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Introduction and statements

The aim of this paper is to show, in the context of Hilbert geometry, the equivalence between the existence of an upper bound on the area of ideal triangles and the Gromov-hyperbolicity. Let us recall that a Hilbert geometry (C, d C ) is a non empty bounded open convex set C on R n (that we shall call convex domain) with the Hilbert distance d C defined as follows : for any distinct points p and q in C, the line passing through p and q meets the boundary ∂C of C at two points a and b, such that one walking on the line goes consecutively by a, p, q b (figure 1). Then we define

d C (p, q) = 1 2 ln q -a p -a × p -b q -b = 1 2 ln[a, p, q, b],
where [a, p, q, b] is called the cross ratio, and • is the canonical euclidean norm in R n . Note that the invariance of the cross-product by a projective map implies the invariance of d C by such a map.

These geometries are naturally endowed with a C 0 Finsler metric F C as follows: if p ∈ C and v ∈ T p C = R n with v = 0, the straight line passing by p and directed by v meets ∂C at two points p + C and p - C ; we then define When the convex C is an ellipsoid, (C, d C ) is the Klein model of the hyperbolic geometry, thus we can think of the Hilbert's geometries as natural generalisations of the hyperbolic geometry, and hope to get interesting examples of manifolds close to be hyperbolic. As an example, recently, M. Kapovich [Kap] showed that the famous Gromov-Thurston examples of "almost" hyperbolic, but not hyperbolic manifolds admit a projective structure, that is may be obtain as the quotient of a convex (C, d C ) by a cocompact isometry group.

F C (p, v) = 1 2 v 1 p -p - C + 1 p -p + C et F C (p, 0) = 0.
However, up to the hyperbolic case, these Hilbert geometries are never CAT(0), and a natural question is to decide when they are hyperbolic in a rough sense, that is Gromov-hyperbolic. To answer this question, we can look at extrinsic characterizations, in term of the geometry of the boundary ∂C of C, or at intrinsic one's. Indeed, a fundamental result of Y. Benoist [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF] gives an extrinsic characterization of Gromov-hyperbolic Hilbert geometries, that is a sufficient and necessary conditions on the boundary ∂C of a convex domain C to insure that the associate Hilbert geometry (C, d C ) is Gromov-hyperbolic.

The goal of this paper is to give an intrinsic condition equivalent to the Gromov-hyperbolicity in terms of the area of the ideal triangles of (C, d C ). For a simply connected, complete Riemannian manifold of curvature K ≤ -1, it is well known that the ideal simplices are of finite area. In the context of the Hilbert geometries, we will show that the fact for (C, d C ) to be Gromov-hyperbolic is equivalent to the existence of an upper bound on the area of ideal triangles.

We define an ideal triangle T ⊂ C as the affine convex hull of three points a, b, c of ∂C not on a line, and such that T ∩ ∂C = a ∪ b ∪ c. (Note that the affine convex hull coincides with the geodesic convex hull when the space is uniquely geodesic, which is the case of Gromov-hyperbolic Hilbert geometry). The area of a triangle T (ideal or not) of (C, d C ), denoted by Area C (T ), is its area for the Hilbert measure of (C ∩ P, d C∩P ), where P is the unique plane in R n containing the triangle (in dimension 2, as C ∩ P = C, we will also denote it by µ C (T )).

In this paper, we prove Theorem 1. Let δ > 0. There exist a constant C(δ) > 0 with the following property: the Hilbert geometry (C, d C ) is δhyperbolic if and only if the area of any ideal triangle T ⊂ C is bounded above by C(δ).

To show that the bound on the area of ideal triangles implies the δ-hyperbolicity is quite straightforward and its proof is in the first part of the paper (Theorem 2). The converse is much more delicate: we show it on the second part of the paper (Theorem 7). The main ingredient of the proof is a co-compacity Lemma (Theorem 8, whose idea goes back in some sense to Benzecri [START_REF] Benzécri | Sur les variétés localement affines et localement projectives[END_REF]) and the results of Benoist's paper [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF]. To make the proof readable, we let some technical lemma in an Appendix at the end of the paper, in particular the Lemma 21 deduced from [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF], which implies an α-Hölder regularity of the boundary of a convex domain whose Hilbert geometry is δ-hyperbolic, with α depending only on δ, and Lemma 18, where we show that the α-Hölder regularity implies the finiteness of the area of ideal triangles.

Note that the results of this Appendix are used many times in the proof of Theorem 7.

In the sequel we will switch between affine geometry (where our results are stated) and projective geometry (where Benoist's results are stated). We will use the following two classical facts (see [START_REF] Samuel | Projective geometry[END_REF] section 1.3 page 8-11)

(1) Any affine space can be embedded into a projective space (by "adding an hyperplane at infinity"). Furthermore any one-to-one affine map extends to a homography keeping the "hyperplane at infinity" globally invariant.

(2) The complement of a projective hyperplane in a projective space is an affine space. Furthermore all homographies keeping this hyperplane globally invariant are naturally identified with an affine map on the complement.

Bounded area implies δ-hyperbolicity

In this part we prove This theorem is a straightforward consequence of the following proposition:

Proposition 3. There exist a constant C > 0 with the following property: for any δ, if (C, d C ) is not δ-hyperbolic, then there exists an ideal triangle T ⊂ C, whose area satisfies µ C (T ) ≥ C • δ.

Indeed, if the assumption of Theorem 2 are satisfied, then C has to be δ-hyperbolic for any δ > M/C, otherwise we would get a contradiction with the Proposition 3. Now let us prove Proposition 3. We already know that if ∂C is not strictly convex, then there is an ideal triangle of arbitrarily large area ([CVV04] Corollaire 6.1 page 210). Hence we can assume that ∂C is strictly convex, which implies that all the geodesics of (C, d C ) are straight segments (see [dlH93] proposition 2 page 99).

Each triangle T ⊂ C determines a plane section of C, and is contained in an ideal triangle of this plane section. So, it suffices to exibit a triangle (not necessarily ideal) such that µ C (T ) ≥ C • δ. This is done thanks to the two following lemma.

