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AREA OF IDEAL TRIANGLES AND GROMOV
HYPERBOLICITY IN HILBERT GEOMETRY

B. COLBOIS, C. VERNICOS, AND P. VEROVIC

Abstract. We show that a Hilbert geometry is hyperbolic
in the sense of Gromov if and only if there is an upper bound
on the area of ideal triangles.

Introduction and statements

The aim of this paper is to show, in the context of Hilbert
geometry, the equivalence between the existence of an upper bound
on the area of ideal triangles and the Gromov-hyperbolicity.
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Figure 1. The Hilbert distance

Let us recall that a Hilbert geometry (C, dC) is a non empty
bounded open convex set C on Rn (that we shall call convex do-
main) with the Hilbert distance dC defined as follows : for any
distinct points p and q in C, the line passing through p and q
meets the boundary ∂C of C at two points a and b, such that one
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walking on the line goes consecutively by a, p, q b (figure 1). Then
we define

dC(p, q) =
1

2
ln
‖q − a‖
‖p− a‖

× ‖p− b‖
‖q − b‖

=
1

2
ln[a, p, q, b],

where [a, p, q, b] is called the cross ratio, and ‖ · ‖ is the canonical
euclidean norm in Rn.

Note that the invariance of the cross-product by a projective
map implies the invariance of dC by such a map.

These geometries are naturally endowed with a C0 Finsler met-
ric FC as follows: if p ∈ C and v ∈ TpC = Rn with v 6= 0, the
straight line passing by p and directed by v meets ∂C at two points
p+
C and p−C ; we then define

FC(p, v) =
1

2
‖v‖
(

1

‖p− p−C ‖
+

1

‖p− p+
C ‖

)
et FC(p, 0) = 0.

∂C
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Figure 2. The Finsler structure

The Hilbert distance dC is the length distance associated to FC.

Thanks to that Finsler metric, we can built a Borel measure µC
on C (which is actually the Hausdorff measure of the metric space
(C, dC), see [BBI01], exemple 5.5.13 ) as follows.

To any p ∈ C, let BC(p) = {v ∈ Rn | FC(p, v) < 1} be the open
unit ball in TpC = Rn of the norm FC(p, ·) and ωn the euclidean
volume of the open unit ball of the standard euclidean space Rn.
Consider the (density) function hC : C −→ R given by hC(p) =
ωn/Vol

(
BC(p)

)
, where Vol is the canonical Lebesgue measure of
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Rn. We define µC, which we shall call the Hilbert Measure on C,
by

µC(A) =

∫
A

hC(p)dVol(p)

for any Borel set A of C.
When the convex C is an ellipsoid, (C, dC) is the Klein model

of the hyperbolic geometry, thus we can think of the Hilbert’s ge-
ometries as natural generalisations of the hyperbolic geometry, and
hope to get interesting examples of manifolds close to be hyper-
bolic. As an example, recently, M. Kapovich [Kap] showed that
the famous Gromov-Thurston examples of ”almost” hyperbolic,
but not hyperbolic manifolds admit a projective structure, that is
may be obtain as the quotient of a convex (C, dC) by a cocompact
isometry group.

However, up to the hyperbolic case, these Hilbert geometries
are never CAT(0), and a natural question is to decide when they
are hyperbolic in a rough sense, that is Gromov-hyperbolic. To
answer this question, we can look at extrinsic characterizations,
in term of the geometry of the boundary ∂C of C, or at intrinsic
one’s.

Indeed, a fundamental result of Y. Benoist [Ben03] gives an ex-
trinsic characterization of Gromov-hyperbolic Hilbert geometries,
that is a sufficient and necessary conditions on the boundary ∂C of
a convex domain C to insure that the associate Hilbert geometry
(C, dC) is Gromov-hyperbolic.

The goal of this paper is to give an intrinsic condition equiva-
lent to the Gromov-hyperbolicity in terms of the area of the ideal
triangles of (C, dC). For a simply connected, complete Riemannian
manifold of curvature K ≤ −1, it is well known that the ideal sim-
plices are of finite area. In the context of the Hilbert geometries,
we will show that the fact for (C, dC) to be Gromov-hyperbolic is
equivalent to the existence of an upper bound on the area of ideal
triangles.

We define an ideal triangle T ⊂ C as the affine convex hull of
three points a, b, c of ∂C not on a line, and such that T ∩ ∂C =
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a ∪ b ∪ c. (Note that the affine convex hull coincides with the
geodesic convex hull when the space is uniquely geodesic, which is
the case of Gromov-hyperbolic Hilbert geometry). The area of a
triangle T (ideal or not) of (C, dC), denoted by AreaC(T ), is its area
for the Hilbert measure of (C ∩ P, dC∩P ), where P is the unique
plane in Rn containing the triangle (in dimension 2, as C ∩P = C,
we will also denote it by µC(T )).

In this paper, we prove

Theorem 1. Let δ > 0. There exist a constant C(δ) > 0
with the following property: the Hilbert geometry (C, dC) is δ-
hyperbolic if and only if the area of any ideal triangle T ⊂ C is
bounded above by C(δ).

To show that the bound on the area of ideal triangles implies
the δ-hyperbolicity is quite straightforward and its proof is in the
first part of the paper (Theorem 2). The converse is much more
delicate: we show it on the second part of the paper (Theorem 7).
The main ingredient of the proof is a co-compacity Lemma (The-
orem 8, whose idea goes back in some sense to Benzecri [Ben60])
and the results of Benoist’s paper [Ben03]. To make the proof
readable, we let some technical lemma in an Appendix at the end
of the paper, in particular the Lemma 21 deduced from [Ben03],
which implies an α-Hölder regularity of the boundary of a convex
domain whose Hilbert geometry is δ-hyperbolic, with α depend-
ing only on δ, and Lemma 18, where we show that the α-Hölder
regularity implies the finiteness of the area of ideal triangles.

Note that the results of this Appendix are used many times in
the proof of Theorem 7.

In the sequel we will switch between affine geometry (where
our results are stated) and projective geometry (where Benoist’s
results are stated). We will use the following two classical facts
(see [Sam88] section 1.3 page 8–11)

(1) Any affine space can be embedded into a projective space
(by ”adding an hyperplane at infinity”). Furthermore any
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one-to-one affine map extends to a homography keeping
the ”hyperplane at infinity” globally invariant.

(2) The complement of a projective hyperplane in a projective
space is an affine space. Furthermore all homographies
keeping this hyperplane globally invariant are naturally
identified with an affine map on the complement.

