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Abstract—In pervasive systems, software applications are
dynamically composed from the services provided by the
smart devices spread in the local environment. A system
must react to changes that occur in the environment and
reconfigure applications in order to maintain their operation
and assume their missions at its best. This paper advocates
the need for a mission description language, which enables
to describe applications in a declarative way as abstract
service compositions. The system uses mission definitions to
calculate a configuration that best executes them with the
currently available resources. This optimal configuration is
intended to maximize the utility of the system, considering
user preferences, available resources, and mission criticality.
Contextual adaptations are captured in the mission language
as modes and strategies, that respectively describe evolutions
of the assigned mission set and alternate ways to execute
missions. These mechanisms leverage service component ap-
proach, for the dynamic deployment of missions, and agent-
orientation, for autonomic configuration management.
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I. Introduction
As miniaturization of computer systems increases, cal-

culation and communication-enabled (so-called smart)
devices spread around us. These new computers alto-
gether form computer networks that have given birth to
a new paradigm called pervasive computing. Pervasive
computing leverages the services that are dynamically
discovered in the environment to meet user require-
ments. The dynamicity and openness of the environment
have a strong impact on the software that must adapt
to these changes. Thus, pervasive systems must provide
solutions for several inherent issues [1]:

- Context-awareness. The boundaries and con-
stituents of pervasive systems are not known beforehand.
Pervasive software must be able to dynamically discover
which resources are available in the environment. More-
over, it must know how to map user requirements with
the available resources in order to implement valuable
scenarios. Context-awareness is the capacity of pervasive
software to sense and build a proper inner representation
of varying environments.

- User empowerment. Pervasive systems are in-
herently user-oriented. Their purpose is to help users
leverage the services provided by the smart devices that
surround them in their environments. To be as useful
and relevant as possible, pervasive systems must provide

users with means to define and submit their own service
compositions. Indeed, elaborated specific requirements
cannot be met by predefined services. Pervasive systems
must therefore support the dynamic definition of their
missions, which entails dynamic adaptation touser de-
mands.

- Autonomous and dynamic adaptability. As
devices can freely join or quit the system anytime,
resources and services are volatile. Pervasive systems
must support dynamic change management to adapt
themselves to open, variable environments. For de-
pendability’s sake, service continuity must be trans-
parently maintained thus necessitating the system to
autonomously and dynamically react in order to evaluate
the situation and change either means used to reach its
defined objectives or its objectives themselves..

The remaining sections of this paper describe the per-
vasive system framework we designed to tackle these is-
sues. Section II sets the technical ground of our proposal,
which is a combination of a multi-agent system and a
service component architecture. It also briefly introduces
a water hazard monitoring system as an application
for our framework. Section III introduces the concepts
and syntax of Arold, our proposed mission description
language. Section IV briefly explains the principles of
optimized deployment calculation. Section V discusses
related work. Section VI draws a conclusion and per-
spectives about this work.

II. Technical Ground and Case Study
A. System, Agents, Components and Services

A pervasive system is dynamically composed of a set
of smart devices co-located in an environment. Smart
devices use their embedded communication capabilities
and intelligence (software) to interact and cooperate. In
our work (see Figure 1), the embedded software of each
device is managed in a modular and reconfigurable way,
which conforms to a service component approach [2].

Components are reusable, decoupled software modules
that encapsulate distinct functionalities. They can be as-
sembled together, so as to produce operational software,
thanks to well defined connectable interfaces that explic-
itly document the interaction capabilities of components.
Provided (server) interfaces document functionalities
that are implemented by a component and proposed as



Figure 1. A component-based and autonomic pervasive system

invocable services. Required (client) interfaces document
functionalities that must be called by a component as
external services it depends on. We use the component
model and container facility proposed by the OSGi
framework [3] to dynamically administrate the installa-
tion, assembling, replacement or removal of components
on each device. The OSGi framework also provides a
service registry where any instantiated component can
publish the services it proposes through its provided
interfaces. This enables the dynamic introspection and
retrieval of components that are available in a container.
Components can thus be managed and handled so as to
build and adapt software to the changing contexts in
which devices must operate. Three kinds of components
are actually deployed on a device: resource components,
that provide low-level technical services used to execute
concrete actions; task components, that define abilities
to manage the execution of higher-level activities, that
are intended to become part of mission compositions;
and an agent component, that contains a software agent
that manages the component-based architecture of the
embedded software.

