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ON THE STRUCTURE AT INFINITY

OF LINEAR DELAY SYSTEMS WITH APPLICATION TO

THE DISTURBANCE DECOUPLING PROBLEM

Rabah Rabah and Michel Malabre

The disturbance decoupling problem is studied for linear delay systems. The structural
approach is used to design a decoupling precompensator. The realization of the given
precompensator by static state feedback is studied. Using various structural and geometric
tools, a detailed description of the feedback is given, in particular, derivative of the delayed
disturbance can be needed in the realization of the precompensator.

1. INTRODUCTION

The structure at infinity or the Smith-McMillan form at infinity are well known
tools for the characterization of the solvability of some control problems such as
model matching, disturbance decoupling, row-by-row decoupling. For linear finite
dimensional systems see [12] for instance. The notion of zeros at infinity has been
generalized to non-linear systems [4]. For linear infinite dimensional systems and in
the particular case of bounded operators, the structure at infinity was introduced in
[1], described in several equivalent ways and used to solve some control problems in
[2]. The particular case of delay systems was studied in [3]. However the structure
at infinity defined there is too weak to insure a good solution for control problems:
indeed the potential precompensators may be anticipative (see also [11]). In [8] we
introduced the concept of strong structure at infinity which is more convenient for
infinite dimensional systems (and for delay systems as a particular case). This struc-
ture is only well defined for some classes of systems. The positive result is that if this
structure at infinity is well available then all potential solutions of control problems
are non-anticipative and may be realized by static state feedback. Here we use the
weak structure at infinity of the system in order to design the precompensator, then
this precompensator is decomposed in two parts: a strong proper precompensator
which may be realized by static state feedback and a weak proper precompensator
which can be realized by generalized static state feedback, feedback which contains
the derivative of the measured and delayed disturbance. The results given here are
in a general form at least for systems with commensurate delays. If the disturbance
cannot be measured or is not smooth, then the disturbance decoupling problem
cannot be solvable by generalized static state feedback.
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A similar approach was used to solve the row-by-row decoupling problem for delay
systems. The main result may be found in [10] presented while the present paper
was in the reviewing process.

The paper is organized as follows. In Section 2. we describe the delay system
considered in the paper and the problem of disturbance decoupling. In the Section
3. we give basic notions and recall classical results concerning linear systems without
delays, then we extend some notions and results for systems with delays in Section
4.. In Section 5. we solve the disturbance decoupling problem for delay systems in
a general framework.

2. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

2.1. System description

We consider the linear time-invariant systems with delays described by:

{

ẋ(t) = A0x(t) +A1x(t− 1) +B0u(t) +D0h(t)
y(t) = C0x(t)

(1)

where x(t) ∈ X ≈ Rn is the state, u(t) ∈ U ≈ Rm is the control input, h(t) ∈ H ≈
Rq is the disturbance input, y(t) ∈ Y ≈ Rp is the output to be controlled. In order
to simplify the notation and some computations, we limit ourselves to systems with
single delay in the states. All results and considerations given here remain valid for
systems with several commensurate delays in the state, the control and disturbance
inputs and outputs.

The transfer function matrix of the control is

T (s, e−s) = C0(sI −A0 −A1e
−s)−1B0

which may be expanded as follows

T (s, e−s) =
∞
∑

j=0

Tj(s)e
−js, (2)

where
Tj(s) = C0(sI −A0)

−1
[

A1(sI −A0)
−1

]j
B0.

Each matrix Tj(s) may be decomposed using the following constant matrices intro-
duced by Kirillova and Churakova (see for example [13]):

Qi(j) = A0Qi−1(j) +A1Qi−1(j − 1),
Q0(0) = I, Qi(j) = 0, i < 0 or j < 0.

(3)

We have

Tj(s) =
∞
∑

i=0

C0Qi(j)B0s
−(i+1).

The expression may be obtained by a simple calculation using the relations (3), (see
[11, 13]).
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The same representation takes place for the transfer function matrix of the dis-
turbance

TD(s, e−s) = C0(sI −A0 −A1e
−s)−1D0.

The corresponding matrix coefficients in the decomposition of TD(s, e−s) will be
noted by TD

j (s).
Consider now a partial representation of the delay system given by the systems

without delay (see [3]):

{

żk(t) = Akzk(t) + Bku(t) +Dkqk(t),
wk(t) = Ckzk(t),

(4)

where Ak, Bk, Dk and Ck are given as by:

Ak =









A0 0 · · · 0 0
A1 A0 · · · 0 0
...