1. Bounded area implies δ-hyperbolicity

In this part we prove

Theorem 2. Let M > 0. There exists δ = δ(M) > 0 with
the following property: Let (C, dC) be a convex domain with its
induced Hilbert distance. If any ideal triangle in (C, dC) has its
area less than M then (C, dC) is δ-hyperbolic.

This theorem is a straightforward consequence of the following
proposition:

Proposition 3. There exist a constant C > 0 with the follow-
ing property: for any δ, if (C, dC) is not δ-hyperbolic, then there
exists an ideal triangle T ⊂ C, whose area satisfies µC(T ) ≥ C · δ.

Indeed, if the assumption of Theorem 2 are satisfied, then C has
to be δ-hyperbolic for any δ > M/C, otherwise we would get a
contradiction with the Proposition 3.

Now let us prove Proposition 3. We already know that if ∂C
is not strictly convex, then there is an ideal triangle of arbitrarily
large area ([CVV04] Corollaire 6.1 page 210). Hence we can as-
sume that ∂C is strictly convex, which implies that all the geodesics
of (C, dC) are straight segments (see [dlH93] proposition 2 page 99).

Each triangle T ⊂ C determines a plane section of C, and is
contained in an ideal triangle of this plane section. So, it suffices
to exibit a triangle (not necessarily ideal) such that µC(T ) ≥ C · δ.

This is done thanks to the two following lemma.

Lemma 4. If (C, dC) is not δ-hyperbolic, there is a plane P
and a triangle T in P ∩ C such that a point in the triangle is at a
distance greater than δ/4 from its sides.
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Proof of lemma 4. If (C, dC) is not δ-hyperbolic, there exists a tri-
angle T ∈ C of vertices a, b, c, a point p ∈ ∂T , say between a and
b, such that the distance from p to the two opposite sides of ∂T
is greater than δ. The end of the proof takes place in the plane
determined by the triangle T .

Let R = δ/2. Consider a circle S of center p and radius R. Let
p1, p2 = S ∩ ∂T . We have dC(p1, p2) = 2R.

If q ∈ S, then dC(p1, q) + d(q, p2) ≥ 2R by the triangle inequal-
ity. By continuity, we can choose q ∈ S ∩ T , with dC(q, p1) ≥
R; dC(q, p2) ≥ R. From this fact, and by the classical triangular
inequality, we deduce dC(q, ∂T ) ≥ R/2: to see it, let p3 be the
middle of the segment pp1. We have dC(p, p3) = dC(p3, p1) = R/2.

• If q′ ∈ pp3, dC(q, q
′) ≥ dC(p, q)− dC(p, p3) ≥ R/2.

• If q′ ∈ p3p1, then dC(q, q
′) ≥ dC(q, p1)−dC(q′q1) ≥ R/2 and

this show also that if dC(q
′, p1) ≤ R/2 then dC(q, q

′) ≥ R/2.
• If q′ is such that dC(q

′, p) ≥ 3R/2, then dC(q, q
′) ≥ R/2.

This allow to conclude for the half line issue from p through p1

and we can do the same for the other half line. �

Lemma 5. There exists a constant Cn such that any ball of
radius R > 2 in any Hilbert geometry of dimension n has a volume
greater or equal to Cn ·R

Proof. Let B a ball centered at q of radius R. Consider a geodesic
segment starting at q: it has length R and lies inside B. We can
cover it by N = integer part of R, parwise disjoint balls of radius
1 contained in B, with N →∞ with δ. But we know (Theorem 12,
[CV06]) that the volume of a radius 1 ball is uniformly bounded
below for all the Hilbert geometries by a constant c(n). Hence the
volume of the ball of radius R ≥ 2 is greater than (R− 1) · c(n) ≥
R · c(n)/2. �

Hence, if (C, dC) is not δ hyperbolic thanks to lemma 4 we would
find a triangle T containing a two-dimensional ball of radius δ/4,
hence its area would be greater than δ/4 · C2 thanks to lemma 5.
Which ends the proof of proposition 3.
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A consequence of Theorem 2, already proved with different ap-
proaches by A. Karlsson and G.A. Noskov [KN02], Y. Benoist
[Ben03] and B. Colbois and P. Verovic [CV04], is the following:

Corollary 6. If the boundary of C is C2 with strictly positive
curvature, then (C, dC) is Gromov hyperbolic.

This is a consequence of Theorem 4 in [CVV04] which says that
if the boundary is C2 with strictly positive curvature, then the
assumptions of Theorem 2 are satisfied.

2. From δ-hyperbolicity to bounded area

The aim of this section is to prove the following

Theorem 7. Let δ > 0. Then, there exists V = V (δ) > 0
with the following property: Let C be a convex domain such that
(C, dC) is δ-hyperbolic. Then, for any ideal triangle T of C, we
have AreaC(T ) ≤ V .

Thought the ideas to prove Theorem 7 are quite simple, the
proof itself is somewhat technical. The bound on the area of ideal
triangle depends only on the δ of the Gromov hyperbolicity. There-
fore it suffices to prove Theorem 7 in the two dimensional case.
Thus, from this point on, everything will be done in the two di-
mensional case.

2.1. Co-compactness of triangle-pointed convex. Le us be-
gin with some notations.

Let Gn := PGL(Rn), Pn := P(Rn+1) the projective space of
Rn+1. A properly convex subset Ω of Pn is a convex set such
that there is a projective hyperplane who doesn’t meet its closure.
Denote by Xn is the set of properly convex open sets. Let Xδ

n be
the set of δ-hyperbolic properly convex open sets in Pn

In Xn we will consider the topology induced by the Hausdorff
distance between sets, denoted by d.

We will say that a convex domain C is triangle-pointed if one
fixes an ideal triangle in C. Let

T δ2 = {(ω, x, y, z) ∈ Xδ
2×P2×P2×P2 | x, y, z ∈ ∂ω, x 6= y, y 6= z, z 6= x}
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be the set of triangle-pointed convex sets C with C ∈ Xδ
2 .

One of the main steps of our proof will rely upon the following
cocompactness result.

Theorem 8. G2 acts cocompactly on T δ2 , i.e., for any sequence
(ωn,∆n)n∈N in T δ2 , there is a sequence (gn)n∈N in G2 and a subse-
quence of (gnωn, gn∆n)n∈N that converges to (ω,∆) ∈ T δ2 .

