high probability as k → ∞
(note that α > 3/8).

Similarly, we then take ℓ = ck3/4 + kα and use Lemma 1 to see that with high probability

for k ≫ 1, there is the upper-bound

ρk(ck
3/4 + kα) ≤ k1/4

k − (ck3/4 + kα) ln2 k

ck3/4+kα−1
∑

j=0

εj.

Again, the sum in the right hand side is easily bounded from above by ck3/4 + 2kα with high

probability. On the other hand, the quotient is bounded from above by k−3/4(1+ 2ck−1/4 ln2 k)

whenever k is sufficiently large. Putting the pieces together and recalling that 3/4− α < 1/4,
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we get that

ρk(ck
3/4 + kα) ≤ c+ 3kα−3/4

with high probability for k ≫ 1. We conclude the proof with an appeal to (6). �

We are now able to establish Proposition 1.

Proof: Lemma 2 and an argument of monotonicity show that for any α ∈ (1/2, 3/4), the

bounds

Dk(ck
3/4 − kα) ≤ ∆k ≤ Dk(ck

3/4 + kα)

hold with high probability. On the other hand, we see from (5) that

lim
k→∞

k−3/4Skα = 0 in probability,

and we also know from (3) that

k−3/4Sck3/4 −
3

4
c ln k =⇒ c (Z + ln c) .

It follows that

k−3/4Sck3/4±kα − 3

4
c ln k =⇒ c (Z + ln c) ,

and an appeal to the coupling (4) completes the proof. �

3 The spread of anomalous fluctuations

We now recall the well-known connexion between random recursive trees and the Yule process.

Imagine that once the tree Tℓ of size ℓ = 1, . . . , n− 1 has been constructed, the vertex ℓ+ 1 is

incorporated after an exponential time with parameter ℓ, and then connected by a new edge to

some vertex uℓ ∈ [ℓ] which is picked uniformly at random and independently of the exponential

waiting time. We further mark that edge with probability 1 − pn = c/ lnn, independently

of the preceding events. A mark on an edge indicates that this edge will be removed when

percolation is performed; equivalently it can also be interpreted as a mutation occurring in the

population. The dynamics described above are those of a Yule process with unit rate of birth

per individual and with rare neutral mutations which affect each birth event with probability

c/ lnn, independently of the other birth events.

In this section, we begin our observation of this process with rare neutral mutations once it

has reached the size k = ⌊ln4 n⌋. We thus write Y = (Yt)t≥0 for a standard Yule process started
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from Y0 = k, and consider the time

τ(n) = inf{t ≥ 0 : Yt = n}

at which it hits n. Equivalently, τ(n) is the time needed to complete the construction of Tn

from Tk. We shall first estimate this quantity.

In the sequel, we shall often use the notation

An = Bn + o(f(n)) in probability,

where An and Bn are two sequences of real random variables and f : N → (0,∞) a function,

to indicate that limn→∞ |An − Bn|/f(n) = 0 in probability.

Lemma 3 We have

eτ(n) =
n

ln4 n
+ o(1/ lnn) in probability.

Proof: Elementary properties of Yule processes (see, e.g., Equation (6) in [7]) show that

lim
n→∞

P
(
∣

∣ne−τ(n) − k
∣

∣ > kα
)

= 0 .

for all α > 1/2. In particular, for α < 3/4, this yields

ne−τ(n) =
(

1 + o(ln−1 n)
)

ln4 n in probability.

Our claim follows. �

An individual in the population corresponds to a vertex on the tree, and vice-versa. It is

called a mutant if its ancestral lineage (i.e. its branch to the root) contains at least one mark,

and a clone otherwise. The population of size k at the time when we start our observation

consists in ∆k mutants and k −∆k clones. We focus on the clone population and write Y (c) =

(Y
(c)
t , t ≥ 0) for the process that counts the number of clones as time passes. Because each

clone gives birth to a clone child at rate pn and independently of the other clones, Y (c) is a Yule

process with reproduction rate pn per individual, and started from Y
(c)
0 = k −∆k.

In this framework, it should be plain that the sizeGn of the root-cluster of Tn after percolation

with parameter pn, coincides with the number of clone individuals at the time when the total

population generated by the Yule process reaches n, i.e. there is the identity

Gn = Y
(c)
τ(n) . (7)
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One readily get the following estimate.