...
. . .

...
...

0 0 · · · A1 A0









,

Bk =





B0 · · · 0
...

. . .
...

0 · · · B0



 ,

Ck =





C0 · · · 0
...

. . .
...

0 · · · C0



 , Dk =





D0 · · · 0
...

. . .
...

0 · · · D0



 .

If there are several delays, or if inputs and outputs also contain delays, then one
has to add to the corresponding matrices blocks under the diagonal. Let Θk(s)
and ΘD

k (s) be the transfer function matrices of the control and disturbance of the
systems (4). Then, it is easy to see that

Θk(s) =







T0(s) · · · 0
...

. . .
...

Tk(s) · · · T0(s)






, ΘD

k (s) =







TD
0 (s) · · · 0
...

. . .
...

TD
k (s) · · · TD

0 (s)






.

In this sense one can say that the systems (4) give a partial representation of the
system (1). In the time domain, the systems (4) describes the behavior of the delay
system (1) for t ∈ [0, k + 1[.

2.2. Problem formulation

Let be given the system (1) with a measurable disturbance h(t). Find a precompen-
sator K(s, e−s) such that T (s, e−s)K(s, e−s) + TD(s, e−s) ≡ 0 and which may be
realized by generalized static state feedback of the form

u = F (e−s)x+G(s, e−s)h,
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without anticipation. This means that F (e−s) and G(s, e−s) may be decomposed as

F (e−s) = F0 + F1e
−s + F2e

−2s + · · · ,
G(s, e−s) = G0 +G1(s)e

−s +G2(s)e
−2s + · · · ,

with (possible) polynomial matrices Gi(s), i ≥ 1. This assumption allows to give a
more general solution for a very large class of delay systems. We shall discuss when
this assumption may be replaced by the assumption of constant matrices Gi(s) = Gi,
for i ≥ 1 (see Corollary 8). If the problem is solvable we say that the disturbance de-
coupling problem with measurement is solvable. The corresponding precompensator
K(s, e−s) is called realizable or causal.

3. FINITE DIMENSIONAL SYSTEMS

The basic notion used is this paper is the notion of properness. Let us recall in this
section the case of a classical linear system given by:

{

ẋ(t) = Ax(t) +Bu(t) +Dh(t)
y(t) = Cx(t)

(5)

where x(t) ∈ X ≈ Rn is the state, u(t) ∈ U ≈ Rm is the control input, h(t) ∈ H ≈
Rq is the disturbance input, y(t) ∈ Y ≈ Rp is the output to be controlled. The
transfer function matrix of the control and the disturbance are

T (s) = C(sI −A)−1B, TD(s) = C(sI −A)−1D.

The matrices T (s) and TD(s) are rational and strictly proper. The properness being
defined by the following.

Definition 1 A complex valued function f(s) is called proper if lim f(s) is finite
when |s| → ∞. It is called strictly proper if this limit is 0. A matrix B(s) is
biproper if it is proper and its inverse is also proper.

As for linear systems in finite dimensional spaces one considers in fact only rational
functions, properness means that the degree of the numerator is less than or equal
to the degree of the denominator and strictly properness means that the equality
cannot hold. A fundamental result is the existence of a canonical form at infinity
(Smith-McMillan form at infinity) for strictly proper matrices (but also for more
general matrices).

Theorem 2 There exists (non unique) biproper matrices B1(s) and B2(s) such that

B1(s)T (s)B2(s) =

[

∆(s) 0
0 0

]

,

where ∆(s) = diag [s−n1 , . . . , s−nr ]. The integers ni are called the orders of the
zeros at infinity and the list of integers {n1, . . . , nr} is the structure at infinity and
is noted by Σ∞(C,A,B) or Σ∞T (s).
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The structure at infinity allows to describe the behavior of system at t = 0.
Another important tool which is useful to characterize several properties of linear

systems is the maximal (A,B)-invariant subspace contained in KerC (see [14]). It
will be noted by V∗(C,A,B). We shall also use the alternative expression of this
subspace given by Hautus:

V∗(C,A,B) = {x ∈ KerC : x = (sI −A)ξ(s)−Bω(s)} ,

with strictly proper ξ and ω such that ξ(s) ∈ KerC for |s| > s0. The following result
is well known and established by several authors. Let B and D denote the images of
B and D respectively.