Actually, Theorem 8 is a corollary of the following more precise
statement

Proposition 9. Let (ωn, Tn)n∈N be a sequence in T δ2 , then

(1) There is a sequence (gn)n∈N in G2 and a number 0 < e ≤
1/2 such that gnTn = ∆ ⊂ R2 the triangle whose co-
ordinates are the points (1, 0), (0, 1), (1, 1), and gnωn ⊂
R+ × R+ is tangent at (1, 0) to the x-axe, at (0, 1) to the
y-axe and at (1, 1) to the line passing through the points
(1/αn, 0) and (0, 1/(1− αn) for some 0 < e ≤ αn ≤ 1/2;

(2) From the previous sequence we can extract a subsequence
converging to some (ω,∆) ∈ T δ2 .

Proof. Step 1: A first transformation

According to [CVV04] (Proof of Théorème 3, p. 215 and Lemme 9,
p. 216), for each n ∈ N, there exist a number αn ∈ (0, 1/2] and an
affine transformation An of R2 such that:

1) The bounded open convex domain Ωn := An(ωn) is contained
in the triangle T ⊂ R2 whose vertices are the points (0, 0),
(1, 0) and (0, 1).

2) The points (αn, 0), (0, 1− αn) and (αn, 1− αn) are in ∂Ωn and
the ideal triangle ∆n they define in (Ωn, dΩn) is equal to An(Tn).

3) The x-axis, the y-axis and the line passing through (1, 0) and
(0, 1) are tangent to ∂Ωn at the points (αn, 0), (0, 1− αn) and
(αn, 1− αn) respectively.

Remark that we may have to take out different projective lines
to see the proper convex sets ωn as convex sets in an affine space.
But up to some homography we can suppose that we always took
the same. The geometries involved will not be changed.
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(0, 0)

1

1 x

y

αn

1− αn

∂Ωn

∆n

T

Figure 3. The Ωn are convex sets included in a
fixed triangle

Step 2: Proof of the first part of (1)

In this part, we show the first part of point (1). The second
point of (1), that is to see that the set of {αn} is uniformly bounded
below by e > 0, will be done at the step 4.

For each n ∈ N, if we consider the linear transformation Ln of
R2 defined by

Ln(1, 0) = (1/αn, 0) and Ln(0, 1) = (0, 1/(1− αn)),

we have:

1) The bounded open convex domain Cn := Ln(Ωn) is contained
in the triangle Tn ⊂ R2 whose vertices are the points (0, 0),
(1/αn, 0) and (0, 1/(1− αn)).

2) The points (1, 0), (0, 1) and (1, 1) are in ∂Cn and the ideal
triangle ∆ they define in (Cn, dCn) is equal to Ln(∆n).
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3) The x-axis, the y-axis and the line passing through (1/αn, 0)
and (0, 1/(1−αn)) are tangent to ∂Cn at the points (1, 0), (0, 1)
and (1, 1) respectively.

(0, 0)

1
1− αn

1
αn

1
e

x

y

1

1

∂Cn

∆

Tn

2

2

(1, 1)

P

Figure 4. The Cn are convex sets with a fixed ideal triangle

For each n ∈ N, the affine transformation Ln ◦An of R2 induces
an isometry from (ωn, dωn) onto the metric space (Cn, dCn), Hence
we have that (Cn, dCn) is δ-hyperbolic for all n ∈ N.

Step 3: Convergence of a subsequence

All the convex domains Cn ⊂ R2 contain the fixed triangle ∆ and
are by construction contained in the convex subset B = {(x, y) ∈
R2 : x ≥ 0; 0 ≤ y ≤ 2}. The convex B correspond to a properly
convex set of the projective plane, because it does not contain the
line {x = −1}.

From Lemma 2.2 page 189 in [Ben03], the set of all the bounded
open convex domains in the projective plane P2 contained in B and
containing the image of ∆ is compact for the Hausdorff distance d.
Thus there exist a proper convex domain Ω in P2 such that Ω ⊂ B
and a subsequence of (Cn)n∈N, still denoted by (Cn)n∈N, such that
d(Cn,Ω)→ 0 as n→ +∞.

Point a) of Proposition 2.10, page 12, in Benoist [Ben03] then
implies that Ω is δ-hyperbolic and strictly convex.
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Note that since the points (1, 0), (0, 1) and (1, 1) are in ∂Cn for
all n ∈ N, they also are in ∂Ω.

Step 4: The bound on the αn

By contradiction: Suppose inf {αn : n ∈ N} = 0.

By considering a subsequence, we can assume that

lim
n→+∞

αn = 0.

Then we have that for any Cn, a part of its boundary is in the
triangle (0, 1), (1, 1) and (0, 1/(1−αn)). When n→ +∞, the last
point converges towards (0, 1), i.e. the triangle collapses on the
segment defined by (0, 1) and (1, 1). Hence, this segment is on ∂Ω,
which contradicts the strict convexity of step 3.

This implies that there exists a constant e > 0 such that αn ∈
[e, 1/2] for all n ∈ N, and that Ω is bounded in R2.

�

Proposition 10. Let C be a bounded open convex domain in
R2 such that ∂C is α-Hölder for some α > 1. Then for any ideal
triangle T in (C, dC), µC(T ) is finite.

Proof. Let T be an ideal triangle in (C, dC) whose boundary ∂C
is of regularity α-Hölder for some α > 1. Let a, b and c be the
vertices of T . Let Da, Db and Dc be the tangent at a, b and c
respectively to ∂C. For any two points p, q in the plane, let Dpq

be the straight line passing by p and q. Let us focus on the vertex
a, and choose a system of coordinates in R2 such that the x-axes
is the straight line Da and the convex C lies in R× [0,+∞).

Then Lemma 16 implies that for ρ small enough, there is a
function f : [−ρ, ρ] → R and a real number h > 0 such that ∂C ∩
([−ρ, ρ]× [0, h]) is the graph of f . Now choose a′ ∈ Dab and a′′ ∈
Dac such that Da′a′′ is parallel to Dbc and [a′, a′′] ⊂ [−ρ, ρ]× [0, h].
Lemma 18 implies that the area of the triangle Ta = aa′a′′ is finite.

In the same way, we built two other triangles bb′b′′, cc′c′′ which
are of finite area. Now the hexagonH = (a′a′′b′b′′c′′c′) is a compact
set in (C, dC), hence of finite area.

Thus the ideal triangle T which is the union of the hexagon H
and the triangles Ta, Tb and Tc is of finite area.
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�

From Benoist work, mainly corollaire 1.5, a) page 184 in [Ben03],
we know that if (C, dC) is Gromov-hyperbolic, then there is some
α ∈ ]1, 2] such that ∂C is Cα. Hence follows

Corollary 11. Let C be a bounded open convex domain in
R2 such that (C, dC) is Gromov-hyperbolic. Then, for any ideal
triangle T in (C, dC), we have that µC(T ) is finite.

