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Standardness and nonstandardness of

next-jump time filtrations

Stéphane Laurent

April 30, 2013

Abstract

The value of the next-jump time process at each time is the date

its the next jump. We characterize the standardness of the filtration

generated by this process in terms of the asymptotic behavior at n =

−∞ of the probability that the process jumps at time n. In the case

when the filtration is not standard we characterize the standardness

of its extracted filtrations.

1 Introduction

This paper provides a complete case study of standardness for a certain
family of filtrations. These filtrations are those generated by the next-jump
time processes (Zn)n60 defined as follows. For a given sequence (pn)n60 of
numbers in [0, 1] with p0 = 1, let (εn)n60 be a sequence of independent
Bernoulli random variables with Pr(εn = 1) = pn. Define Z0 = 0 and
Zn = min{k | n + 1 6 k 6 0 and εk = 1} for n 6 −1. Thus Z−1 = Z0 = 0
almost surely and denoting by ∆Zn = Zn − Zn−1 the size of the jump
at time n the two following trajectorial properties of the process (Zn)n60

straightforwardly hold (see figure 2):

• {εn = 1} = {Zn−1 = n} = {∆Zn > 0};

• saying that the process (Zn)n60 jumps at time n when ∆Zn > 0, then
the value Zn of the process at time n 6 −2 is the date of the next
jump.

The stochastic properties of the next-jump time process are given in
lemme below.

Lemma 1.1. (a) The next-jump time processes (Zn)n60 is a Markov pro-
cess whose Markovian dynamics is described as follows:

• (instantaneous distributions) Z0 = Z−1 = 1 and for each time
n 6 −1, the law of Zn−1 is given by Pr(Zn−1 = n) = Pr(∆Zn >

0) = pn and

Pr(Zn−1 = k) = (1 − pn) · · · (1 − pk−1)pk

for every k ∈ {n + 1, . . . , 0};
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Figure 1: The next-jump time process

• (Markovian transitions) for each time n 6 −1, the conditional law
L(Zn | Zn−1 = k) of Zn given Zn−1 = k is the Dirac mass at every
k ∈ {n + 1, . . . , 0} else if k = n it equals the unconditional law
L(Zn) of Zn.

(b) For every integers n 6 0 and every m 6 n − 1, the equality

L(Zn, . . . , Z0 |Fm) = L(Zn, . . . , Z0)

occurs on the event {Zm 6 n} ⊃ {∆Zn > 0}.

Proof. We have already seen that {εn = 1} = {Zn−1 = n} = {∆Zn > 0},
hence one has Pr(Zn−1 = n) = pn. For every integers n 6 −1 and k ∈
[n + 1, 0] one has {Zn−1 = k} = {εn = 0, . . . , εk−1 = 0, εk = 1}, thereby
giving the announced value of Pr(Zn−1 = k) and the equality L(Zn | Zn−1 =
k) = δk, and showing that L(Zn |Fn−1) = L(Zn | Zn−1 = k) on the event
{Zn−1 = k}. To finish to check the Markov property and to prove (a)
it remains to show that L(Zn |Fn−1) = L(Zn | Zn−1 = n) on the event
{Zn−1 = n} and L(Zn | Zn−1 = n) = L(Zn). This is a particular case of
point (b) since {Zn−1 = n} = {∆Zn > 0}. From the definition of the
process (Zn)n60 it is clear that (Zn, . . . , Z0) is σ(εn+1, . . . , ε0)-measurable
and it is easy to see that {Zm 6 n} = ∪k=n

k=m+1{εk = 1}, thereby showing
(b).

Note that Zn has the uniform law on {n + 1, . . . , 0} for every n 6 −1
in the case when pn = (|n| + 1)−1.

The object of interest of our study is the filtration in discrete negative
time generated by the next-jump time process, denoted by F = (Fn)n60

throughout the paper (thus our notation does not include the dependence
on the sequence (pn) which uniquely defines F up to isomorphism).