Theorem 3 The following propositions are equivalent:

1. There exists a proper precompensator K(s) such that T (s)K(s) + TD(s) ≡ 0

2. The disturbance is rejected by the feedback u = Fx+Gh, this means that

C(sI −A−BF )−1(BG+D) = 0

3. Σ∞[T (s) TD(s) ] = Σ∞[T (s) 0 ]

4. D ⊂ V∗(C,A,B) + B

The relation between the precompensator and the feedback is given by

K(s) =
(

I − F (sI −A)−1B
)−1 (

F (sI −A)−1D +G
)

. (6)

If the disturbance is not available, then the precompensator must be strictly proper,
G = 0 in 1), condition 3) must be replaced by

Σ∞[ s−1T (s) TD(s) ] = Σ∞[ s−1T (s) 0 ]

and 4) by D ⊂ V∗(C,A,B).

Proo f . We need in this paper the proof of the equivalence 1) ⇐⇒ 4) and the
relation (6). Suppose that T (s)K(s) + TD(s) ≡ 0, this means that

C(sI −A)−1 (BK(s) +D) = 0

for all s, |s| > s0. Then noting

ξ(s) = (sI −A)−1 (BK(s) +D)h,

where h ∈ H is an arbitrary fixed vector, one obtains

(sI −A)ξ(s)−BK(s)h = −Dh, Cξ(s) = 0.

Let now v be the limit of K(s)h when s → ∞. Then K(s)h = v + ω(s), and ω(s) is
strictly proper. then

(sI −A)ξ(s)−Bω(s)−Bv = −Dh,
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for all h ∈ H. This means that 4) holds: D ⊂ V∗(C,A,B) + B.
Conversely, if D ⊂ V∗(C,A,B) + B, then, {h1, . . . , hq} being a basis of Rq, we have

Dhi = (sI −A)ξi(s)−Bωi(s)−Bvi, i = 1, . . . , q,

where ξi(s) and ωi(s) are strictly proper functions such that ξi(s) ∈ KerC. Let G

be a matrix such that vi = Ghi for i = 1, . . . , q. Then

D = (sI −A)Ξ(s)−BΩ(s)−BG,

with strictly proper matrices Ξ(s) and Ω(s), aand with CΞ(s) = 0. Finally we obtain

C(sI −A)−1B(G+Ω(s)) = −C(sI −A)−1D.

Hence T (s)K(s) + TD(s) = 0 with a proper K(s).

Consider now the relation between the precompensator and the feedback. The
closed loop control law u = Fx+Gh gives:

C(sI −A−BF )−1(BG+D) =

C(sI −A)−1B
(

I − F (sI −A)−1B
)−1

G+ C(sI −A−BF )−1D,

because C(sI − A − BF )−1B = C(sI − A)−1B
(

I − F (sI −A)−1B
)

−1
. Using the

relation:

(sI −A−BF )−1 = (sI −A)−1 + (sI −A−BF )−1BF (sI −A)−1,

we get

C(sI −A−BF )−1D = C(sI −A)−1D + C(sI −A−BF )−1BF (sI −A)−1D.

Then

C(sI −A−BF )−1D =

C(sI −A)−1D + C(sI −A)−1B
(

I − F (sI −A)−1B
)−1

F (sI −A)−1D.

Finally

C(sI −A−BF )−1(BG+D) =

C(sI −A)−1B
(

I − F (sI −A)−1B
)−1 (

F (sI −A)−1D +G
)

+ C(sI −A)−1D.

This gives

C(sI −A−BF )−1(BG+D) = T (s)K(s) + TD(s),

with K(s) =
(

I − F (sI −A)−1B
)

−1 (
F (sI −A)−1D +G

)

as in (6).



674 R. RABAH AND M. MALABRE

4. STRUCTURAL NOTIONS FOR DELAY SYSTEMS

The transfer function matrix of a delay system is not rational. Moreover, it is not
analytical at infinity. The notions of properness must be precised.