2.2. Proof of Theorem 7. The proof is done by contradiction.

Assume that we can find a sequence (ωn, Tn) ∈ T δ2 such that

sup {µ ωn(Tn) : n ∈ N} = +∞
and prove this is not possible.

The main idea is to use the fact that G2 acts co-compactly by
isometries on the triangle-pointed convex, to transform a converg-
ing subsequence of (ωn, Tn) ∈ T δ2 into a sequence of convex sets
(Cn,∆) ∈ T δ2 evolving around a fixed ideal triangle ∆.

Then in a perfect world we would be able to find a convex set
Cperfect containing ∆ as an ideal triangle with finite area and in-
cluded in all Cn, and then we would get a contradiction.

Things are not that easy, but almost. Actually, we will cut ∆
into 4 pieces, and for each of these pieces, we will show that there
is a convex set for which it is of finite volume and included in Cn
for all n ∈ N.

Before going deeper into the proof, let us first make an overview
of the different steps.

Step 1: We transform the problem to obtain a converging sequence
(Cn,∆) ∈ T δ2 to (Ω,∆), where ∆ is a fixed ideal triangle,
and Cn are convex sets tangent to two fixed lines at two of
the vertices of ∆.

Step 2: In this step, we built a small convex set G1 ⊂ Cn around
the vertex (1, 0) of ∆, which is tangent to the x-axe at
(1, 0) and such that a sufficiently small section T1 of ∆
containing the vertex (1, 0) is of finite volume V1 in G1.

Step 3: Reasoning as in the previous step we built a small convex
set G2 ⊂ Cn around the vertex (0, 1) of ∆, which is tangent
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to the y-axe at (0, 1) and such that a sufficiently small
section T2 of ∆ containing the vertex (0, 1) is of finite
volume V2 in G2.

Step 4: We built a small triangle A which is a section of ∆ ad-
mitting the vertex (1, 1) as one of its vertices and whose
volume is bounded by a finite number V3 for any Cn.

Step 5: We built a convex set U and a compact set S such that
(a) for all n, U ⊂ Cn.
(b) µU(S) = V4 is finite; and
(c) S ∪ A ∪ T1 ∪ T2 = ∆;

We then conclude that for all n

µCn(∆) ≤ µCn(T1) + µCn(T2) + µCn(A) + µCn(S)

≤ µG1(T1)︸ ︷︷ ︸
≤V1 by step 2

+ µG2(T2)︸ ︷︷ ︸
≤V2 by step 3

+ µCn(A)︸ ︷︷ ︸
≤V3 by step 4

+ µU(S)︸ ︷︷ ︸
≤V4 by step 5

≤ V1 + V2 + V3 + V4 < +∞

(1)

which is absurd.

Step 1: Extraction of the subsequence.

Following the proof of Proposition 9, and keeping its notations,
we can find a sequence (gn) in G2 such that gnTn = ∆ and gnωn =
Cn, which therefore satisfies

(2) µCn(∆) = µωn(Tn).

This implies that

(3) sup{µCn(∆) : n ∈ N} = +∞.

Furthermore, always by Proposition 9, we have (Cn,∆)n∈N which
converges towards some Ω. Recall that (for all n ∈ N) Cn and Ω
are tangent to the x-axe at (1, 0), to the y-axe at (0, 1) and at
(1, 1) to some line.

Step 2:

We will need the following theorem
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Theorem 12. Let (Dn)n∈N be a sequence of convex sets in R2

whose Hilbert Geometry is δ-hyperbolic, for some fixed δ, and a
straight line L. Assume that

• the sequence (Dn)n∈N converges to some open convex set
D;
• There is some p ∈ L such that for all n, Dn lies in the same

half plane determined by L, and is tangent at p to L;

then, taking as origin the point p, as x-axe the line L, and as y-axe
an orthogonal line to L,

1) There is a number 3a = ρ > 0 such that for all n ∈ N, there is
a convex function fn : [−3a, 3a] → R and numbers bn > 0 and
sn ∈ R such that

(4)
∂Dn ∩ {(x, y) ∈ R2 : x ∈ [−3a, 3a] and y < snx+ bn} = Graphfn.

2) There is some µ > 0 and α > 0 (which will be made explicit in
the proof) such that

fn(x) ≤ µ|x|α for all x ∈ [−a, a],

3) Let
m(fn) = min{fn(−a), fn(a)}

then we have u0 := inf{m(fn) : n ∈ N} > 0.

We first show how to use Theorem 12 to achieve the second
step of the proof of Theorem 7. We have just to exhibit precisely

the part T1 of the triangle whose area will be bounded above,
independantely of the δ-hyperbolic convex set Cn we consider.

Let

(5) D := Ω + (−1, 0)

(translate of C by the vector (−1, 0)) and

(6) Dn := Cn + (−1, 0) for all n ∈ N.

Note that since (Ω, dΩ) is Gromov-hyperbolic, the same is true for
(D, dD).

We thus apply Theorem 12 to this sequence Dn in order to use
Lemma 18 to see that a fixed triangle T1 has finite area.
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To do this, let us consider a0 := (αµ)
1

1−α > 0. The tangent line
to {(x, µ|x|α) : x ∈ R} at the point (−a0, µa

α
0 ) is then parallel to

the line {(x, y) ∈ R2 : y = −x}.
Define

u1 := min{u0, µa
α
0} > 0

and pick any u ∈ (0, u1/3]. Applying the linear transformation of
R2 given by

(x, y) 7→ (−x(3u/µ)−1/α, y/3u),

we are in the situation of Lemma 18 with

λ = (3u/µ)1/α/3u ≥ 1,

from which we can deduce with τ := 2/3 ∈ (0, 1) that the triangle

{(x, y) ∈ R2 : x < 0 and − x < y < 2u}
is included in the bounded open convex domain

{(x, y) ∈ R2 : µ|x|α < 3u and µ|x|α < y < 3u}
and has a finite Hilbert area.

So, if we consider the triangle

T1(u) := {(x, y) ∈ R2 : x < 0 and − x < y < 2u}+ (1, 0)

and the bounded open convex domain

G1(u) := {(x, y) ∈ R2 : µ|x|α < 3u and µ|x|α < y < 3u}+ (1, 0),

we have T1(u) ⊂ G1(u) and V1 := µG1(u)(T1(u)) is finite.
In addition, since 3u < u0, we get that for all n ∈ N, G1(u)

is contained in the convex set Cn, and thus µCn(T1(u)) ≤ V1 by
Proposition 14 of Appendix.