Lemma 4. If (C, d C ) is not δ-hyperbolic, there is a plane P and a triangle T in P ∩ C such that a point in the triangle is at a distance greater than δ/4 from its sides.

Proof of lemma 4. If (C, d C ) is not δ-hyperbolic, there exists a triangle T ∈ C of vertices a, b, c, a point p ∈ ∂T , say between a and b, such that the distance from p to the two opposite sides of ∂T is greater than δ. The end of the proof takes place in the plane determined by the triangle T .

Let R = δ/2. Consider a circle S of center p and radius R. Let p 1 , p 2 = S ∩ ∂T . We have d C (p 1 , p 2 ) = 2R.

If q ∈ S, then d C (p 1 , q) + d(q, p 2 ) ≥ 2R by the triangle inequality. By continuity, we can choose q ∈ S ∩ T , with d C (q, p 1 ) ≥ R; d C (q, p 2 ) ≥ R. From this fact, and by the classical triangular inequality, we deduce d C (q, ∂T ) ≥ R/2: to see it, let p 3 be the middle of the segment pp 1 . We have

d C (p, p 3 ) = d C (p 3 , p 1 ) = R/2. • If q ∈ pp 3 , d C (q, q ) ≥ d C (p, q) -d C (p, p 3 ) ≥ R/2. • If q ∈ p 3 p 1 , then d C (q, q ) ≥ d C (q, p 1 ) -d C (q q 1 ) ≥ R/2 and this show also that if d C (q , p 1 ) ≤ R/2 then d C (q, q ) ≥ R/2. • If q is such that d C (q , p) ≥ 3R/2, then d C (q, q ) ≥ R/2.
This allow to conclude for the half line issue from p through p 1 and we can do the same for the other half line.

Lemma 5. There exists a constant C n such that any ball of radius R > 2 in any Hilbert geometry of dimension n has a volume greater or equal to C n • R Proof. Let B a ball centered at q of radius R. Consider a geodesic segment starting at q: it has length R and lies inside B. We can cover it by N = integer part of R, parwise disjoint balls of radius 1 contained in B, with N → ∞ with δ. But we know (Theorem 12, [START_REF] Colbois | Bas du spectre et delta-hyperbolicité en géométrie de Hilbert plane[END_REF]) that the volume of a radius 1 ball is uniformly bounded below for all the Hilbert geometries by a constant c(n). Hence the volume of the ball of radius R ≥ 2 is greater than

(R -1) • c(n) ≥ R • c(n)/2.
Hence, if (C, d C ) is not δ hyperbolic thanks to lemma 4 we would find a triangle T containing a two-dimensional ball of radius δ/4, hence its area would be greater than δ/4 • C 2 thanks to lemma 5. Which ends the proof of proposition 3.

A consequence of Theorem 2, already proved with different approaches by A. Karlsson and G.A. Noskov [START_REF] Karlsson | The Hilbert metric and Gromov hyperbolicity[END_REF], Y. Benoist [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF] and B. Colbois and P. Verovic [START_REF] Colbois | Hilbert geometry for strictly convex domains[END_REF], is the following:

Corollary 6. If the boundary of C is C 2 with strictly positive curvature, then (C, d C ) is Gromov hyperbolic.
This is a consequence of Theorem 4 in [START_REF] Colbois | L'aire des triangles idéaux en géométrie de Hilbert[END_REF] which says that if the boundary is C 2 with strictly positive curvature, then the assumptions of Theorem 2 are satisfied.

From δ-hyperbolicity to bounded area

The aim of this section is to prove the following Theorem 7. Let δ > 0. Then, there exists V = V (δ) > 0 with the following property: Let C be a convex domain such that

(C, d C ) is δ-hyperbolic. Then, for any ideal triangle T of C, we have Area C (T ) ≤ V .
Thought the ideas to prove Theorem 7 are quite simple, the proof itself is somewhat technical. The bound on the area of ideal triangle depends only on the δ of the Gromov hyperbolicity. Therefore it suffices to prove Theorem 7 in the two dimensional case. Thus, from this point on, everything will be done in the two dimensional case.

2.1. Co-compactness of triangle-pointed convex. Le us begin with some notations.

Let G n := PGL(R n ), P n := P(R n+1 ) the projective space of R n+1 . A properly convex subset Ω of P n is a convex set such that there is a projective hyperplane who doesn't meet its closure. Denote by X n is the set of properly convex open sets. Let X δ n be the set of δ-hyperbolic properly convex open sets in P n

In X n we will consider the topology induced by the Hausdorff distance between sets, denoted by d.

We will say that a convex domain C is triangle-pointed if one fixes an ideal triangle in C. Let

T δ 2 = {(ω, x, y, z) ∈ X δ 2 ×P 2 ×P 2 ×P 2 | x, y, z ∈ ∂ω, x = y, y = z, z = x}
be the set of triangle-pointed convex sets C with C ∈ X δ 2 . One of the main steps of our proof will rely upon the following cocompactness result.

Theorem 8. G 2 acts cocompactly on T δ 2 , i.e., for any sequence

(ω n , ∆ n ) n∈N in T δ 2 , there is a sequence (g n ) n∈N in G 2 and a subse- quence of (g n ω n , g n ∆ n ) n∈N that converges to (ω, ∆) ∈ T δ 2 .
Actually, Theorem 8 is a corollary of the following more precise statement Proposition 9. Let (ω n , T n ) n∈N be a sequence in T δ

, then

(1) There is a sequence (g n ) n∈N in G 2 and a number 0 < e ≤ 1/2 such that g n T n = ∆ ⊂ R 2 the triangle whose coordinates are the points (1, 0), (0, 1), (1, 1), and g n ω n ⊂ R + × R + is tangent at (1, 0) to the x-axe, at (0, 1) to the y-axe and at (1, 1) to the line passing through the points (1/α n , 0) and (0, 1/(1 -α n ) for some 0 < e ≤ α n ≤ 1/2; (2) From the previous sequence we can extract a subsequence converging to some (ω, ∆) ∈ T δ 2 .