Definition 4 A complex valued function f(s) is called weak proper if lim f(s) is
finite when s ∈ R tends to ∞. It is called strictly weak proper if this limit is 0. A
matrix B(s) is weak biproper if it is weak proper and its inverse is also weak proper.
Weak proper is replaced by strong proper if the same occurs when ℜe(s) → ∞.

It is obvious that strong properness implies weak properness. If the function is
analytical at infinity both notions coincide, because the limit at infinity is the same.
The strong properness was used in [1] and [2] in the description of the structure at
infinity for infinite dimensional systems. In [3] and [11] the weak notion was used in
order to define the structure at infinity of delay systems and to solve some control
problems.

However, in general, this structure at infinity cannot be used, in an efficient
way, to solve control problems with non predictive control laws. For example, if the
transfer function of the system is T (s) = s−3+s−2e−s, the weak structure at infinity
is s−3 since T (s) = s−3(1 + se−s), and since 1 + se−s is weak biproper. Suppose
one has to solve the disturbance decoupling problem for the disturbance given by
TD(s) = s−3. As the structure at infinity of the control and the disturbance are
the same, there exists a proper precompensator K(s) such that T (s)K(s) = TD(s)
(see [3], where the question is considered for the model matching problem). In fact
the unique precompensator solving this problem is K(s) = 1 + se−s which is not
realizable by linear static state feedback without additional derivative even if one
uses distributed delays.

If we consider the notion of strong properness to define the structure at infinity,
some difficulties occur in the construction of the canonical form at infinity. For the
given example the structure at infinity is not s−3 because 1 + se−s is not proper in
the strong sense and it is not possible, in fact, to define a strong structure at infinity
for the given example.

Let us recall the following results using the weak properness (see [3, 8]).

Theorem 5 There exist weak biproper matrices B1(s, e
−s) and B2(s, e

−s) such that

B1(s, e
−s)T (s, e−s)B2(s, e

−s) =













∆0(s) 0 · · · 0 0
0 ∆1(s)e

−s · · · 0 0
...

...
. . .

...
...

0 0 · · · ∆k(s)e
−ks 0

0 0 · · · 0 0













,

where ∆i(s) = diag [s−ni,1 , . . . , s−ni,ji ] and ni,j ≤ ni,j+1, i = 1, . . . , k. The list of
integers

{ni,j , i = 1, . . . , k; j = j1, . . . , ji}
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is called the weak structure at infinity of the system T (s, e−s) and is noted by
Σw

∞
T (s, e−s).

Theorem 6 There exist a weak proper precompensator K(s, e−s) such that

T (s, e−s)K(s, e−s) = TD(s, e−s)

if and only if

Σw
∞
[T (s, e−s) TD(s, e−s) ] = Σw

∞
[T (s, e−s) 0 ].

Some additional assumptions may insure that the weak structure at infinity also
gives a strong structure at infinity (the biproper matrices Bi are strongly biproper).
In this case the precompensator is strongly proper and realizable by static state
feedback. We shall see that the assumptions given in [8] may be weakened.

5. THE DISTURBANCE DECOUPLING PROBLEM FOR DELAY SYSTEMS

Our purpose is to give for a linear time delay system a more general solution for the
disturbance decoupling problem.
The given problem was studied by several authors. Let us cite the paper of L. Pan-
dolfi [6] which uses infinite dimensional approach. The difficulties appear with the
definition of geometric tools like (A,B)-invariant subspaces. An algebraic approach
was used in [5] to describe the causal precompensator. In [9] an abstract geometric
approach is developed using Hautus’ definition of (A,B)-invariant subspaces. The
weak structure at infinity given in the previous section allows to give the following
general formulation and solution for this control problem by generalized static state
feedback.

Note that a similar approach was developped by the authors for the row-by-row
decoupling problem (see [10], written while this paper was being reviewed).

Theorem 7 The following propositions are equivalent:

1. The disturbance decoupling problem for the delay system (1) is solvable by a
weak proper precompensator :

T (s, e−s)K(s, e−s) + TD(s, e−s) ≡ 0

2. The weak structure at infinity verifies:

Σw
∞
[T (s, e−s) TD(s, e−s) ] = Σw

∞
[T (s, e−s) 0 ]

3. The disturbance decoupling problem is solvable by generalized static state feed-
back

u = F (e−s)x+G(s, e−s)h,

with

F (e−s) = F0 + F1e
−s + F2e

−2s + · · · ,
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G(s, e−s) = G0 +G1(s)e
−s +G2(s)e

−2s + · · · ,

with (possible) polynomial matrices Gi(s), i ≥ 1 and constant matrices Fi,

i ∈ N.