Lemma 4 We have

Gn = epnτ(n)
(

ln4 n−∆k

)

+ o(n/ lnn) in probability,

Proof: Again from the basic estimate of Equation (6) in [7] and the fact that Y
(c)
0 ≤ k, we

have for any α > 1/2 that

lim
n→∞

P

(
∣

∣

∣
e−pnτ(n)Y

(c)
τ(n) − Y

(c)
0

∣

∣

∣
> kα

)

= 0 .

We choose α < 3/4 and deduce that

Y
(c)
τ(n) = epnτ(n)

(

ln4 n−∆k

)

+ epnτ(n)o(ln3 n) , in probability.

Since pn ≤ 1, we see from Lemma 3 that

epnτ(n)o(ln3 n) = o(n/ lnn) ,

and our claim follows from (7). �

We have now all the ingredients to establish Theorem 1

Proof of Theorem 1: First, it is convenient to apply Skorokhod’s representation theorem

and assume that the weak convergence in Proposition 1 holds in fact almost surely. This enables

us to write

ln4 n−∆k = ln4 n− ln3 n (3c ln lnn+ c(Z + ln c)) + o(ln3 n) , almost surely,

and then to re-express Lemma 4 in the form

Gn = epnτ(n)
(

ln4 n− ln3 n (3c ln lnn+ c(Z + ln c))
)

+ o(n/ lnn) , in probability.

We next note from Lemma 3 that

epnτ(n) =

(

n

ln4 n
+ o(1/ lnn)

)1−c/ lnn

, in probability,
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and it follows from a couple of lines of calculations that

epnτ(n) = e−c n

ln4 n
+ 4ce−cn

ln lnn

ln5 n
+ o(ln−1 n) , in probability.

Another line of calculation yields

Gn = e−cn+ ce−cn
ln lnn

lnn
− ce−c n

lnn
(Z + ln c) + o(n/ lnn) , in probability,

which completes the proof. �

It may be interesting to point out that the same technique can be applied to estimate the

descent of the initial mutant population. Specifically, the sub-population that stems from the

∆k mutants at the initial time is described by a Yule process Y (m) with unit birth rate per

individual and started from Y
(m)
0 = ∆k. It should be plain that Y

(m)
τ(n) coincides with ∆k,n, the

number of vertices i ∈ [n] such that, on the branch from i to the root 1, at least one edge

with label at most k is removed when performing percolation. From the same argument as in

Lemma 4, one can check that for any 1/2 < α < 1,

lim
n→∞

P
(
∣

∣∆k,n − eτ(n)∆k

∣

∣ > eτ(n)kα
)

= lim
n→∞

P

(
∣

∣

∣
e−τ(n)Y

(m)
τ(n) − Y

(m)
0

∣

∣

∣
> kα

)

= 0 .

It follows that

∆k,n = eτ(n)∆k + o(n/ lnn) in probability. (8)

On the one hand, recall from Lemma 3 that eτ(n)kα = o(n/ lnn) in probability. On the other

hand, combining Proposition 1 and Lemma 3, we get

lnn

n
eτ(n)∆k − 3c ln lnn =⇒ c (Z + ln c) ,

and we conclude that
lnn

n
∆k,n − 3c ln lnn =⇒ c (Z + ln c) . (9)

More precisely, this weak convergence holds jointly with that in Theorem 1, as we can see from

Lemma 4 and (8)

4 Miscellaneous comments

For the purpose of this section, it is convenient to rewrite Theorem 1 in terms of ∆n = n−Gn,

the number of vertices in Tn which are disconnected from the root after performing a bond
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percolation with parameter pn. We have then

(

n−1∆n − (1− e−c)
)

lnn+ ce−c ln lnn =⇒ ce−c (Z + ln c) . (10)

We also introduce a standard Luria-Delbrück variable Zm with parameter m > 0, which has

generating function

E
(

sZm
)

= (1− s)m(1−s)/s , 0 ≤ s ≤ 1 .

Recall that as m → ∞, there is the weak convergence

Zm

m
− lnm =⇒ Z (11)

where Z has the continuous Luria-Delbrück distribution. See Pakes [17] or Theorem 4.1 in

Möhle [16].

(a) It has been argued that for certain populations models with a small rate of neutral

mutation, the number of mutants has a Luria-Delbrück law ; see Section 2 in Kemp [13] and

references therein. In this setting, the parameter is given by m = gN(a + g) where N is the

total population size, a the rate of birth of clones, and g the rate of birth of new mutants. We

stress however that, as pointed out by Kemp, the models leading to these Luria-Delbrück laws

‘involve simplifying assumptions that leave realism somewhat in doubt’.