It is worth focusing a minute about the properties of the process (Zn)n60

in terms of the filtration F. For each time n the σ-field F0 is conditionally
independent of the past σ-field Fn−1 given the event {∆Zn > 0} = {Zn−1 =
n}, that is, on the event {Zn−1 = n} ∈ Fn−1 the process jumps at time
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n and the stochastic behavior of the future (Zn, . . . , Z0) of the process is
independent of the process up to time n − 1. On the complementary event
{Zn−1 > n} ∈ Fn−1 the process does not move from time n − 1 until the
next jump time Zn. In any case the value of the process at time n is the
date of the next jump. Moreover, from the last property of lemma 2, the
information about Zn available at time m 6 n − 1 is “all or nothing”: on
the event {Zm = k} ∈ Fm one knows that Zn = k if k > n, whereas Fm

does not provide any information about Zn if k 6 n.
The first goal of this paper is to characterize standardness of F in terms

of the asymptotic behavior of the probability pn that the procees jumps
at time n. To do so, we will use the I-cosiness criterion, which is known
to characterize standardness. A filtration is said to be standard when it is
immersible in the filtration generated by a sequence of independent random
variables. We refer to [3], [4] and [6] for details about the notion of standard
filtrations. This notion has first been introduced by Vershik ([7], [8]). This
is a property at n = −∞ stronger than the degeneracy of the tail σ-field
F−∞ := ∩nFn, called the Kolmogorovian property in the present paper.
It is intuitively expected that both the Kolmogorovian property and the
standardness property of the next-jump time filtration F should be related
to the asymptotic behavior of pn = Pr(∆Zn > 0).

The definition of I-cosiness is presented in section 2. The study of stan-
dardness of F is the object of section 3. The cases when F is Kolmogorovian
but not standard are deeper studied in section 4, where we characterize
standardness of the extracted filtrations of F. The study of section 4 is mo-
tivated by Vershik’s theorem on lacunary isomorphism, which asserts than
one can always extract a standard filtration from a non-standard filtrations
as long as it is Kolmogorovian.

There is a few known examples of families of filtrations for which such a
complete standardness study has been achieved. The example of the present
paper is by far the easiest one. The standardness characterizations are
mainly derived from the I-cosiness crtierion and Borel-Cantelli’s lemmas,
without involving difficult calculations.

2 Cosiness

The I-cosiness is shortly termed as cosiness hereafter. The cosiness property
is known to be equivalent to standardness for filtrations F = (Fn)n60 whose
final σ- field F0 is essentially separable. The cosiness property for a filtration
F is defined with the help of joinings of F. A joining of F is a pair (F′,F′′)
of two jointly immersed copies F

′ and F
′′ of F. When F is the filtration

generated by a Markov process (Xn)n60, then (F′,F′′) is a joining of F if
and only if F′ and F

′′ respectively are the filtrations generated by two copies
(X ′

n)n60 and (X ′′

n)n60 of (Xn)n60 that are both Markovian with respect to
the filtration generated by the process (X ′

n, X ′′

n)n60. In other words each of
the two processes (X ′

n)n60 and (X ′′

n)n60 is a copy of (Xn)n60 but moreover
the Markovian dynamics is not altered for one who observes over time both
the processes.

An F0-measurable random variable X taking finitely many values is
said to be cosy (with respect to F) if for every δ > 0, there exists a joining
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(F′,F′′) of F independent in small time, that is, the σ- fields F
′

n0
and F

′′

n0

are independent for some integer n0, and for which the respective copies X ′

and X ′′ of X in F
′ and F

′′ are δ-close in the sense that Pr(X ′ 6= X ′′) < δ.
This definition is then extended to σ- fields E0 ⊂ F0 by saying that the

σ- field E0 is cosy when every E0-measurable random variable taking finitely
many values is cosy. Cosiness of an F0-measurable random variable X is
then equivalent to cosiness of the σ- field σ(X) (see [4]). Finally we say the
filtration F is cosy when the final σ- field F0 is cosy. It is easy to prove
that every cosy filtration is Kolmogorovian; on the other hand, proving the
equivalence between cosiness and standardness is not so easy.