Proof. Step 1: A first transformation

According to [START_REF] Colbois | L'aire des triangles idéaux en géométrie de Hilbert[END_REF] (Proof of Théorème 3, p. 215 and Lemme 9, p. 216), for each n ∈ N, there exist a number α n ∈ (0, 1/2] and an affine transformation A n of R 2 such that: 1) The bounded open convex domain Ω n := A n (ω n ) is contained in the triangle T ⊂ R 2 whose vertices are the points (0, 0), (1, 0) and (0, 1). 2) The points (α n , 0), (0, 1 -α n ) and (α n , 1 -α n ) are in ∂Ω n and the ideal triangle ∆ n they define in (Ω n , d Ωn ) is equal to A n (T n ).

3) The x-axis, the y-axis and the line passing through (1, 0) and (0, 1) are tangent to ∂Ω n at the points (α n , 0), (0, 1 -α n ) and (α n , 1 -α n ) respectively.

Remark that we may have to take out different projective lines to see the proper convex sets ω n as convex sets in an affine space. But up to some homography we can suppose that we always took the same. The geometries involved will not be changed.

(0, 0) 1 1 x y α n 1 -α n ∂Ω n ∆ n T Figure 3.
The Ω n are convex sets included in a fixed triangle

Step 2: Proof of the first part of (1)

In this part, we show the first part of point (1). The second point of (1), that is to see that the set of {α n } is uniformly bounded below by e > 0, will be done at the step 4.

For each n ∈ N, if we consider the linear transformation

L n of R 2 defined by L n (1, 0) = (1/α n , 0) and L n (0, 1) = (0, 1/(1 -α n )),
we have:

1) The bounded open convex domain

C n := L n (Ω n ) is contained in the triangle T n ⊂ R 2 whose vertices are the points (0, 0), (1/α n , 0) and (0, 1/(1 -α n )).
2) The points (1, 0), (0, 1) and (1, 1) are in ∂C n and the ideal triangle ∆ they define in

(C n , d Cn ) is equal to L n (∆ n ).
3) The x-axis, the y-axis and the line passing through (1/α n , 0) and (0, 1/(1 -α n )) are tangent to ∂C n at the points (1, 0), (0, 1) and (1, 1) respectively.

(0, 0) From Lemma 2.2 page 189 in [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF], the set of all the bounded open convex domains in the projective plane P 2 contained in B and containing the image of ∆ is compact for the Hausdorff distance d. Thus there exist a proper convex domain Ω in P 2 such that Ω ⊂ B and a subsequence of (

1 1 -α n 1 α n 1 e x y 1 1 ∂C n ∆ T n 2 2 (1,
C n ) n∈N , still denoted by (C n ) n∈N , such that d(C n , Ω) → 0 as n → +∞.
Point a) of Proposition 2.10, page 12, in Benoist [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF] then implies that Ω is δ-hyperbolic and strictly convex.

Note that since the points (1, 0), (0, 1) and (1, 1) are in ∂C n for all n ∈ N, they also are in ∂Ω.

Step 4: The bound on the α n By contradiction: Suppose inf {α n : n ∈ N} = 0. By considering a subsequence, we can assume that lim n→+∞ α n = 0.

Then we have that for any C n , a part of its boundary is in the triangle (0, 1), (1, 1) and (0, 1/(1 -α n )). When n → +∞, the last point converges towards (0, 1), i.e. the triangle collapses on the segment defined by (0, 1) and (1, 1). Hence, this segment is on ∂Ω, which contradicts the strict convexity of step 3.

This implies that there exists a constant e > 0 such that α n ∈ [e, 1/2] for all n ∈ N, and that Ω is bounded in R 2 .

Proposition 10. Let C be a bounded open convex domain in R 2 such that ∂C is α-Hölder for some α > 1. Then for any ideal triangle T in (C, d C ), µ C (T ) is finite.

Proof. Let T be an ideal triangle in (C, d C ) whose boundary ∂C is of regularity α-Hölder for some α > 1. Let a, b and c be the vertices of T . Let D a , D b and D c be the tangent at a, b and c respectively to ∂C. For any two points p, q in the plane, let D pq be the straight line passing by p and q. Let us focus on the vertex a, and choose a system of coordinates in R 2 such that the x-axes is the straight line D a and the convex C lies in R × [0, +∞).

Then Lemma 16 implies that for ρ small enough, there is a function

f : [-ρ, ρ] → R and a real number h > 0 such that ∂C ∩ ([-ρ, ρ] × [0, h]) is the graph of f . Now choose a ∈ D ab and a ∈ D ac such that D a a is parallel to D bc and [a , a ] ⊂ [-ρ, ρ] × [0, h].
Lemma 18 implies that the area of the triangle T a = aa a is finite.

In the same way, we built two other triangles bb b , cc c which are of finite area. Now the hexagon H = (a a b b c c ) is a compact set in (C, d C ), hence of finite area.

Thus the ideal triangle T which is the union of the hexagon H and the triangles T a , T b and T c is of finite area.

From Benoist work, mainly corollaire 1.5, a) page 184 in [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF], we know that if (C, d C ) is Gromov-hyperbolic, then there is some α ∈ ]1, 2] such that ∂C is C α . Hence follows Assume that we can find a sequence (ω n , T n ) ∈ T δ 2 such that sup {µ ωn (T n ) : n ∈ N} = +∞ and prove this is not possible.

The main idea is to use the fact that G 2 acts co-compactly by isometries on the triangle-pointed convex, to transform a converging subsequence of (ω n , T n ) ∈ T δ 2 into a sequence of convex sets (C n , ∆) ∈ T δ 2 evolving around a fixed ideal triangle ∆. Then in a perfect world we would be able to find a convex set C perf ect containing ∆ as an ideal triangle with finite area and included in all C n , and then we would get a contradiction.

Things are not that easy, but almost. Actually, we will cut ∆ into 4 pieces, and for each of these pieces, we will show that there is a convex set for which it is of finite volume and included in C n for all n ∈ N.

Before going deeper into the proof, let us first make an overview of the different steps.

Step 1: We transform the problem to obtain a converging sequence (C n , ∆) ∈ T δ 2 to (Ω, ∆), where ∆ is a fixed ideal triangle, and C n are convex sets tangent to two fixed lines at two of the vertices of ∆.