Proof of Theorem 12. Let us postpone the proof of claim 1), and
prove the other two claims

Claim 2) First note that we have fn ≥ 0 and fn(0) = 0 since
(0, 0) ∈ ∂Dn. In addition, as (Dn, dDn) is δ-hyperbolic, Lemma 6.2,
page 216, and Proposition 6.6, page 219, in Benoist [Ben03] imply
there is a number H = H(δ) ≥ 1, independant of n such that fn
is H-quasi-symmetrically convex on the compact set [−2a, 2a] ⊂
(−3a, 3a).
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Therefore, by Lemma 21, we have for H2 = (4H(H + 1))
1+a
a ,

(7) fn(x) ≤ 160(H2 + 1)M(fn)|x|α for all x ∈ [−a, a],

where

(8) α = 1 + log2

(
1 +H−1

2

)
> 1

and

(9) M(fn) = max{fn(−a), fn(a)}.

We next claim that the sequence (M(fn))n∈N is bounded above.
Indeed, suppose that sup{M(fn) : n ∈ N} = +∞. If π2 : R2 →

R denotes the projection onto the second factor, there is a number
R > 0 such that π2(D) ⊂ [0, R] since D is bounded and included in
R×[0,+∞) (this latter point is a consequence of the fact thatDn ⊂
R × [0,+∞) for all n ∈ N). Then, using dH(π2(Dn), π2(D)) → 0
as n→ +∞, there is an integer n1 ∈ N such that π2(Dn) ⊂ [0, 3R]
for all n ≥ n1.

Now there exists n ≥ n1 such that M(fn) ≥ 4R, that is,

π2(−a, fn(−a)) = fn(−a) ≥ 4R or π2(a, fn(a)) = fn(a) ≥ 4R.

As the points (−a, fn(−a)) and (a, fn(a)) are both in Dn, we get
that π2(Dn) ∩ [4R,+∞) 6= ∅, which is not possible.

Hence there is a constant M > 0 such that for all n ∈ N, we
have M(fn) ≤M , and thus

fn(x) ≤ µ|x|α for all x ∈ [−a, a],

where µ := 160(H + 1)M > 0. Which proves our second claim.

Claim 3) Now, for any n ∈ N, recall that

(10) m(fn) = min{fn(−a), fn(a)}.

We have to show that

(11) inf{fn(−a) : n ∈ N} and inf{fn(a) : n ∈ N}

are both positive numbers. So, assume that one of them, for ex-
ample the second one, is equal to zero.
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Therefore there would exist a subsequence of
((
a, fn(a)

))
n∈N

that converges to (a, 0), and hence (a, 0) ∈ D, since d((a, fn(a)),D)→
0 as n→ +∞.

As (0, 0) ∈ D, the whole line segment {0}× [0, a] would then be
included in the convex set D. But D is included in R × [0,+∞)
whose boundary contains {0} × [0, a].

This would imply that {0} × [0, a] ⊂ ∂D, and thus D would
not be strictly convex, contradicting the Gromov hyperbolicity of
(D, dD) by Socié-Méthou [SM00].

Claim 1) Now back to the first claim. It suffices to use the fol-
lowing lemma

Lemma 13. There is a number ρ > 0 such that for all n ∈ N,
we have

Dn ∩ ((−∞,−ρ)× R) 6= ∅ and Dn ∩ ((ρ,+∞)× R) 6= ∅.

Thus, given any n ∈ N, as Dn ⊂ R× [0,+∞), it suffices to apply
Lemma 16 with a := ρ/3 and S = Dn in order to get numbers
bn > 0 and sn ∈ R and a convex function fn : [−3a, 3a]→ R such
that
(12)
∂Dn ∩ (x, y) ∈ R2 : x ∈ [−3a, 3a] and y < snx+ bn} = Graphfn.

�

Proof of Lemma 13. From the Gromov hyperbolicity of (D, dD),
we get that the boundary ∂D is a 1-dimensional submanifold of
R2 of class C1 by Karlson-Noskov [KN02].

As (0, 0) ∈ ∂D, Lemma 15 then implies that D neither lies in
(0,+∞)× (0,+∞), nor in (−∞, 0)× (0,+∞).

Hence, denoting by π1 : R2 → R the projection onto the first
factor, π1(D) is an open set in R that contains 0, and thus there
exists a number r > 0 such that

[−2r, 2r] ⊂ π1(D).

Since π1 is continuous and

(13) dH(Dn,D)→ 0 as n→ +∞,
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we get that

(14) dH(π1(Dn), π1(D))→ 0 as n→ +∞,

which implies there is an integer n0 ∈ N such that for all n > n0,
one has

(15) π1(Dn) ∩ (−∞,−r) 6= ∅ and π1(Dn) ∩ (r,+∞) 6= ∅.
Finally, given any n ∈ {0, . . . , n0}, there exists rn > 0 such that

[−2rn, 2rn] ⊂ π1(Dn) by applying to Dn the same argument as the
one used for D above.

But this implies that

(16) π1(Dn) ∩ (−∞,−rn) 6= ∅ and π1(Dn) ∩ (rn,+∞) 6= ∅.
Then, choosing ρ = min {r, r0, . . . , rn0} > 0, Lemma 13 is proved.

�

Step 3: Using the translation by the vector (0,−1) and rea-
soning as in Step 1 with x and y exchanged, we get numbers β > 1,
ν > 0, b0 > 0 and 0 < v1 ≤ νbβ0 such that the following holds:

(1) The tangent line to {(ν|y|β, y) : y ∈ R} at the point

(νbβ0 , b0) is parallel to the line {(x, y) ∈ R2 : y = −x}.
(2) For each v ∈ (0, v1/3], the triangle

T2(v) := {(x, y) ∈ R2 : y < 0 and − y < x < 2v}+ (0, 1)

and the bounded open convex domain

G2(v) := {(x, y) ∈ R2 : ν|y|β < 3v and ν|y|α < x < 3v}+ (0, 1),

satisfy

T2(v) ⊂ G2(v) ⊂ Cn
for all n ∈ N and

V2 := µG2(v)

(
T2(v)

)
is finite.

Therefore, we deduce that µCn(T2(v)) ≤ V2 for all n ∈ N.

Step 4: The geometric idea is similar to the two precedent
steps. The only difficulty is that the tangent line to Cn is not
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always the same, and we have to be sure to make an uniform
choice.

For each n ∈ N, consider the affine transformation Φn of R2

defined by

Φn(1, 1) = (0, 0), Φn(αn − 1, αn) = (1, 0), Φn(−αn, αn − 1) = (0, 1).