An agent [4] is an active entity that is designed
to collect information, reason, make decisions and act
autonomously. We use agents’ activity to endow devices
with self-configuration. Such autonomic capabilities are
essential to pervasive systems: manual intervention can-
not cope with neither large scale or continuously chang-
ing systems. Moreover, an agent is a social entity that
is designed to interact with other agents in order to
manage complex activities as distributed collaborations.
A multi-agent system provides decentralized, peer-to-
peer, communication schemes that are naturally suit-
able for open and dynamic architectures of pervasive
systems. Agents senses automatically the presence of
other agents thanks to discovery protocols integrated
to middlewares. They dynamically create a community,

share information about the resources they control and
plan the distributed execution of missions.

B. The Hydroguard Pervasive Water Surveillance Sys-
tem

An application of our work is the control of the
Hydroguard Pervasive Water Surveillance System1. This
system is designed to monitor hydrological parameters
on rivers and coastal areas in order to detect critical
situations such as floods or pollutions. It is composed
from on-site devices that use various types of sensors
to measure meaningful physical quantities (pressure,
temperature, rainfall, pH, etc.). Each site has a specific
geographical situation. Its streams and waters have spe-
cific characteristics. Devices have to operate in various
contexts, for which their software must be specifically
configured, thanks to the chosen component-based ap-
proach. Moreover, this context is not fixed once and for
all. As devices operate outdoor, they may endure bad
weather conditions that cause communication losses or
device failures. In emergency cases, these changes may
be intentional: extra devices may be added to extend the
monitored area or to get additional measures; conversely,
devices may be moved to a more demanding site or to
mitigate failures. Hydroguard is thus a pervasive system
that must support dynamic arrival or leaving of devices.
Its devices must react to these changes and adapt their
behaviors and collaborations to maintain the continuity
of their monitoring missions. This is handled by the
autonomic dynamic adaptation capabilities provided by
the embedded agents. This way, supervision by human
operators is not required and the system may stay op-
erational even when remote administration is impossible
in exceptional situations.

Besides, as aforementioned, the system is designed to
run multiple missions in parallel, in order to monitor
multiple hazards. Depending on environmental situa-
tions, defined by domain experts in terms of thresholds
on specific monitored data, the criticality of missions
may evolve from normal (routine) to vigilance and finally
to crisis. This may require to change the operation mode
of some missions, for instance to timely follow the evolu-
tion of an incident, granting them higher priority so that
the system concentrates its resources on the more critical
and relevant missions first. Combined with the pervasive
nature of the system, the presence or the availability of
a resource is never guaranteed. Mission definitions must
therefore include various admissible ways to achieve
them, depending on criticality and resource availability,
that agents use to find the best execution configuration,
in any changing context. Mission definition is thus a key
issue for system adaptation, extending the perimeter of

1Partly funded by the French government FUI-AAP8 project.



Figure 2. Metamodel of Arold, a multi-context mission description language

context-awareness [5] to user requirements. We address
this issue with the proposal of Arold, a multi-context
mission definition language.

III. Arold: a multi-context mission description
language

As discussed in the previous sections, pervasive sys-
tems have open, dynamic architectures that may evolve
at any moment, in unanticipated ways. The invariant
part of the system is the set of functional objectives
it must achieve to meet the requirements of its users.
Arold is proposed as a mean to capture users’ re-
quirements as abstract, declarative mission definitions.
Missions definitions are then automatically mapped by
the manager agents controlling the pervasive system to
available resources so as to find an appropriate config-
uration to execute the missions in the current context.
This way, missions are not defined by components that
may disappear when devices leave the system. The main
concepts of Arold, as shown in its metamodel (see
Figure 2) are modes, missions, strategies and tasks.

A. Modes and Missions
A mission defines a functional objective that is as-

signed to the system. Being open, one inherent charac-
teristics of pervasive systems is to be composed from
various devices and to support versatile missions. In
Hydroguard, missions are, among many others, to fore-
cast weather, to monitor flood level, to send flood alerts
and to monitor water quality. Though every mission
corresponds to some user requirements, all the missions
do not have the same criticality and relevance, regarding
specific situations of the environment. Modes thus model
the different situations that the system is expected to

manage distinctively. In Hydroguard, Routine, FloodVig-
ilance and PollutionCrisis are mode examples. Modes
build a first level of context representation, which defines
the specific environmental situations that the system
has to manage. Missions build a second level of context
representation, which captures user requirements. Each
mode explicitly specifies the set of missions that is to
be achieved in the current situation (see Figure 3).
Missions are defined as independent concepts, so they
can be reused in as many modes as necessary. Mission
criticality is expressed by a priority: Mandatory, High,
Normal, Low. These priorities are affected by each mode,
so that mission criticality may vary to be adapted to
the context. Mandatory missions corresponds to critical
activities. If any mandatory mission cannot be executed,
the system cannot properly manage the current mode.
It must signal a failure and enter a failover mode.
Monitoring the conditions that determine transitions to
other modes is part of the mandatory missions that
must be associated to a mode. The system then tries
to execute as many missions as possible, depending on
available resources, starting by high priority missions
and finishing with low priority missions. To enable a
more flexible definition of modes, all the missions associ-
ated with a mode are not intended to always execute at
the same time, but possibly successively, as the situation
evolves. To manage this, missions hold a status attribute
that specify if they are active or not. Apart from its
mandatory missions, which are always active, a mode
defines a set of default missions that are active when
entering in this mode. The set of active missions then
evolves by explicit mission activations or deactivations
controlled by the already active missions.