Step 2: In this step, we built a small convex set G 1 ⊂ C n around the vertex (1, 0) of ∆, which is tangent to the x-axe at (1, 0) and such that a sufficiently small section

T 1 of ∆ containing the vertex (1, 0) is of finite volume V 1 in G 1 .
Step 3: Reasoning as in the previous step we built a small convex set G 2 ⊂ C n around the vertex (0, 1) of ∆, which is tangent to the y-axe at (0, 1) and such that a sufficiently small section T 2 of ∆ containing the vertex (0, 1) is of finite volume V 2 in G 2 .

Step 4: We built a small triangle A which is a section of ∆ admitting the vertex (1, 1) as one of its vertices and whose volume is bounded by a finite number V 3 for any C n .

Step 5: We built a convex set U and a compact set S such that (a) for all n,

U ⊂ C n . (b) µ U (S) = V 4 is finite; and (c) S ∪ A ∪ T 1 ∪ T 2 = ∆;
We then conclude that for all n µ Cn (∆) ≤ µ Cn (T 1 ) + µ Cn (T 2 ) + µ Cn (A) + µ Cn (S)

≤ µ G 1 (T 1 ) ≤V 1 by step 2 + µ G 2 (T 2 ) ≤V 2 by step 3 + µ Cn (A) ≤V 3 by step 4 + µ U (S) ≤V 4 by step 5 ≤ V 1 + V 2 + V 3 + V 4 < +∞ (1)
which is absurd.

Step 1: Extraction of the subsequence.

Following the proof of Proposition 9, and keeping its notations, we can find a sequence (g n ) in G 2 such that g n T n = ∆ and g n ω n = C n , which therefore satisfies

(2) µ Cn (∆) = µ ωn (T n ).
This implies that

(3) sup{µ Cn (∆) : n ∈ N} = +∞.

Furthermore, always by Proposition 9, we have (C n , ∆) n∈N which converges towards some Ω. Recall that (for all n ∈ N) C n and Ω are tangent to the x-axe at (1, 0), to the y-axe at (0, 1) and at (1, 1) to some line.

Step 2:

We will need the following theorem Theorem 12. Let (D n ) n∈N be a sequence of convex sets in R 2 whose Hilbert Geometry is δ-hyperbolic, for some fixed δ, and a straight line L. Assume that

• the sequence (D n ) n∈N converges to some open convex set D; • There is some p ∈ L such that for all n, D n lies in the same half plane determined by L, and is tangent at p to L; then, taking as origin the point p, as x-axe the line L, and as y-axe an orthogonal line to L, 1) There is a number 3a = ρ > 0 such that for all n ∈ N, there is a convex function f n : [-3a, 3a] → R and numbers b n > 0 and

s n ∈ R such that (4) ∂D n ∩ {(x, y) ∈ R 2 : x ∈ [-3a, 3a] and y < s n x + b n } = Graphf n .
2) There is some µ > 0 and α > 0 (which will be made explicit in the proof) such that

f n (x) ≤ µ|x| α for all x ∈ [-a, a], 3) Let m(f n ) = min{f n (-a), f n (a)} then we have u 0 := inf{m(f n ) : n ∈ N} > 0.
We first show how to use Theorem 12 to achieve the second step of the proof of Theorem 7. We have just to exhibit precisely the part T 1 of the triangle whose area will be bounded above, independantely of the δ-hyperbolic convex set C n we consider.

Let (5)

D := Ω + (-1, 0) (translate of C by the vector (-1, 0)) and ( 6)

D n := C n + (-1, 0) for all n ∈ N.
Note that since (Ω, d Ω ) is Gromov-hyperbolic, the same is true for (D, d D ).

We thus apply Theorem 12 to this sequence D n in order to use Lemma 18 to see that a fixed triangle T 1 has finite area. Therefore, by Lemma 21, we have for

H 2 = (4H(H + 1)) 1+a a , (7) f n (x) ≤ 160(H 2 + 1)M (f n )|x| α for all x ∈ [-a, a],
where

(8) α = 1 + log 2 1 + H -1 2 > 1 and (9) M (f n ) = max{f n (-a), f n (a)}.
We next claim that the sequence (M (f n )) n∈N is bounded above. Indeed, suppose that sup{M (f n ) : n ∈ N} = +∞. If π 2 : R 2 → R denotes the projection onto the second factor, there is a number

R > 0 such that π 2 (D) ⊂ [0, R] since D is bounded and included in R×[0, +∞) (this latter point is a consequence of the fact that D n ⊂ R × [0, +∞) for all n ∈ N). Then, using d H (π 2 (D n ), π 2 (D)) → 0 as n → +∞, there is an integer n 1 ∈ N such that π 2 (D n ) ⊂ [0, 3R] for all n ≥ n 1 . Now there exists n ≥ n 1 such that M (f n ) ≥ 4R, that is, π 2 (-a, f n (-a)) = f n (-a) ≥ 4R or π 2 (a, f n (a)) = f n (a) ≥ 4R.
As the points (-a, f n (-a)) and (a, f n (a)) are both in D n , we get that π 2 (D n ) ∩ [4R, +∞) = ∅, which is not possible. Hence there is a constant M > 0 such that for all n ∈ N, we have M (f n ) ≤ M , and thus

f n (x) ≤ µ|x| α for all x ∈ [-a, a],
where µ := 160(H + 1)M > 0. Which proves our second claim.

Claim 3) Now, for any n ∈ N, recall that

(10) m(f n ) = min{f n (-a), f n (a)}.
We have to show that Lemma 13. There is a number ρ > 0 such that for all n ∈ N, we have

D n ∩ ((-∞, -ρ) × R) = ∅ and D n ∩ ((ρ, +∞) × R) = ∅.
Thus, given any n ∈ N, as D n ⊂ R×[0, +∞), it suffices to apply Lemma 16 with a := ρ/3 and S = D n in order to get numbers b n > 0 and s n ∈ R and a convex function

f n : [-3a, 3a] → R such that (12) ∂D n ∩ (x, y) ∈ R 2 : x ∈ [-3a, 3a] and y < s n x + b n } = Graphf n .
Proof of Lemma 13. From the Gromov hyperbolicity of (D, d D ), we get that the boundary ∂D is a 1-dimensional submanifold of R 2 of class C 1 by Karlson-Noskov [START_REF] Karlsson | The Hilbert metric and Gromov hyperbolicity[END_REF].