In lemma 2.2 we state a simple criterion for cosiness. We firstly give a
preliminary lemma which we will also use in section 4.

Lemma 2.1. Let (Xn)n60 be a Markov process and F the filtration it gen-
erates. Let (X ′

n)n60 and (X∗

n)n60 be two independent copies of (Xn)n60 and
let F′ and F

∗ the filtrations they respectively generate. Let T be a bounded
from below F

′ ∨F
∗-stopping time taking its values in −N∪ {+∞} and such

that the equality L(X ′

n+1 |F′

n ∨F
∗

n) = L(X∗

n+1 |F′

n ∨F
∗

n) occurs on the event
{T = n} for every n 6 −1. Define the process (X ′′

n)n60 by putting





X ′′

n = X∗

n for n 6 T ,

X ′′

n = X ′

n for n > T .

Then (X ′′

n)n60 is a copy of (Xn)n60 and the two filtrations F′ and F
′′ provide

a joining of F.

Proof. It is easy to check that both processes (X ′

n)n60 and (X∗

n)n60 are
Markovian with respect to F

′ ∨ F
∗, and that means that F

′ and F
∗ are

immersed in F
′ ∨F

∗. To show the result it suffices to show that the process
(X ′′

n)n60 is Markovian with respect to filtration F
′ ∨ F

∗ and has the same
Markov kernels as the process (Xn)n60 (this implies that this process has
the same law as (Xn)n60 because we assume that T is bounded from below).

For each n 6 0 we denote by {P n
x }x the n-th Markov kernel of (Xn)n60,

that is, {P n
x }x is a regular version of the conditional law of Xn given Xn−1 =

x, for x varying in the Polish state space of Xn−1. Let n 6 −1 and B be a
Borel set. By immersion of F∗ in F

′ ∨ F
∗, one gets1T >n Pr(X ′′

n+1 ∈ B |F′

n ∨ F
∗

n) = 1T >nP n+1
X′′

n

(B).

By immersion of F′ in F
′ ∨ F

∗, one gets1T <n Pr(X ′′

n+1 ∈ B |F′

n ∨ F
∗

n) = 1T <nP n+1
X′′

n

(B).

And finally the equality1T =n Pr(X ′′

n+1 ∈ B |F′

n ∨ F
∗

n) = 1T =nP n+1
X′′

n

(B)

is a consequence of the assumption L(X ′

n+1 |F′

n ∨ F
∗

n) = L(X∗

n+1 |F′

n ∨ F
∗

n)
and of the immersion of F∗ in F

′ ∨ F
∗.

We say that a process (Xn)n60 has the independent self-meeting prop-
erty if Pr(X ′

n = X∗

n i.o.) = 1 whenever (X ′

n)n60 and (X∗

n)n60 are two
independent copies of this process.
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Lemma 2.2. Let F be the filtration generated by a Markov process (Xn)n60

such that Xn takes its values in a finite set for every n 6 0. If the Markov
process (Xn)n60 has the independent self-meeting property then F is cosy.

Proof. By lemma 3.33 in [4] it suffices to show that the σ- field σ(Xm, . . . , X0)
is cosy for every m 6 0.

Let (X ′

n)n60 and (X∗

n)n60 be two independent copies of (Xn)n60, and
denote by F

′ and F
∗ the filtrations they respectively generate. For every

integer m 6 0 and every δ > 0, because of the self-meeting property, one
can find n0 6 m such that the probability of the meeting event A :={
X ′

n = X∗

n for some n ∈ [n0, m]
}

is larger than 1 − δ. Using lemma
2.1, define a copy (X ′′

n)n60 of (Xn)n60 by putting X ′′

n = X∗

n for n 6 T

and put X ′′

n = X ′

n for n > T where T is the stopping time defined by
T = min

{
n ∈ [n0, m] | X ′

n = X∗

n

}
on the event A and T = +∞ elsewhere.