B. Strategies and Tasks

A strategy defines a concrete implementation of a mis-
sion. A mission can be implemented by a set of strategies
(see Figure 3), that represent alternative ways to achieve
the functional objective represented by the mission.
Strategies build a third level of context representation,
which defines how the execution of missions may vary to
enable its adaptation to available resources. Strategies
need not be strictly equivalent. On the contrary, the
different strategies associated with a mission should rep-
resent various tradeoffs between resource requirements
and utility. This way, among the strategies that can be
currently executed, the system tries to find an optimal
set of strategies, that is the set of strategies that enables
to execute the largest set of active missions, with the
best efficiency. The efficiency of a strategy depends on its
cost (resource requirements) but most importantly to its
utility, regarding the achievement of the mission. Utility
is a score defined for each strategy by a mission, which
characterizes the quality of the result that is produced
by the execution of the strategy. Utility is contextual.
Associated to a mission used in a routine mode, an
economic strategy with a poor quality of service would
be ranked with a low utility. Associated with a mission
used in an emergency mode, it would be anyway useful
and ranked with a high utility.

A strategy is concretely defined by a set of tasks that
must be instantiated and connected together by the sys-
tem in order to execute the mission (see Figure 3). This
part of Arold is thus equivalent to a simple architecture
description language [6]. Each task represents a specific
service invocation, specified by a set of parameter values.
A task (e.g., WaterLevelCollector1) corresponds to an
instance of a task type (e.g., WaterLevelCollector), so
that different tasks can be defined corresponding to
a common kind of activity. A task type defines the
list of parameters (e.g., sensorIP, rate, levelID) to be
specified in each individual task. It also defines how the
task type is implemented, as a reference to a concrete
component (e.g., GenericWaterLevelSensor) that must
be used to instantiate this kind of tasks. Finally, a
task type specifies a set of in and out ports (e.g., the
WaterLevelCollector task type has an out port as it is a
data sink). In and out ports define the information (data,
control) that a task respectively receives from or sends to
others tasks. Task compositions are defined in strategies
by sets of connections between in and out ports of
their component tasks (e.g., connection between the Wa-
terLevelDatasource1 task and the WaterLevelCollector1
task). This can be regarded as similar to workflows.
However, task compositions do not hold any explicit
control structures in Arold. Composition is thus purely
structural and amounts to assemblies, as proposed in

Figure 3. Excerpt of a mission descriptor in Arold textual syntax

SCA [2]. Workflow control is embedded in tasks. When
interactions are required, external control management
is defined by ports. Ports are typed by service signatures
(e.g., the WaterLevelDataSink service saves a water level
value along with a localization ID and a timestamp).
These syntactical specifications are used to check the
soundness of connections between ports.

Finally, each task is defined by its resource con-
sumption. For the sake of simplicity, it is represented
in this paper as a unique attribute (resourceCost). In
our concrete implementation, resource consumption en-
compasses CPU, RAM, disk and network usage. These
attributes are first used individually to check that the
instantiation of a task on a device does not exceed its
amount of resources.

IV. Optimized Mission Deployment

Taking into account an operation context modelled
in Arold, the role of the manager agents embedded
in the devices composing the pervasive system is to
determine an optimized deployment of the set of active



missions in the current active mode. As aforementioned,
this deployment should be optimized so that, taking into
account resource limitation, the executed missions are
the most critical and the more useful to users. To calcu-
late this optimal deployment is an optimization problem,
with a high computational complexity, due to the choice
of the missions, strategies and devices where tasks are
instantiated. On a formal ground, the optimization of
mission deployment is a constraint satisfaction problem
analogous to a variant of the knapsack problem, which is
a NP-hard problem [7]. This problem consists in filling
up a knapsack with items of various volumes and values.
The best combination of items must be chosen so that
the knapsack the volume of which is fixed contains a
maximal total value. In our mission deployment prob-
lem, the best combination of tasks must be allocated
on the devices of the system, so that the total utility
of the corresponding strategies, for the active missions
in the current mode, is maximal. Mission deployment is
calculated separately for each level of priority, so that
resources are used by higher priority mission first.