As (0, 0) ∈ ∂D, Lemma 15 then implies that D neither lies in (0, +∞) × (0, +∞), nor in (-∞, 0) × (0, +∞).

Hence, denoting by π 1 : R 2 → R the projection onto the first factor, π 1 (D) is an open set in R that contains 0, and thus there exists a number r > 0 such that

[-2r, 2r] ⊂ π 1 (D).
Since π 1 is continuous and

(13) d H (D n , D) → 0 as n → +∞, we get that (14) d H (π 1 (D n ), π 1 (D)) → 0 as n → +∞,
which implies there is an integer n 0 ∈ N such that for all n > n 0 , one has

(15) π 1 (D n ) ∩ (-∞, -r) = ∅ and π 1 (D n ) ∩ (r, +∞) = ∅.
Finally, given any n ∈ {0, . . . , n 0 }, there exists r n > 0 such that [-2r n , 2r n ] ⊂ π 1 (D n ) by applying to D n the same argument as the one used for D above.

But this implies that

(16) π 1 (D n ) ∩ (-∞, -r n ) = ∅ and π 1 (D n ) ∩ (r n , +∞) = ∅.
Then, choosing ρ = min {r, r 0 , . . . , r n 0 } > 0, Lemma 13 is proved.

Step 3: Using the translation by the vector (0, -1) and reasoning as in Step 1 with x and y exchanged, we get numbers β > 1, ν > 0, b 0 > 0 and 0 < v 1 ≤ νb β 0 such that the following holds: (1) The tangent line to {(ν|y| β , y) : y ∈ R} at the point

(νb β 0 , b 0 ) is parallel to the line {(x, y) ∈ R 2 : y = -x}. (2) For each v ∈ (0, v 1 /3], the triangle T 2 (v) := {(x, y) ∈ R 2 : y < 0 and -y < x < 2v} + (0, 1)
and the bounded open convex domain

G 2 (v) := {(x, y) ∈ R 2 : ν|y| β < 3v and ν|y| α < x < 3v} + (0, 1), satisfy T 2 (v) ⊂ G 2 (v) ⊂ C n for all n ∈ N and V 2 := µ G 2 (v) T 2 (v) is finite. Therefore, we deduce that µ Cn (T 2 (v)) ≤ V 2 for all n ∈ N.
Step 4: The geometric idea is similar to the two precedent steps. The only difficulty is that the tangent line to C n is not always the same, and we have to be sure to make an uniform choice.

For each n ∈ N, consider the affine transformation Φ n of R 2 defined by

Φ n (1, 1) = (0, 0), Φ n (α n -1, α n ) = (1, 0), Φ n (-α n , α n -1) = (0, 1). As Φ n ((1, 1) + R + (-1, 0)) = R + (1 -α n , α n ) and Φ n ((1, 1) + R + (0, -1)) = R + (-α n , 1 -α n ), since α n ∈ [e, 1/2] (see Proposition 9) we also have (17) Φ n (∆) ⊂ {(x, y) ∈ R 2 : y ≥ e|x|/(1 -e)}.
Then, applying Theorem 12 to Φ n (C n ) ⊂ R × [0, +∞), we get numbers c > 0, γ > 1 and κ > 0 and a convex function

g n : [-c, c] → R such that g n (x) ≤ κ|x| γ for all x ∈ [-c, c].
Next, as in claim 3 of Theorem 12 in Step 2, there exists a constant w 0 > 0 such that for all n ∈ N, we have both

g n (-c) ≥ w 0 and g n (c) ≥ w 0 .
Let (18) c 0 := (e/(κ(1 -e))) 1/(γ-1) > 0.

The point (c 0 , κc γ 0 ) is then the intersection point between the curve {(x, κ|x| γ ) : x ∈ R} and the half line

{(x, y) ∈ R 2 : y = ex/(1 -e), x ≥ 0}. Define (19) w 1 := min{w 0 , κc γ 0 } > 0 and pick any w ∈ (0, w 1 /4].
Applying the linear transformation of R 2 given by (x, y) → (-x(4w/κ) -1/γ , y/4w),

we are in the situation of Lemma 18 with λ = e 1 -e (4w/κ) 1/γ /4w.

If λ ≥ 1, it is an immediate application of Lemma 18. If λ < 1, we have to do a new linear transformation given by (x, y) → (αx, α γ y) with α = λ 1 1-γ , which allow to be in situation of Lemma 18 with λ = 1

From this, we can deduce with τ := 3/4 ∈ (0, 1) that the triangle

{(x, y) ∈ R 2 : x < 0 and -x < y < 3w} is included in the bounded open convex domain {(x, y) ∈ R 2 : κ|x| γ < 4w and κ|x| γ < y < 4w}
and has a finite Hilbert area, we denote by V 3 . So, for every n ∈ N, if we consider the triangle

A n (w) := Φ -1 n ({(x, y) ∈ R 2 :
x < 0 and -x < y < 3w}) and the bounded open convex domain G n (w) := Φ -1 n ({(x, y) ∈ R 2 : µ|x| α < 4w and µ|x| α < y < 4w}), we have

A n (w) ⊂ G n (w)
and µ Gn(w) A n (w) = V 3 .

In addition, since 4w < w 0 , we get that for all n ∈ N, G n (w) is contained in the convex set C n , and thus µ Cn (A n (w)) ≤ V 3 by Proposition 14. Now, fix n ∈ N.

The edge of the triangle {(x, y) ∈ R 2 : x < 0 and -x < y < 3w} that does not contain (0, 0) lies in the line := (0, 3w) + R(1, 0). Hence, the edge of the triangle A n (w) that does not contain (1, 1) lies in the line (20

) n := Φ -1 n ( ) = Φ -1 n (0, 3w) + R(Φ n ) -1 (1, 0) = (1 -3α n w, 1 + 3(α n -1)w) + R(α n -1, α n ). (1, 1) 1 1 1 -α n y x 1 G n (w) A n (w) A(w) ∂C n Figure 5. The triangle A(w)
The x-coordinate x n of the intersection point between n and the line {(x, y) ∈ R 2 : y = 1} is then equal to

x n = 1 -3α n w + s(α n -1) with s = 3(1 -α n )w/α n . From α n ∈ [e, 1/2], we get that s > 0, and thus (21)

x n < 1 -3α n w < 1 -3ew.