By lemma 2.1 the filtrations F′ and F
′′ generated by the processes (X ′

n)n60

and (X ′′

n)n60 provide a joining of F independent in small time. Furthermore,
it is clear from the construction that Pr(X ′

m = X ′′

m, . . . , X ′

0 = X ′′

0 ) > 1 − δ,
thereby showing that the σ- field σ(Xm, . . . , X0) is cosy.

In lemma below we give a simple criterion for the filtration of a Markov
process to be Kolmogorovian. Later, in the proof of proposition 3.1, it will
be applied to the next-jump time process with the events Am,n = {Zm 6 n}.

Lemma 2.3. Let (Xn)n60 be a stochastic process and F the filtration it
generates. Let {Am,n}

n60,m6n−1 be a family of events such that An−1,n ⊂
Am,n ∈ Fm and

L(Xn, . . . , X0 |Fm) = L(Xn, . . . , X0) on the event Am,n

for every n 6 0 and m 6 n − 1. If Pr(An−1,n i.o.) = 1 then (Xn)n60

generates a Kolmogorovian filtration.

Proof. By Lévy’s reverse martingale convergence theorem, a filtration F =
(Fn)n60 is Kolmogorovian if and only if Pr(B |Fn) → Pr(B) in L1 for
every event B ∈ F0. By Dynkin’s π-λ theorem, it suffices to show that
for each k 6 0 every event B ∈ σ(Xk, . . . , X0) fulfills this property since
the set of all events satisfying this property is a λ-system. Let k 6 0.
The random time T = max{n 6 k | An−1,n occurs} is a well-defined −N-
valued random variable under the assumption of the lemma, and one easily
checks that Pr(B |Fn0

) = Pr(B) on the event {T > n0} for every event
B ∈ σ(Xk, . . . , X0) and every n0 6 k.

3 Next-jump time processes

We consider the next-jump time processes (Zn)n60 defined in the introduc-
tion. Recall that the law of this Markov process is given by the probabil-
ities pn = Pr(∆Zn > 0) for n 6 −1. The filtration generated by (Zn)n60

is denoted by F and the object of this section is to characterize the Kol-
mogorovian property and the standardness property for F in terms of the
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asymptotic behaviour of the sequence (pn)n60. Our study will be more
convenient by tagging the following particular case:

pn = 1 and pk = 0 for every k < n for some n 6 0 (∗)

in which case Fm = {∅, Ω} for every m 6 n − 1, therefore F is Kolmogoro-
vian and even standard.

We firstly give a precise statement about the tail σ- field F−∞ in propo-
sition below.

Proposition 3.1. The tail σ- field F−∞ is the σ- field generated by the
random variable N := inf{n 6 0 | εn = 1}. There are three possible
situations:

1. if
∑

pk = ∞ then the process (Zn)n60 almost surely jumps infinitely
many times, thus N = −∞ almost surely and F is Kolmogorovian;

2. if
∑

pk < ∞ then (Zn)n60 almost surely jumps only finitely many
times, thus N > −∞ almost surely and

(a) either N is not degenerate and F is therefore not Kolmogorovian,

(b) or we are in case (∗) when N = n almost surely, and F is Kol-
mogorovian.

Proof. If
∑

pk = ∞ then N = −∞ almost surely by Borel-Cantelli’s second
lemma and F is Kolmogorovian by lemma 2.3 applied with Am,n = {Zm 6

n} and by lemma 1.1. Consequently the equality F−∞ = σ(N) obviously
holds in this case. If

∑
pk < ∞ then N > −∞ almost surely by Borel-

Cantelli’s first lemma. Moreover N is F−∞-measurable and every F−∞-
measurable random variable is constant on the events {N = n}, n ∈ −N,
because Zm = n for every m 6 n − 1 on the event {N = n}. Thus the
equality F−∞ = σ(N) also holds in this case.

Now we study the cosiness property for F. We will see in lemma 3.3
that the converse of lemma 2.2 holds for the next-jump time process: the
process (Zn)n60 has the independent self-meeting property if it generates
a cosy filtration. Then we will characterize the independent self-meeting
property in lemma 3.4 in terms of the sequence (pn)n60, and we will conclude
in theorem 3.5.