For the sake of efficiency, we have implemented the
resolution of the mission deployment problem as a cen-
tralized mechanism. When started, a manager agent
queries the service repository of the OSGi platform to
retrieve the list of the task components that are installed
on the device it controls. It then broadcast a message
to request the election of a leader among the group
of manager agents of the pervasive system. We have
designed an election protocol, derived from the bully
algorithm [8], but adapted to the open structure of
pervasive systems (the description of which is out of
the scope of this paper). Centralization is thus mitigated
because it is a dynamic process in which any manager
agent can become the leader. When the manager agent
receives the address of the elected leader, it sends back
to the leader a list of its features, meaning its resource
capacity and the list of the task types it can instantiate.
It then waits for the leader to send configuration instruc-
tions, describing which tasks to instantiate and which
connection to set up. Meanwhile, the leader collects the
feature informations sent by the other manager agents.
Taking into account the missions specified by Arold
descriptors, these informations enable the leader to build
a global definition of the optimization problem to be
solved. This is a point where centralization becomes an
advantage: the more complete is the problem definition,
the more optimized the found solution may be.

Many resolution algorithms exist for the knapsack
problem. Our application is the dynamic reconfiguration
of a pervasive system. The optimization problem must
therefore be solved not only timely but also on a device
with limited resources. We thus designed an adaptation
of the greedy approximation algorithm, chosen for its

very low time and space complexity. The strategies asso-
ciated with active missions are ordered by their efficiency
(ratio between their utility and resource consumption).
The possible deployment of the most efficient strategies
are checked first (most rational choices). Strategies are
thus chosen, until every active mission is executed by a
strategy or no more strategy can be deployed because of
resource unavailability.

Determining where a task should be allocated, be-
tween a set of candidate devices, is another source of
combinatorial explosion. To solve this issue and preserve
the linear complexity of the greedy algorithm, we de-
signed a choice algorithm using an ordered list of devices,
similar to the ordered list of strategies. Based on both
the set of tasks that appear in the mission descriptors
and the list of features transmitted by each manager
agent, a probability that a task has to be affected on
a device is calculated. A potential load is calculated for
each device. A task is allocated on the device that has the
lowest potential load: this is here again the most rational
choice to avoid resource shortage and to tend towards
a balanced load between devices. After each allocation,
probabilities and potential loads are updated, to take
into account the already known task allocations. When
the allocation of a task is impossible, the corresponding
strategy is skipped. Deployment resolution carries on
with the next more efficient strategy to be tried. This
way, deployment is solved with a linear complexity that
fits the computation capabilities embedded in devices.
Though simple, this algorithm is able to produce on
average interesting suboptimal results.

V. Related Work
Arold deals with service compositions, a much stud-

ied topic related to web services choreographies but
also pervasive systems [1], [9], [10], [11]. These works
focuses on a transparent management of the execution
context, to let users declaratively express their required
compositions, without any specific knowledge about the
environment. The supporting frameworks deal with a
wide range of mechanisms: discovering available services,
matching available services with user defined composi-
tions, maintaining execution by automatically replacing
faulty services, balancing execution load. Goal-oriented
systems even go one step further. Users express the
results they wish to obtain and the system automatically
calculates, by backward-chained inferences, theservice
compositions that achieve the specified results [12]. All
these systems consider the context from a technical point
of view, that can thus become transparent for the user.
With Arold, user expertise and preferences are part of
the context definition, modelling variability and utility
as alternate strategies. The primary goal of the system
becomes to best satisfy all its users: the aforementioned



problems are then considered as constraints in a decision
problem (mission and strategy selection).

Multi-agent systems are often proposed to manage
pervasive systems [13], [14], [15], [16], [17], as they
both have open and dynamic architectures. Autonomic
adaptation is handled in a distributed way and emerges
as the result of peer-to-peer negotiation protocols. On
the opposite, we have chosen a centralized mechanism
for mission deployment , adapted from the optimized ex-
ecution plans used in grid-computing [18]. Though very
simple, to suit the limited resources of the devices, we
consider that it is able to produce faster more optimized
results than the convergence of a distributed process.

VI. Conclusion and future work
This paper presented a work in progress. Arold is an

original contribution, as a service composition language
that enables the contextual adaptations of the missions
of a pervasive system to be defined. It takes into account
mission criticality, resource availability and user prefer-
ences.

Dynamic context redefinition and multiple context
definition mitigation still are open issues. Future work
will have to detect and manage inconsistencies. Task
mobility will also be studied to support the redeployment
of running missions and its cost evaluated. Experiments
still have to be run to validate the performance hypoth-
esis about our proposed centralized mission deployment
scheme as compared to a massively distributed alterna-
tive. To do so, we plan to run simulations of large scale
distributed arcitectures on a machine cluster.
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