On the other hand, the y-coordinate y n of the intersection point between n and the line

{(x, y) ∈ R 2 : x = 1}
is equal to y n = 1 + 3(α n -1)w + tα n with t = 3α n w/(α n -1). As α n ∈ [e, 1/2], we have t < 0, and thus (22)

y n < 1 + 3(α n -1)w < 1 -w < 1 -3ew.
Using Equation 17, this proves that the fixed triangle A(w) whose vertices are the points (1, 1), (1 -3ew, 1) and (1, 1 -3ew) is included in the triangle A n (w).

Conclusion: by Proposition 14, µ Cn (A(w)) ≤ V 3 for all n ∈ N.
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(1, 1) Lemma 15. Fix s ∈ R and consider the half closed cone C = {(x, y) ∈ R 2 : x ≥ 0 and y ≤ sx} in R 2 . Then we have: 1) For any ε > 0 and any parameterized curve σ : (-ε, ε) → R 2 that is differentiable at t = 0, if σ(0) = (0, 0) and σ((-ε, ε)) ⊂ C, then σ (0) = (0, 0). 2) For any 1-dimensional topological submanifold Γ of R 2 , if (0, 0) ∈ Γ and Γ ⊂ C, then Γ is not a differentiable submanifold of R 2 at (0, 0).

Proof. Point 1: Let σ(t) = (x(t), y(t)) for all t ∈ (-ε, ε). As x(t) ≥ 0 = x(0) for all t ∈ (-ε, ε), the function x : (-ε, ε) → R has a local minimum at t = 0, and thus x (0) = 0. On the other hand, for all t ∈ (-ε, ε), we have y(t) ≤ sx(t), or equivalently y(t) -sx(t) ≤ 0 = y(0) -sx(0). This shows that the function y -sx : (-ε, ε) → R has a local minimum at t = 0, and thus (y -sx) (0) = 0. But x (0) = 0 and hence y (0) = 0, which proves the first point of the lemma.

Point 2: Assume that Γ is a 1-dimensional differentiable submanifold of R 2 at (0, 0).

Then we can find open sets U and V in R 2 that contain (0, 0) together with a diffeomorphism Φ : U → V satisfying Φ(U ∩ Γ) = V ∩ (R × {0}) and Φ(0, 0) = (0, 0).

Let ε > 0 such that (-ε, ε) × {0} ⊂ V ∩ (R × {0}), and consider the parameterized curve σ : (-ε, ε) → R 2 defined by σ(t) = Φ -1 (t, 0).

As σ is differentiable at t = 0 and satisfies σ((-ε, ε)) ⊂ U ∩ Γ ⊂ Γ ⊂ C and σ(0) = (0, 0), we get from Point 1) above that σ (0) = (0, 0), which implies that (Φ • σ) (0) = (0, 0) by the chain rule.

But a direct calculation gives (Φ•σ)(t) = (t, 0) for all t ∈ (-ε, ε), and hence (Φ • σ) (0) = (1, 0) = (0, 0). So Γ cannot be a 1-dimensional differentiable submanifold of R 2 at (0, 0), proving the second point of the lemma.

On the other hand, for any given (x, z) ∈ ∂S ∩ {(x, y) ∈ R 2 :

x ∈ [-ρ, ρ] and y < sx + b}, assume there is y ≥ 0 with (x, y) ∈ S satisfying y < z. Then (x, z) is in the triangle whose vertices are p 0 , p 1 and (x, y), which is not possible since this triangle lies in S (the interior of the closure of a convex set in R n is equal to the interior of that convex set in R n ) and (x, z) ∈ ∂S. Therefore z ≤ y, which shows that z = f (x) by the definition of f . This proves that

∂S ∩ {(x, y) ∈ R 2 : x ∈ [-ρ, ρ] and y < sx + b} ⊂ Graphf .
Remark 17. The function f obtained in Lemma 16 satisfies f ≥ 0 and is automatically convex since its epigraph is equal to the convex set in R 2 equal to the union of the convex set Then we have T ⊂ G and the area µ G (T ) is finite.

S ∩ {(x, y) ∈ R 2 : x ∈ [-ρ, ρ] and y < sx + b} ⊂ R 2 (intersection of two convex sets in R 2 ) and the convex set {(x, y) ∈ R 2 : x ∈ [-ρ, ρ] and y ≥ sx + b} ⊂ R 2 .
Proof.

Step 1:

For each p = (x, y) ∈ T , let B G (p) = {v ∈ R 2 : F G (p, v) < 1} be the open unit ball in T p G = R 2 of the norm F G (p, •).
An easy computation shows that the vectors

v 1 = ((y 2/α -x 2 )/y 1/α , 0) and v 2 = (0, 2(1-y)(y -x α )/(1-x α )) are in the boundary ∂B G (p) of B G (p). 1 -1 1 τ x y y = λx G T y = |x| α (0, 0) Figure 7. figure 1
As B G (p) is convex and symmetric about (0, 0) in T p G = R 2 , we get that the rhombus defined as the convex hull of v

1 , v 2 , -v 1 and -v 2 is included in the closure of B G (p) in T p G = R 2 .
Therefore the euclidien volume of this rhombus is less than or equal to that of B G (p), which writes

Vol B G (p) ≥ 4 (1 -y)(y -x α )(y 2/α -x 2 ) y 1/α (1 -x α ) .
Since 1 -x α ≤ 1 and 1 -y ≥ 1 -τ , we then deduce

Vol B G (p) ≥ 4(1 -τ ) (y -x α )(y 2/α -x 2 ) y 1/α .
Step 2: From the inequality obtained in Step 1, we have

(26) µ G (T ) = π T dx dy VolB G (p) ≤ π 4(1 -τ ) I,
where

I := T y 1/α dx dy (y -x α )(y 2/α -x 2 )
. Now, using the change of variables Φ : (0, +∞) 2 → (0, +∞) 2 defined by (s, t) = Φ(x, y) := (x/y 1/α , x), whose Jacobian at any (x, y) ∈ (0, +∞) 2 is equal to x/(αy 1+1/α ), we get