The idea of the proof of lemma 3.3 runs as follows. Consider the exercise
of checking the cosiness criterion for the random variable (Zm, . . . , Z0).
Roughly speaking, given an integer n0 6 0 and two independent copies
(Z ′

n)n6n0
and (Z ′′

n)n6n0
of the truncated process (Zn)n6n0

, we have to find
how to extend these two copies to two copies (Z ′

n)n60 and (Z ′′

n)n60 of the
whole process (Zn)n60 in a jointly immersed way to reach as probably as
possible the meeting event {Z ′

m = Z ′′

m, . . . , Z ′

0 = Z ′′

0 }. It is clear that the
best we can do is to let the two copies behave independently until they meet
at some time and then to keep them equal after this time. The independent
self-meeting property is then equivalent to the probability of the meeting
event being as high as desired when n0 → −∞. The proof of lemma 3.3
uses the following lemma about the joinings of F involved in the cosiness
criterion (independent in small time).
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Lemma 3.2. Let (Z ′

n)n60 and (Z ′′

n)n60 be two copies of (Zn)n60 whose gen-
erated filtrations F

′ and F
′′ provide a joining of F independent up to an in-

teger n0 6 0. Then the processes (Z ′

n)n60 and (Z ′′

n)n60 behave independently
up to the stopping time T := min{n | n0 6 n 6 −1 and Z ′

n = Z ′′

n = n + 1},
which rigorously means that the stopped joint process (Z ′

n1T>n, Z ′′

n1T>n)n60

has the same law as the stopped joint process (Z∗

n1T̃>n
, Z∗∗

n 1
T̃>n

)
n60

for any

pair (Z∗

n)n60 and (Z∗∗

n )n60 of independent copies of (Zn)n60, defining T̃

similarly to T by T̃ := min{n | n0 6 n 6 −1 and Z∗

n = Z∗∗

n = n + 1}.

Proof. The processes (Z ′

n)n60 and (Z ′′

n)n60 are independent up to n0 and
each of them has the same law as (Zn)

n60. Their possible joint distri-
butions up to time 0 are obtained by choosing the joint conditional law
L(Z ′

n, Z ′′

n | Z ′

n−1, Z ′′

n−1) for n going from n0 + 1 to 0. For each n the mar-
gins of this law are L(Z ′

n | Z ′

n−1) and L(Z ′′

n | Z ′′

n−1) by the immersion prop-
erty. On the event {Z ′

n−1 = Z ′′

n−1 = n} the joint conditional law can
be any joining of the distribution of Zn. On the complementary event{
Z ′

n−1 6= n or Z ′′

n−1 6= n
}

there is nothing to choose because at least one
of the margins is a Dirac distribution and hence there is only one possible
joint law.

Lemma 3.3. The process (Zn)n60 generates a cosy filtration if and only if
it has the independent self-meeting property.

Proof. If (Zn)n60 has the self-meeting property then it generates a cosy
filtration by lemma 2.2. Now assume that (Zn)n60 has not the self-meeting
property. Let (Z∗

n)n60 and (Z∗∗

n )n60 be two independent copies of (Zn)n60

and let M̃ be the random time defined by M̃ = inf {n 6 0 | Z∗

n = Z∗∗

n }.
Then there exists m ∈ −N such that ε := Pr(M̃ > m) > 0. We will
show that the random variable Zm is not cosy. Let (Z ′

n)n60 and (Z ′′

n)n60

be two copies of (Zn)n60 whose generated filtrations F
′ and F

′′ provide a
joining of F independent up to an integer n0 6 0. Since M̃ 6 T̃ with the
notations of lemma 3.2, the random time M̃ has the same law as M :=
min {n | Z ′

n = Z ′′

n} by lemma 3.2. Consequently Pr(Z ′

m = Z ′′

m) 6 Pr(M 6

m) = Pr(M̃ 6 m) = 1 − ε.