4. D0 ⊂ VΣ(C,A,B)+B0, where D0 and B0 are the images of D0 and B0 respec-
tively, the subspace VΣ(C,A,B) being given by

VΣ(C,A,B) =
{

x ∈ KerC0 : x = (sI −A0 −A1e
−s)ξ(s, e−s)−B0ω(s, e

−s)
}

,

with strictly weak proper ξ and ω such that ξ(s, e−s) ∈ KerC0 for s > s0.

Proo f . From Theorem 6 we have the equivalence of statements 1) and 2). The
equivalence between 1) and 4) may be shown in the same formal way as for the finite
dimensional systems (see the proof of this equivalence for Theorem 3).
Let us now show the equivalence between 1) and 3). In order to simplify the nota-
tions, let us put: A = A0 + A1e

−s, B = B0, C = C0, D = D0, F = F (e−s) and
G = G(s, e−s).
Suppose that 3) holds. Then

C(sI −A−BF )−1(BG+D) = 0.

A formal computation gives T (s, e−s)K(s, e−s) = −TD(s, e−s) with

K(s, e−s) =
(

I − F (sI −A)−1B
)−1 (

F (sI −A)−1D +G
)

,

and K(s, e−s) is weak proper. This means that 1) is verified.
Suppose now that there exists a weak proper precompensator K(s, e−s) such that

T (s, e−s)K(s, e−s) ≡ −TD(s, e−s).

The precompensator K(s, e−s) may be decomposed as follows:

K(s, e−s) = K0(s) +K1(s)e
−s + · · · ,

where Ki(s) are rational matrices. The weak properness implies that K0(s) is proper
in the classical sense, but Ki(s), i ≥ 1 may contain polynomial terms. Decompose
Ki(s), i ≥ 1 in polynomial part and rational strictly proper part (this decomposition
is unique). This yields to a decomposition of the precompensator as

K(s, e−s) = K1(s, e−s) +K2(s, e−s),

where K1(s, e−s) is proper in the strong sense and K2(s, e−s) is proper in the weak
sense. Clearly:

K1(s, e−s) = K1
0 (s) +K1

1 (s)e
−s + · · · ,

with proper rational matrices K1
i (s) and

K2(s, e−s) = K2
1 (s)e

−s +K2
2 (s)e

−2s + · · · .
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This gives T (s, e−s)K1(s, e−s) = −TD(s, e−s) − T (s, e−s)K2(s, e−s) or in detailed
form:

C(sI −A)−1BK1(s, e−s) = −C(sI −A)−1D − C(sI −A)−1BK2(s, e−s)
= −C(sI −A)−1

(

D +BK2(s, e−s)
)

= −C(sI −A)−1E(s, e−s)
= −TE(s, e−s),

where E(s, e−s) = D +BK2(s, e−s) may be considered as a new disturbance which
includes derivatives of the delayed disturbance. Now we let us show how to design
F and G.
First design F 1 and G1 such that the control law u1 = F 1x+G1q realizes the prec-
ompensator K1(s, e

−s) (Step 1) which satisfies T (s, e−s)K1(s, e
−s) ≡ −TE(s, e−s),

then we deduce u = Fx+Gh (Step 2).

Step 1: We have T (s, e−s)K1(s, e−s) ≡ −TE(s, e−s). We can consider the partial
representation of delay systems, as given in Section 2., by the systems (4). A simple
computation gives that for all k ∈ N, we have:

Θk(s)Γk(s) + ΘD
k (s) = 0,

with proper precompensator Γk(s) given by :

Γk(s) =









K1
0 (s) 0 · · · 0

K1
1 (s) K1

0 (s) · · · 0
...

...
. . .

...
K1

k(s) K1
k−1(s) · · · K1

0 (s)









.