I = α Φ(T ) ds dt t(1 -s α )(1 -s 2 ) with Φ(T ) = {(s, t) ∈ R 2 : 0 < t < τ /λ and t • τ -1/α < s < λ -1/α • t 1-1/α }.
So,

I = α τ /λ 0 1 t λ -1/α t 1-1/α τ -1/α t 1 (1 -s α )(1 -s 2 ) ds dt ≤ α τ /λ 0 1 t λ -1/α t 1-1/α τ -1/α t 1 (1 -τ α-1 λ -α )(1 -τ 2-2/α λ -2 )
ds dt, since (s, t) ∈ Φ(T ) implies 1-s α ≥ 1-t α-1 /λ ≥ τ α-1 λ -α and 1-s 2 ≥ 1-λ -2/α t 2-2/α ≥ τ 2-2/α λ -2 .

Therefore, one has

I ≤ α τ /λ 0 λ -1/α t -1/α -τ -1/α (1 -τ α-1 λ -α )(1 -τ 2-2/α λ -2 ) dt ≤ Λ τ /λ 0 1 t 1/α dt,
where Λ := αλ -1/α (1 -τ α-1 λ -α )(1 -τ 2-2/α λ -2 ) .

Since 1/α < 1, this shows that I < +∞, and Equation 26 proves the lemma. Before proving this lemma, recall the two following results due to Benoist [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF]. 
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 1 Figure 1. The Hilbert distance

Figure 2 .

 2 Figure 2. The Finsler structure The Hilbert distance d C is the length distance associated to F C . Thanks to that Finsler metric, we can built a Borel measure µ C on C (which is actually the Hausdorff measure of the metric space (C, d C ), see [BBI01], exemple 5.5.13 ) as follows. To any p ∈ C, let B C (p) = {v ∈ R n | F C (p, v) < 1} be the open unit ball in T p C = R n of the norm F C (p, •) and ω n the euclidean volume of the open unit ball of the standard euclidean space R n . Consider the (density) function h C : C -→ R given by h C (p) = ω n /Vol B C (p) , where Vol is the canonical Lebesgue measure of

Theorem 2 .

 2 Let M > 0. There exists δ = δ(M ) > 0 with the following property: Let (C, d C ) be a convex domain with its induced Hilbert distance. If any ideal triangle in (C, d C ) has its area less than M then (C, d C ) is δ-hyperbolic.

Figure 4 .

 4 Figure 4. The C n are convex sets with a fixed ideal triangle For each n ∈ N, the affine transformation L n • A n of R 2 induces an isometry from (ω n , d ωn ) onto the metric space (C n , d Cn ), Hence we have that (C n , d Cn ) is δ-hyperbolic for all n ∈ N. Step 3: Convergence of a subsequence All the convex domains C n ⊂ R 2 contain the fixed triangle ∆ and are by construction contained in the convex subset B = {(x, y) ∈ R 2 : x ≥ 0; 0 ≤ y ≤ 2}. The convex B correspond to a properly convex set of the projective plane, because it does not contain the line {x = -1}.From Lemma 2.2 page 189 in[START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF], the set of all the bounded open convex domains in the projective plane P 2 contained in B and containing the image of ∆ is compact for the Hausdorff distance d. Thus there exist a proper convex domain Ω in P 2 such that Ω ⊂ B and a subsequence of (C n ) n∈N , still denoted by (C n ) n∈N , such that d(C n , Ω) → 0 as n → +∞.Point a) of Proposition 2.10, page 12, in Benoist[START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF] then implies that Ω is δ-hyperbolic and strictly convex.

Corollary 11 .

 11 Let C be a bounded open convex domain in R 2 such that (C, d C ) is Gromov-hyperbolic. Then, for any ideal triangle T in (C, d C ), we have that µ C (T ) is finite. 2.2. Proof of Theorem 7. The proof is done by contradiction.

  n (-a) : n ∈ N} and inf{f n (a) : n ∈ N} are both positive numbers. So, assume that one of them, for example the second one, is equal to zero. Therefore there would exist a subsequence of a, f n (a) n∈N that converges to (a, 0), and hence (a, 0) ∈ D, since d((a, f n (a)), D) → 0 as n → +∞. As (0, 0) ∈ D, the whole line segment {0} × [0, a] would then be included in the convex set D. But D is included in R × [0, +∞) whose boundary contains {0} × [0, a]. This would imply that {0} × [0, a] ⊂ ∂D, and thus D would not be strictly convex, contradicting the Gromov hyperbolicity of (D, d D ) by Socié-Méthou [SM00]. Claim 1) Now back to the first claim. It suffices to use the following lemma

Figure 6 .

 6 Figure 6. The convex set U and the compact set S

Lemma 18 .

 18 Let α > 1, λ ≥ 1 and τ ∈ (0, 1). Consider the bounded open convex domain (24) G = {(x, y) ∈ R 2 : -1 < x < 1 and |x| α < y < 1} and the triangle (25) T = {(x, y) ∈ R 2 : x > 0 and λx < y < τ }.

Definition 19 .

 19 Given a number K ≥ 1 and an interval I ⊂ R, a function f : I → R is said to be K-quasi-symmetric if and only if one has:(27) ∀x ∈ I, ∀h ∈ R, (x + h ∈ I and x -h ∈ I) =⇒ |f (x + h) -f (x)| ≤ K|f (x) -f (x -h)|.Definition 20. Given a number H ≥ 1 and an interval I ⊂ R, a function f : I → R is said to be H-quasi-symmetrically convex if and only if it is convex, differentiable and has the following property:(28) ∀x ∈ I, ∀h ∈ R, (x + h ∈ I and x -h ∈ I)=⇒ D x (h) ≤ HD x (-h), where D x (h) := f (x + h) -f (x) -f (x)h. Lemma 21. Let a > 0, H ≥ 1 and f : [-2a, 2a] → R a H-quasi-symmetrically convex function that satisfies f ≥ 0 and f (0) = 0. Define (29) H 2 = 4H(H + 1) α = 1 + log 2 (1 + H -1 2 ) > 1 and M (f ) = max{f (-a), f(a)}. Then we have (31) f (x) ≤ 160(H 2 + 1)M (f )|x| α for all x ∈ [-a, a].