In our framework, interpreting the recursive construction of Tn as a Yule process and perco-

lation as rare neutral mutations, this suggests that the number ∆n of vertices disconnected from

the root might have a distribution close to the Luria-Delbrück law with parameter m = cn/ lnn.

If we write ∆′
n = Zm for the latter, then (11) yields the weak convergence

(

n−1∆′
n − c

)

lnn + c ln lnn =⇒ c (Z + ln c) .

This resembles (10), but with fundamental discrepancies. Note in particular that for c > 1,

the estimation above would imply that for n ≫ 1, the mutant population is close to cn, a

quantity strictly larger than the total population! It is therefore unlikely that Theorem 1 could

established rigorously from such arguments.

(b) If we write C1,n ≥ C2,n ≥ . . . for the sequence of the sizes of the percolation clusters

disconnected from the root and ranked in the decreasing order, then there is clearly the identity

∆n =
∑

i

Ci,n . (12)
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Theorem 1 in [3] states that for every fixed integer j,

(

lnn

n
C1,n, . . . ,

lnn

n
Cj,n

)

=⇒ (x1, . . . , xj) (13)

where x1 > x2 > . . . denotes the sequence of the atoms of a Poisson random measure on

(0,∞) with intensity ce−cx−2dx . It is certainly tempting to expect that the finite dimensional

convergence (13) might be reinforced and then yield (10) via (12).

An obvious obstacle is that the series
∑

xi diverges a.s.; however this can be circumvented

by considering

Xn :=
∑

i

⌊ n

lnn
xi

⌋

.

The reason for taking integer parts above is of course because cluster sizes are integers. Note

that this limits de facto the sum to atoms such that xi ≥ n−1 lnn, and then Xn < ∞ a.s. More

precisely, by the elementary mapping theorem for Poisson random measures, ⌊x1n ln−1 n⌋, . . .
can be viewed as the sequence of atoms of a Poisson random measure on N with intensity mµ

where m = ce−cn ln−1 n and µ is the probability measure given by µ(k) = k−1−(k+1)−1. Thus

Xn = Zm has the Luria-Delbrück law with parameter m, see Section 3 in Möhle [16].

As a consequence of (11), there is the weak convergence

(

n−1Xn − ce−c
)

lnn+ ce−c ln lnn =⇒ ce−c (Z + ln c− c) .

This again resembles (10), in particular one captures the deterministic correction involving

the iterated logarithm, and the random fluctuations are the same up-to a constant. This

corroborates the fact that the fluctuations for the size of the giant component are chiefly due to

the largest percolation clusters. However, this fails to give the correct first order (ce−c instead

of 1− e−c), showing that Theorem 1 cannot be derived from weak limits theorems as (13).

(c) We now conclude this work by pointing out that the problem considered in this work

could also have been formulated in terms of an urn model à la Polya-Hoppe. Indeed, the

recursive construction of Tn together with marks on edges corresponding to percolation can

also be described as follows. We start with an urn containing a single red ball (the root),

and at each step, we add either a red ball or a black ball according to the following random

algorithm. With probability c/ lnn, we add a black ball to the urn, and with probability

pn = 1 − c/ lnn, we pick a ball uniformly at random in the current contain of the urn, and

then replace it into the urn together with a new ball of the same color. Then ∆n is the number

of black balls when the urn contains exactly n balls, and (13) thus gives then a precise limit

13



theorem for the proportion of black balls.

References

[1] Barraez, D., Boucheron, S. and Fernandez de la Vega, W. On the fluctuations of the giant

component. Combin. Probab. Comput. 9 (2000), 287-304.

[2] Behrisch, M., Coja-Oghlan, A. and Kang, M. The order of the giant component of random

hypergraphs. Random Structures Algorithms 36 (2010), 149-184.

[3] Bertoin, J. Sizes of the largest clusters for supercritical percolation on random recursive

trees. To appear in Random Structures Algorithms.

[4] Bertoin, J. Almost giant clusters for percolation on large trees with logarithmic heights.

To appear in J. Appl. Probab.

[5] Bertoin, J. and Uribe Bravo, G. Supercritical percolation on large scale-free random trees.

Submitted.

[6] Bollobás, B. and Riordan, O. Asymptotic normality of the size of the giant component in

a random hypergraph. Random Structures Algorithms 41 (2012), 441-450.

[7] de La Fortelle, A. Yule process sample path asymptotics. Electron. Comm. Probab. 11

(2006), 193-199.

[8] Devroye, L. Applications of the theory of records in the study of random trees. Acta Inform.

26 (1988), 123-130.

[9] Drmota, M. Random trees. Springer. NewYork, Vienna, 2009
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