As
Φn((1, 1) + R+(−1, 0)) = R+(1− αn, αn)

and
Φn((1, 1) + R+(0,−1)) = R+(−αn, 1− αn),

since αn ∈ [e, 1/2] (see Proposition 9) we also have

(17) Φn(∆) ⊂ {(x, y) ∈ R2 : y ≥ e|x|/(1− e)}.
Then, applying Theorem 12 to Φn(Cn) ⊂ R × [0,+∞), we

get numbers c > 0, γ > 1 and κ > 0 and a convex function
gn : [−c, c]→ R such that

gn(x) ≤ κ|x|γ for all x ∈ [−c, c].
Next, as in claim 3 of Theorem 12 in Step 2, there exists a constant
w0 > 0 such that for all n ∈ N, we have both

gn(−c) ≥ w0 and gn(c) ≥ w0.

Let

(18) c0 := (e/(κ(1− e)))1/(γ−1) > 0.

The point (c0, κc
γ
0) is then the intersection point between the curve

{(x, κ|x|γ) : x ∈ R}
and the half line

{(x, y) ∈ R2 : y = ex/(1− e), x ≥ 0}.
Define

(19) w1 := min{w0, κc
γ
0} > 0

and pick any w ∈ (0, w1/4].
Applying the linear transformation of R2 given by

(x, y) 7→ (−x(4w/κ)−1/γ, y/4w),
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we are in the situation of Lemma 18 with

λ =
e

1− e
(4w/κ)1/γ/4w.

If λ ≥ 1, it is an immediate application of Lemma 18. If λ < 1,
we have to do a new linear transformation given by

(x, y) 7→ (αx, αγy)

with α = λ
1

1−γ , which allow to be in situation of Lemma 18 with
λ = 1

From this, we can deduce with τ := 3/4 ∈ (0, 1) that the triangle

{(x, y) ∈ R2 : x < 0 and − x < y < 3w}
is included in the bounded open convex domain

{(x, y) ∈ R2 : κ|x|γ < 4w and κ|x|γ < y < 4w}
and has a finite Hilbert area, we denote by V3.

So, for every n ∈ N, if we consider the triangle

An(w) := Φ−1
n ({(x, y) ∈ R2 : x < 0 and − x < y < 3w})

and the bounded open convex domain

Gn(w) := Φ−1
n ({(x, y) ∈ R2 : µ|x|α < 4w and µ|x|α < y < 4w}),

we have

An(w) ⊂ Gn(w) and µGn(w)

(
An(w)

)
= V3.

In addition, since 4w < w0, we get that for all n ∈ N, Gn(w)
is contained in the convex set Cn, and thus µCn(An(w)) ≤ V3 by
Proposition 14.

Now, fix n ∈ N.
The edge of the triangle

{(x, y) ∈ R2 : x < 0 and − x < y < 3w}
that does not contain (0, 0) lies in the line ` := (0, 3w) + R(1, 0).
Hence, the edge of the triangle An(w) that does not contain (1, 1)
lies in the line

(20) `n := Φ−1
n (`) = Φ−1

n (0, 3w) + R(Φn)−1(1, 0)

= (1− 3αnw, 1 + 3(αn − 1)w) + R(αn − 1, αn).
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(1, 1)1

1
1− αn

y

x1

Gn(w)

An(w)

A(w)
∂Cn

Figure 5. The triangle A(w)

The x-coordinate xn of the intersection point between `n and the
line

{(x, y) ∈ R2 : y = 1}
is then equal to

xn = 1− 3αnw + s(αn − 1)

with s = 3(1 − αn)w/αn. From αn ∈ [e, 1/2], we get that s > 0,
and thus

(21) xn < 1− 3αnw < 1− 3ew.

On the other hand, the y-coordinate yn of the intersection point
between `n and the line

{(x, y) ∈ R2 : x = 1}
is equal to

yn = 1 + 3(αn − 1)w + tαn
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with t = 3αnw/(αn−1). As αn ∈ [e, 1/2], we have t < 0, and thus

(22) yn < 1 + 3(αn − 1)w < 1− w < 1− 3ew.

Using Equation 17, this proves that the fixed triangle A(w)
whose vertices are the points (1, 1), (1− 3ew, 1) and (1, 1− 3ew)
is included in the triangle An(w).

Conclusion: by Proposition 14, µCn(A(w)) ≤ V3 for all n ∈ N.

(0, 0) 1

1

1/2

1/2

q1 q2

q3

q4q5

q6

U

p3

p4

S

T1(u)

T2(v)
A(w)

G1(u)

G2(v)

(1, 1)

x

y

Figure 6. The convex set U and the compact set S

Step 5: Let us introduce the points

p3 := (1, 1− ew), p4 := (1− ew, 1),
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by step 4, p3 and p4 are in A(w) (see figure 6).
Now consider U the convex hull of G1(u)∪G2(v)∪{p3, p4}, recall

that for all n ∈ N we have

G1(u) ⊂ Cn, by step 2;

G2(v) ⊂ Cn, by step 3;

p3, p4 ∈ A(w) ⊂ Cn, by step 4,

hence the fixed bounded open convex domain U is included in the
convex set Cn, for all n ∈ N.

Now, if S is the closed convex hull in R2 of the points

q1 := (1− u, u), q2 := (1, u), q3 := (1, 1− 2ew),

q4 := (1− 2ew, 1), q5 := (v, 1), q6 := (v, 1− v),

we have S ∈ U , and thus V4 := µU(S) is finite, since S is compact.
This gives that S ⊂ Cn with µCn(S) ≤ V4 for all n ∈ N.
Finally, as ∆ ⊂ T1(u) ∪ T2(v) ∪ A(w) ∪ S, we get

(23) µCn(∆) ≤ µCn(T1(u)) + µCn(T2(v))

+ µCn(A(w)) + µCn(S)

≤ V1 + V2 + V3 + V4 =: V < +∞.

But this is in contradiction with the assumption

sup {µCn(∆) : n ∈ N} = +∞,

hence Theorem 7 is proved.

Appendix A. Technical lemmas

We recall, without proof, Proposition 5 in [CVV04] page 208.

Proposition 14. Let (A, dA) and (B, dB) be two Hilbert’s ge-
ometries such that A ⊂ B ⊂ Rn. Then :

(1) The Finsler metrics FA and FB satisfy FB( p, v) ≤
FA( p, v) for all p ∈ A and all none null v ∈ Rn with
equality, if, and only if p−A = p−B and p+

A = p+
B .

(2) If p, q ∈ A, we have dB( p, q) ≤ dA( p, q).
(3) For all p ∈ A, we have µ (BA( p)) ≤ µ (BB( p)) with

equality, if, and only if A = B.
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(4) For any Borel set A in A, we have µB(A) ≤ µA(A)
with equality, if, and only if A = B.