Lemma 3.4. The process (Zn)n60 has the independent self-meeting prop-
erty if and only if (∗) holds or

∑
p2

k = ∞. When
∑

p2
k = ∞ the process

more precisely satisfies Pr(Z ′

n−1 = Z∗

n−1 = n i.o.) = 1 for any pair (Z ′

n)n60

and (Z∗

n)n60 of independent copies of (Zn)n60.

Proof. In case (∗) the independent self-meeting property holds as an obvi-
ous consequence of point 2(b) of proposition 3.1. The property Pr(Z ′

n−1 =
Z∗

n−1 = n i.o.) = 1 is equivalent to the condition
∑

p2
k = ∞ by Borel-

Cantelli’s lemmas and then this condition ensures the independent self-
meeting property. Conversely, if the process (Zn)n60 has the independent
self-meeting property then its filtration F is cosy by lemma 3.3 and a fortiori
it is Kolmogorovian. Discarding case (∗), it jumps infinitely many times by
proposition 3.1 and consequently Pr(Z ′

n−1 = Z∗

n−1 = n i.o.) = 1 because
when the two processes meet at some time n < 0 but do not equal n, then
they will meet and equal T at the next time jump T = Z ′

n = Z∗

n.
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Theorem 3.5. For case (∗) the filtration of the process (Zn)n60 is standard.
For the other cases it is Kolmogorovian if and only if

∑
pk = ∞ and it is

standard if and only if
∑

p2
k = ∞.

Proof. Straightforward from proposition 3.1 and the two previous lemmas,
and from the equivalence between standardness and cosiness.

For instance F is Kolmogorovian but not standard when each Zn has
the uniform law on {n + 1, . . . , 0}, which is the case when pn = (1 + |n|)−1.

4 Standard subsequences

We keep all notations of the previous section. A filtration extracted from
F is a filtration Fφ(·) = (Fφ(n))n60

for some strictly increasing function
φ : − N → −N. It is easy to prove that every filtration extracted from a
standard filtration is itself standard by using either the definition of stan-
dardness or the cosiness criterion. This section is motivated by Vershik’s
theorem on lacunary isomorphism which asserts the existence of a standard
extracted filtration from any Kolmogorovian filtration whose final σ- field is
essentially separable (see [5] for a short probabilistic proof of this theorem
with Vershik’s standardness criterion).

In this section we characterize standardness of the filtrations Fφ(·) ex-
tracted from F in terms of the speed of the extracting function φ : − N →
−N. Throughout the section it is understood that we only consider the
case when F is Kolmogorovian (see proposition 3.1), and our study is of
interest only when F is not standard (see theorem 3.5). For instance we
cover the case pn = (1 + |n|)−1 for which each Zn has the uniform law on
{n + 1, . . . , 0}.

The filtration generated by the Markov process (Zφ(n))n60
is not the

filtration Fφ(·). It is only immersed in Fφ(·), that is, the process (Zφ(n))n60

is Markovian with respect to the filtration Fφ(·). Nevertheless, according to
the following proposition from [4], cosiness of Fφ(·) is equivalent to cosiness
of the filtration generated by the extracted process (Zφ(n))n60

.

Proposition 4.1. Let Fφ(·) be a filtration extracted from the filtration F

generated by a Markov process (Zn)n60. Then Fφ(·) is cosy if and only if
the process (Zφ(n))n60

generates a cosy filtration.

Hereafter we only consider functions φ satisfying φ(0) = 0 and φ(−1) =
−1 for more convenience. The main result of this section is theorem 4.6
and it remains to be true without this restriction because standardness is
an asymptotic property at n → −∞.

Now we show how a certain next-jump time process (Yn)n60 can be
constructed “in real time” from the process (Zφ(n))n60

. This process is
defined by

Yn = min
{

k 6 0 | Zφ(n) 6 φ(k)
}
,

thus Y0 = 0 and for n 6 −1 the random variable Yn takes its values in
{n + 1, . . . , 0} and it is determined by the relation

φ(Yn − 1) < Zφ(n) 6 φ(Yn).
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Figure 2: The next-jump time process (Yn)n60. The value of Yn is shown
by the bold interval.