This means that for the corresponding systems (4), the disturbance decoupling prob-
lem is solvable (Theorem 3) and the geometric conditions are verified for each k.
Then the feedbacks may be chosen as in [3] and give

C(sI −A−BF 1)−1(BG1 + E) = T (s, e−s)K1(s, e−s),

where, for simplicity, the argument is omitted in F 1, G1 and E:

F 1(e−s) = F0 + F1e
−s + F2e

−2s + · · · ,
G1(s, e−s) = G1

0 +G1
1e

−s +G1
2e

−2s + · · · ,

and E(s, e−s) = D + BK2(s, e−s) is the new disturbance. The constant matrices
Fi and G1

i , i = 0, 1, . . . are computed from the geometric conditions for the systems
(4) for each k. The same considerations as in Theorem 3 gives the relation between
the precompensator and the feedback:

K1(s, e−s) =
(

I − F 1(sI −A)−1B
)−1 (

F 1(sI −A)−1E +G1
)

,

hence K1 is realized by static state feedback. This can be rewritten as:

K1(s, e−s) =F 1(sI −A)−1E + F 1(sI −A)−1BK1(s, e−s) +G1.
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Step 2: The relation obtained at the end of the Step 1 with the equality

E(s, e−s) = D +BK2(s, e−s)

gives

K1(s, e−s) =

F 1(sI −A)−1(D +BK2(s, e−s)) + F 1(sI −A)−1BK1(s, e−s) +G1.

and then

K1(s, e−s) = F 1(sI −A)−1D + F 1(sI −A)−1BK(s, e−s) +G1.

Let us now put G(s, e−s) = G1(e−s) + K2(s, e−s) and F (e−s) = F 1(e−s). Then
from the previous expression of K1(s, e−s), we can get

K(s, e−s) = K1(s, e−s) +K2(s, e−s)

= F (sI −A)−1D + F (sI −A)−1BK(s, e−s) +G

and then we obtain from this last relation that:

K(s, e−s) =
(

I − F (sI −A)−1B
)−1 (

F (sI −A)−1D +G
)

,

and then, as T (s, e−s)K(s, e−s) + TD(s, e−s) ≡ 0, by hypothesis, we get

TFG(s, e
−s) = C(sI −A−BF )−1(BG+D) = 0.

The disturbance is decoupled by the closed loop control law. This ends the proof.

Corollary 8 Suppose that

Σw
∞
[T (s, e−s) TD(s, e−s) ] = Σw

∞
[T (s, e−s) 0 ]

and that structures are obtained by strong biproper operations. Then the precompen-
sator is strongly proper and is realizable by static state feedback, that is Gi(s), i ≥ 1
in the expression of G(s, e−s) are constant.

Proo f . The assumptions of the corollary imply that the weak structure at infinity
is also the strong structure at infinity (see [8]), this gives K(s, e−s) = K1(s, e−s),
and then the Step 2 in the previous proof is not needed. Then G = G1 and F = F 1

and then
G(s, e−s) = G0 +G1e

−s +G2e
−2s + · · · ,

with constant matrices Gi for all integers i. The precompensator is realizable by
static state feedback. No derivation of the delayed disturbance is needed.

Let us precise in some example how the new disturbance is constructed using the
initial one.
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Suppose that the initial disturbance is one dimensional and K2(s, e−s) = s2e−s +
se−2s. Then the new disturbance is q = [h ḣ ḧ ]

′

, and

Eq(t) = E0q(t) + E1q(t− 1) + E2q(t− 2),

with E0 = [D 0 0 ], E1 = [ 0 0 B0 ] and E2 = [ 0 B0 0 ].
Note that in the classical finite dimensional case, one can consider the disturbance

decoupling problem when the disturbance is not measurable. In this case, the solu-
tion is a strictly proper compensator and the feedback is of the form u = Fx. Here
we can also consider the case when the precompensator is weakly strictly proper.
The structural condition may be reformulated in this context. However, the weak
proper part (even if it is strictly proper in the weak sense) needs, for it realization,
the disturbance. Hence, this problem, except for some classes of systems, cannot be
solved.

6. CONCLUSION

In order to solve in a general form and without prediction the disturbance decoupling
problem for delay systems we use the weak structure at infinity which is well defined
for linear time delay systems. The general solution is of feedback type. However we
need some smoothness of the disturbance since (delayed) derivatives of the distur-
bance may be needed. This is the counterpart of the generality. For practical use
this means that if the disturbance is not smooth enough, we need in fact very high
gain in approximation. The results given here may be also considered, with some
modification, for more general delay systems: systems with distributed delays or of
neutral type.

(Received December 11, 1998.)
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