Lemma 15. Fix s ∈ R and consider the half closed cone C =
{(x, y) ∈ R2 : x ≥ 0 and y ≤ sx} in R2. Then we have:

1) For any ε > 0 and any parameterized curve σ : (−ε, ε) → R2

that is differentiable at t = 0, if σ(0) = (0, 0) and σ((−ε, ε)) ⊂
C, then σ′(0) = (0, 0).

2) For any 1-dimensional topological submanifold Γ of R2, if (0, 0) ∈
Γ and Γ ⊂ C, then Γ is not a differentiable submanifold of R2

at (0, 0).

Proof. Point 1: Let σ(t) = (x(t), y(t)) for all t ∈ (−ε, ε). As
x(t) ≥ 0 = x(0) for all t ∈ (−ε, ε), the function x : (−ε, ε) → R
has a local minimum at t = 0, and thus x′(0) = 0.

On the other hand, for all t ∈ (−ε, ε), we have y(t) ≤ sx(t), or
equivalently y(t)− sx(t) ≤ 0 = y(0)− sx(0). This shows that the
function y − sx : (−ε, ε) → R has a local minimum at t = 0, and
thus (y − sx)′(0) = 0. But x′(0) = 0 and hence y′(0) = 0, which
proves the first point of the lemma.

Point 2: Assume that Γ is a 1-dimensional differentiable subman-
ifold of R2 at (0, 0).

Then we can find open sets U and V in R2 that contain (0, 0)
together with a diffeomorphism Φ: U → V satisfying Φ(U ∩ Γ) =
V ∩ (R× {0}) and Φ(0, 0) = (0, 0).

Let ε > 0 such that (−ε, ε) × {0} ⊂ V ∩ (R × {0}), and
consider the parameterized curve σ : (−ε, ε) → R2 defined by
σ(t) = Φ−1(t, 0).

As σ is differentiable at t = 0 and satisfies σ((−ε, ε)) ⊂ U ∩
Γ ⊂ Γ ⊂ C and σ(0) = (0, 0), we get from Point 1) above that
σ′(0) = (0, 0), which implies that (Φ ◦ σ)′(0) = (0, 0) by the chain
rule.

But a direct calculation gives (Φ◦σ)(t) = (t, 0) for all t ∈ (−ε, ε),
and hence (Φ ◦ σ)′(0) = (1, 0) 6= (0, 0).

So Γ cannot be a 1-dimensional differentiable submanifold of R2

at (0, 0), proving the second point of the lemma.
�
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Lemma 16. Let ρ > 0 and S be an open convex domain in R2

that lies in R× (0,+∞).
If S ∩ ((−∞,−ρ)×R) 6= ∅ and S ∩ ((ρ,+∞)×R) 6= ∅, then there
exist s ∈ R, b > 0 and a function f : [−ρ, ρ]→ R such that

∂S ∩ {(x, y) ∈ R2 : x ∈ [−ρ, ρ] and y < sx+ b} = Graphf .

Proof. Pick

p0 = (x0, y0) ∈ S ∩ ((−∞,−ρ)× R)

and

p1 = (x1, y1) ∈ S ∩ ((ρ,+∞)× R).

The closed line segment L with vertices p0 and p1 then lies in
the convex set S. Denoting by π1 : R2 → R the projection onto
the first factor, we thus get [−ρ, ρ] ⊂ [x0, x1] = π1(L) ⊂ π1(S).
Since S ⊂ R × (0,+∞), this allows us to consider the function
f : [−ρ, ρ]→ R defined by

f(x) = inf {y ≥ 0 : (x, y) ∈ S}.

Fix x ∈ [−ρ, ρ].
Given any z ≥ 0 such that (x, z) ∈ S, we have by compactness

f(x) = inf {y ∈ [0, z] : (x, y) ∈ S} = min {y ∈ [0, z] : (x, y) ∈ S},

and thus (x, f(x)) ∈ S.
If (x, f(x)) were in S, there would exist ε > 0 such that

[x− ε, x+ ε]× [f(x)− ε, f(x) + ε] ⊂ S ⊂ R× [0,+∞),

and thus we would get f(x) − ε ∈ {y ≥ 0 : (x, y) ∈ S}. But
this contradicts the very definition of f(x). Therefore, we have
(x, f(x)) ∈ ∂S.

Now let s = (y1−y0)/(x1−x0) and b = (x1y0−x0y1)/(x1−x0) >
0. The equation of the straight line containing L is then y = sx+b.

Since for all x ∈ [−ρ, ρ], the point (x, sx + b) ∈ L ⊂ S, we get
f(x) ≤ sx + b from the definition of f . As (x, f(x)) ∈ ∂S and
L ∩ ∂S = ∅, we also have f(x) 6= sx+ b. Hence

Graphf ⊂ ∂S ∩ {(x, y) ∈ R2 : x ∈ [−ρ, ρ] and y < sx+ b}.
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On the other hand, for any given (x, z) ∈ ∂S ∩ {(x, y) ∈ R2 :
x ∈ [−ρ, ρ] and y < sx+ b}, assume there is y ≥ 0 with (x, y) ∈ S
satisfying y < z. Then (x, z) is in the triangle whose vertices are
p0, p1 and (x, y), which is not possible since this triangle lies in
S (the interior of the closure of a convex set in Rn is equal to
the interior of that convex set in Rn) and (x, z) ∈ ∂S. Therefore
z ≤ y, which shows that z = f(x) by the definition of f . This
proves that

∂S ∩ {(x, y) ∈ R2 : x ∈ [−ρ, ρ] and y < sx+ b} ⊂ Graphf .

�

Remark 17. The function f obtained in Lemma 16 satisfies
f ≥ 0 and is automatically convex since its epigraph is equal to
the convex set in R2 equal to the union of the convex set

S ∩ {(x, y) ∈ R2 : x ∈ [−ρ, ρ] and y < sx+ b} ⊂ R2

(intersection of two convex sets in R2) and the convex set

{(x, y) ∈ R2 : x ∈ [−ρ, ρ] and y ≥ sx+ b} ⊂ R2.

Lemma 18. Let α > 1, λ ≥ 1 and τ ∈ (0, 1). Consider the
bounded open convex domain

(24) G = {(x, y) ∈ R2 : −1 < x < 1 and |x|α < y < 1}

and the triangle

(25) T = {(x, y) ∈ R2 : x > 0 and λx < y < τ}.

Then we have T ⊂ G and the area µG(T ) is finite.

Proof. Step 1: For each p = (x, y) ∈ T , let BG(p) = {v ∈ R2 :
FG(p, v) < 1} be the open unit ball in TpG = R2 of the norm
FG(p, ·).