Lemma below enumerates some properties of (Yn)n60. Point (c) is what
we meant when we said that this process is constructed in “in real time”
from the process (Zφ(n))n60

. Figure 2 is helpful to read the proof of this
lemma.

Lemma 4.2. (a) The process (Yn)n60 is the next-jump time process whose
law is defined by the probabilities

pφ
n := Pr(∆Yn > 0) = 1 −

∏

k∈]φ(n−1),φ(n)]

(1 − pk)

for every n 6 −1.

(b) The σ-field F0 = Fφ(0) is conditionally independent of Fφ(n−1) on the
jump event {∆Yn > 0} ∈ Fφ(n−1) for every n 6 0.

(c) The filtration generated by (Yn)n60 is immersed in the filtration gener-
ated by (Zφ(n))n60

. In other words, the process (Yn)n60 is Markovian
with respect to the filtration of the process (Zφ(n))n60

.

Proof. Point (a) results from the equality Yn = min{k | n + 1 6 k 6

0 and ε
φ
k = 1} for every n 6 −1 where (εφ

n)n60 is the Bernoulli process
defined by ε

φ
0 = 1 and εφ

n = max{εm | φ(n − 1) < εm 6 φ(n)} for n 6 −1.
Point (b) is a deduced from lemma 1.1(b) by noting the inclusion {∆Yn >

0} ⊂ {Zφ(n−1) 6 φ(n)}.
Denoting by E the filtration generated by (Yn)n60, point (c) amounts

to say that L(Yn |Fφ(n−1)) = L(Yn |En−1) for every n 6 0. We know that
L(Yn |Fφ(n−1)) = δYn−1

on the event {∆Yn = 0} ∈ Fφ(n−1) and the equality
L(Yn |Fφ(n−1)) = L(Yn) occurs on the event {∆Yn > 0} as a consequence
of point (b).

Note that the jumping probabilities of (Yn)n60 are given by

pφ
n = 1 −

φ(n)
φ(n − 1)
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in the case when each Zn has the uniform law on {n + 1, . . . , 0}.
Standardness ( ⇐⇒ cosiness) of the filtration generated by (Yn)n60

has been characterized in the previous section. We will see (theorem 4.6)
that this criterion also characterizes standardness of the extracted filtration
Fφ(·), up to the particular case (∗) for the next-jump time process (Yn)n60,
and which we treat in lemma below for more convenience.

Lemma 4.3. If the next-jump time process (Yn)n60 satisfies (∗) with pφ
n and

p
φ
k instead of pn and pk then either F is standard or F is not Kolmogorovian.

Proof. Under (∗) it is easy to check that either the σ- fields Fm are degen-
erate for every m 6 φ(n − 1) or F is not Kolmogorovian. In the first case
F is standard.

Theorem 4.6 will be derived from the results of the previous section and
the two following lemmas.

Lemma 4.4. If the filtration Fφ(·) is cosy then the filtration of the next-
jump time process (Yn)n60 is cosy too.

Proof. From lemma 4.2(c) and since immersion is a transitive relation,
the filtration of the next-jump time process (Yn)n60 is immersed in Fφ(·).
The result follows from the elementary fact that cosiness is hereditary for
immersion (see [3] or [4]).

The proof of the following lemma is a slight variant of the proof of
lemma 2.2.

Lemma 4.5. Assume that F is Kolmogorovian and the next-jump time
process (Yn)n60 has the independent self-meeting property. Then the process
(Zφ(n))n60

generates a cosy filtration.