  Lemma 22 ([Ben03], Lemma 5.3.b), page 204). Let a > 0, H ≥ 1 and f : [-2a, 2a] → R a H-quasi-symmetrically convex function. Then the restriction of the derivative f to [-a, a] is K-quasi-symmetric, where K = (4H(H + 1)) 1+a a ≥ 1.Lemma 23 ([Ben03], Lemma 4.9.a), page 203). Let a > 0,K ≥ 1 and f : [-a, a] → R a differentiable convex function. If the derivative f is K-quasi-symmetric, then for all x, y ∈ [-a, a], we have |f (x) -f (y)| ≤ 160(1 + K)||f || ∞ |x -y| α-1 , where α = 1 + log 2 1 + 1/K > 1.Proof of lemma 21. Using Lemma 22, we have that the derivative f of f is K-quasi-symmetric when restricted to [-a, a]. But then, according to Lemma 23 with y = 0 and the fact that f (0) = 0 since 0 is the minimum of f , we get that|f (x)| ≤ 160(1 + K) max t∈[-a,a] |f (t)| |x| α-1 for all x ∈ [-a, a].Now, the convexity of f implies that f is a non-decreasing function. As f (0) = 0, we have that f (x) ≤ 0 for all x ∈ [-a, 0] and f (x) ≥ 0 for all x ∈ [0, a]. Hence, f is a function that is nonincreasing on [-a, 0] and non-decreasing on [0, a], which yields to max t∈[-a,a] |f (t)| = M (f ) and(32) |f (x)| ≤ 160(1 + K)M (f )|x| α-1 for all x ∈ [-a, a].Choosing an arbitrary u ∈ [-a, a] and applying Taylor's theorem to f between 0 and u, we get the existence of ϑ ∈ (0, 1) such thatf (ϑu)u = f (u) -f (0) = f (u).Therefore, plugging x = ϑu ∈ [-a, a] in Equation 32 and multiplying by |u|, one has |f (u)| = |f (ϑu)||u| ≤ 160(1+K)M (f )|ϑu| α-1 |u| ≤ 160(1+K)M (f )|u| α since |ϑu| ≤ |u|. This proves Lemma 21.

To do this, let us consider a 0 := (αµ) 1 1-α > 0. The tangent line to {(x, µ|x| α ) : x ∈ R} at the point (-a 0 , µa α 0 ) is then parallel to the line {(x, y) ∈ R 2 : y = -x}.

Define u 1 := min{u 0 , µa α 0 } > 0 and pick any u ∈ (0, u 1 /3]. Applying the linear transformation of R 2 given by (x, y) → (-x(3u/µ) -1/α , y/3u), we are in the situation of Lemma 18 with λ = (3u/µ) 1/α /3u ≥ 1, from which we can deduce with τ := 2/3 ∈ (0, 1) that the triangle

and has a finite Hilbert area.

So, if we consider the triangle

and the bounded open convex domain G 1 (u) := {(x, y) ∈ R 2 : µ|x| α < 3u and µ|x| α < y < 3u} + (1, 0),

In addition, since 3u < u 0 , we get that for all n ∈ N, G 1 (u) is contained in the convex set C n , and thus µ Cn (T 1 (u)) ≤ V 1 by Proposition 14 of Appendix.

Proof of Theorem 12. Let us postpone the proof of claim 1), and prove the other two claims Claim 2) First note that we have f n ≥ 0 and f n (0) = 0 since (0, 0) ∈ ∂D n . In addition, as (D n , d Dn ) is δ-hyperbolic, Lemma 6.2, page 216, and Proposition 6.6, page 219, in Benoist [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF] imply there is a number

by step 4, p 3 and p 4 are in A(w) (see figure 6). Now consider U the convex hull of G 1 (u) ∪ G 2 (v) ∪ {p 3 , p 4 }, recall that for all n ∈ N we have

Now, if S is the closed convex hull in R 2 of the points

q 4 := (1 -2ew, 1), q 5 := (v, 1),

we have S ∈ U, and thus V 4 := µ U (S) is finite, since S is compact. This gives that S ⊂ C n with µ Cn (S) ≤ V 4 for all n ∈ N.

But this is in contradiction with the assumption sup {µ Cn (∆) : n ∈ N} = +∞, hence Theorem 7 is proved.

Appendix A. Technical lemmas

We recall, without proof, Proposition 5 in [START_REF] Colbois | L'aire des triangles idéaux en géométrie de Hilbert[END_REF] that lies in R × (0, +∞).

and

The closed line segment L with vertices p 0 and p 1 then lies in the convex set S. Denoting by π 1 : R 2 → R the projection onto the first factor, we thus get [-ρ, ρ] ⊂ [x 0 , x 1 ] = π 1 (L) ⊂ π 1 (S). Since S ⊂ R × (0, +∞), this allows us to consider the function f : [-ρ, ρ] → R defined by

Given any z ≥ 0 such that (x, z) ∈ S, we have by compactness

and thus (x, f (x)) ∈ S.

If (x, f (x)) were in S, there would exist ε > 0 such that

and thus we would get f (x) -ε ∈ {y ≥ 0 : (x, y) ∈ S}. But this contradicts the very definition of f (x). Therefore, we have (x, f (x)) ∈ ∂S.

Now let s = (y 1 -y 0 )/(x 1 -x 0 ) and b = (x 1 y 0 -x 0 y 1 )/(x 1 -x 0 ) > 0. The equation of the straight line containing L is then y = sx+b.

Since for all x ∈ [-ρ, ρ], the point (x, sx + b) ∈ L ⊂ S, we get f (x) ≤ sx + b from the definition of f . As (x, f (x)) ∈ ∂S and L ∩ ∂S = ∅, we also have f (x) = sx + b. Hence Graphf ⊂ ∂S ∩ {(x, y) ∈ R 2 : x ∈ [-ρ, ρ] and y < sx + b}.