An easy computation shows that the vectors

v1 = ((y2/α−x2)/y1/α, 0) and v2 = (0, 2(1−y)(y−xα)/(1−xα))

are in the boundary ∂BG(p) of BG(p).
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1−1

1

τ

x

y

y = λx

G T

y = |x|α

(0, 0)

Figure 7. figure 1

As BG(p) is convex and symmetric about (0, 0) in TpG = R2, we
get that the rhombus defined as the convex hull of v1, v2, −v1 and
−v2 is included in the closure of BG(p) in TpG = R2.

Therefore the euclidien volume of this rhombus is less than or
equal to that of BG(p), which writes

Vol
(
BG(p)

)
≥ 4

(1− y)(y − xα)(y2/α − x2)

y1/α(1− xα)
.

Since 1− xα ≤ 1 and 1− y ≥ 1− τ , we then deduce

Vol
(
BG(p)

)
≥ 4(1− τ)

(y − xα)(y2/α − x2)

y1/α
.

Step 2: From the inequality obtained in Step 1, we have

(26) µG(T ) = π

∫∫
T

dx dy

VolBG(p)
≤ π

4(1− τ)
I,

where

I :=

∫∫
T

y1/αdx dy

(y − xα)(y2/α − x2)
.

Now, using the change of variables Φ: (0,+∞)2 → (0,+∞)2

defined by

(s, t) = Φ(x, y) := (x/y1/α, x),
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whose Jacobian at any (x, y) ∈ (0,+∞)2 is equal to x/(αy1+1/α),
we get

I = α

∫ ∫
Φ(T )

ds dt

t(1− sα)(1− s2)

with Φ(T ) = {(s, t) ∈ R2 : 0 < t < τ/λ and t · τ−1/α < s < λ−1/α · t1−1/α}.
So,

I = α

∫ τ/λ

0

1

t

(∫ λ−1/αt1−1/α

τ−1/αt

1

(1− sα)(1− s2)
ds

)
dt

≤ α

∫ τ/λ

0

1

t

(∫ λ−1/αt1−1/α

τ−1/αt

1

(1− τα−1λ−α)(1− τ 2−2/αλ−2)
ds

)
dt,

since (s, t) ∈ Φ(T ) implies

1−sα ≥ 1−tα−1/λ ≥ τα−1λ−α and 1−s2 ≥ 1−λ−2/αt2−2/α ≥ τ 2−2/αλ−2.

Therefore, one has

I ≤ α

∫ τ/λ

0

λ−1/αt−1/α − τ−1/α

(1− τα−1λ−α)(1− τ 2−2/αλ−2)
dt

≤ Λ

∫ τ/λ

0

1

t1/α
dt,

where Λ :=
αλ−1/α

(1− τα−1λ−α)(1− τ 2−2/αλ−2)
.

Since 1/α < 1, this shows that I < +∞, and Equation 26 proves
the lemma.

�

Definition 19. Given a number K ≥ 1 and an interval I ⊂ R,
a function f : I → R is said to be K-quasi-symmetric if and only
if one has:

(27) ∀x ∈ I, ∀h ∈ R, (x+ h ∈ I and x− h ∈ I)

=⇒ |f(x+ h)− f(x)| ≤ K|f(x)− f(x− h)|.

Definition 20. Given a number H ≥ 1 and an interval I ⊂ R,
a function f : I → R is said to be H-quasi-symmetrically convex
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if and only if it is convex, differentiable and has the following
property:

(28) ∀x ∈ I, ∀h ∈ R, (x+ h ∈ I and x− h ∈ I)

=⇒ Dx(h) ≤ HDx(−h),

where

Dx(h) := f(x+ h)− f(x)− f ′(x)h.

Lemma 21. Let a > 0, H ≥ 1 and f : [−2a, 2a] → R a
H-quasi-symmetrically convex function that satisfies f ≥ 0 and
f(0) = 0. Define

(29) H2 =
(
4H(H + 1)

) 1+a
a > 1

and

(30) α = 1 + log2 (1 +H−1
2 ) > 1

and M(f) = max{f(−a), f(a)}. Then we have

(31) f(x) ≤ 160(H2 + 1)M(f)|x|α for all x ∈ [−a, a].

Before proving this lemma, recall the two following results due
to Benoist [Ben03].

Lemma 22 ([Ben03], Lemma 5.3.b), page 204). Let a > 0,
H ≥ 1 and f : [−2a, 2a] → R a H-quasi-symmetrically convex
function. Then the restriction of the derivative f ′ to [−a, a] is

K-quasi-symmetric, where K = (4H(H + 1))
1+a
a ≥ 1.

Lemma 23 ([Ben03], Lemma 4.9.a), page 203). Let a > 0,
K ≥ 1 and f : [−a, a]→ R a differentiable convex function.
If the derivative f ′ isK-quasi-symmetric, then for all x, y ∈ [−a, a],
we have

|f ′(x)− f ′(y)| ≤ 160(1 +K)||f ||∞|x− y|α−1,

where α = 1 + log2

(
1 + 1/K

)
> 1.
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Proof of lemma 21. Using Lemma 22, we have that the derivative
f ′ of f is K-quasi-symmetric when restricted to [−a, a]. But then,
according to Lemma 23 with y = 0 and the fact that f ′(0) = 0
since 0 is the minimum of f , we get that

|f ′(x)| ≤ 160(1 +K) max
t∈[−a,a]

|f(t)| |x|α−1 for all x ∈ [−a, a].

Now, the convexity of f implies that f ′ is a non-decreasing func-
tion. As f ′(0) = 0, we have that f ′(x) ≤ 0 for all x ∈ [−a, 0] and
f ′(x) ≥ 0 for all x ∈ [0, a]. Hence, f is a function that is non-
increasing on [−a, 0] and non-decreasing on [0, a], which yields to
maxt∈[−a,a]|f(t)| = M(f) and

(32) |f ′(x)| ≤ 160(1 +K)M(f)|x|α−1 for all x ∈ [−a, a].

Choosing an arbitrary u ∈ [−a, a] and applying Taylor’s theorem
to f between 0 and u, we get the existence of ϑ ∈ (0, 1) such that

f ′(ϑu)u = f(u)− f(0) = f(u).

Therefore, plugging x = ϑu ∈ [−a, a] in Equation 32 and multi-
plying by |u|, one has

|f(u)| = |f ′(ϑu)||u| ≤ 160(1+K)M(f)|ϑu|α−1|u| ≤ 160(1+K)M(f)|u|α

since |ϑu| ≤ |u|. This proves Lemma 21. �
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