Proof. If the next-jump time process (Yn)n60 satisfies (∗) (with pφ
n and p

φ
k)

then we know by lemma 4.3 that F is standard or F is not Kolmogorovian.
If F is standard, then Fφ(·) is standard as well as the filtration of the process
(Zφ(n))n60

because it is immersed in Fφ(·).
Now we discard case (∗). Under the assumption that (Yn)n60 has the in-

dependent self-meeting property we will prove that the σ- field σ(Zφ(m), . . . , Zφ(0))
is cosy for every m < 0 by miming the proof of lemma 2.2. Let (Z ′

φ(n))n60

and (Z∗

φ(n))n60
be two independent copies of (Zφ(n))n60

and call (Y ′

n)n60 and
(Y ∗

n )n60 the copies of the process (Yn)n60 constructed from (Z ′

φ(n))n60
and

(Z∗

φ(n))n60
in the same way as (Yn)n60 is constructed from (Zφ(n))n60

.

By lemma 3.4 the event
{
Y ′

n−1 = Y ∗

n−1 = n
}

almost surely occurs in-
finitely many times. Hence, for any integer m < 0 and any δ > 0, one can
find n0 < m such that the probability of the meeting event A :=

{
Y ′

n =

Y ∗

n = n + 1 for some n ∈ [n0, m]
}

is larger than 1 − δ. In such a situ-
ation, define a copy (Z ′′

φ(n))n60
of (Zφ(n))n60

by putting Z ′′

φ(n) = Z∗

φ(n) for
n 6 T and Z ′′

φ(n) = Z ′

φ(n) for n > T where T is the stopping time defined

by T = min
{
n ∈ [n0, m] | Y ′

n = Y ∗

n = n + 1
}

on the event A and T = +∞

otherwise. By lemma 2.1 and lemma 4.2(b), the so constructed process
(Z ′′

φ(n))n60
is indeed a copy of (Zφ(n))n60

and the filtrations generated by
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(Z ′

φ(n))n60
and (Z ′′

φ(n))n60
provide a joining of the filtration generated by

(Zφ(n))n60
. Then conclude as in the proof of lemma 2.2 that the σ-field

σ(Zφ(m), . . . , Zφ(0)) is cosy and finally that (Zφ(n))n60
generates a cosy fil-

tration.

Theorem 4.6. Assume F is Kolmogorovian (see theorem 3.5). If (∗) holds
with pφ

n and p
φ
k then Fφ(·) is standard. Otherwise Fφ(·) is standard if and

only if
∑

(pφ
n)2 = ∞.

Proof. Case (∗) is shown by lemma 4.3 and is discarded now. If Fφ(·) is
standard then

∑
(pφ

n)2 = ∞ by lemma 4.4 and theorem 3.5. Conversely, if
∑

(pφ
n)2 = ∞ then Fφ(·) is cosy by theorem 3.5, lemma 3.3, lemma 4.5, and

proposition 4.1.

Using the standardness criterion of theorem 4.6 it is easy to check that
for any Kolmogorovian next-jump time filtration F, the extracted filtration
(F2n)n60 is not standard whenever F is not standard. Thus, the present
paper does not provide any example of filtration at the threshold of stan-
dardness (see [1]).

5 Other next-jump time processes

Consider the definition of the next-jump time process (Zn)n60 given in
the introduction. We could have equivalenty formulated this definition by
defining the random set E = {k ∈ −N | εk = 1} and then by setting
Z0 = 0 and Zn = min

(
E ∩ [n + 1, 0]

)
for n 6 −1. Starting from a general

random subset E of −N containing 0 we would define by this way the
general next-jump time process. Other conditions on the random set E

could be added, such as one guaranteeing that the next-jump time process
(Zn)n60 is Markovian; but providing a precise general definition is not our
purpose here.

We only wish to mention that such a process generating a Kolmogoro-
vian but not standard filtration appears in [2] but is a little hidden in a
bigger filtration. The mathematics of [2] could be a little more clear by
using this filtration instead of the bigger filtration in which it is hidden. In
[2] the random set E is obtained by beforehand considering a partition P
of −N made of infinitely many intervals and containing in particular the
singleton interval {0}, and then by choosing at random a point in each
of these intervals. The corresponding next-jump time process (Zn)n60 is
Markovian. The partition P used in [2] has been chosen in order that the
filtration is Kolmogorovian but not standard. It would not be difficult to
study standardness of this filtration for a general choice of the partition P,
by using an approach similar to the one used in the present paper.
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