
HAL Id: hal-00819170
https://hal.science/hal-00819170v2

Submitted on 18 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Construction of Scheduled Data Flow Graph
for On-line testability

Bernard Kamsu-Foguem, Emmanuel Simeu

To cite this version:
Bernard Kamsu-Foguem, Emmanuel Simeu. Optimizing Construction of Scheduled Data Flow Graph
for On-line testability. The Mediterranean Journal of Computers and Networks - MEDJCN, 2012, 8
(4), pp.125-133. �hal-00819170v2�

https://hal.science/hal-00819170v2
https://hal.archives-ouvertes.fr

OPTIMIZING CONSTRUCTION OF SCHEDULED DATA FLOW

GRAPH FOR ON-LINE TESTABILITY

Bernard Kamsu-Foguema,*, Emmanuel Simeub

aLaboratory of Production Engineering (LGP), EA 1905, ENIT-INPT University of Toulouse, 47 Avenue d’Azereix, BP 1629,

65016, Tarbes Cedex, France
bTIMA-Laboratory/ University of Grenoble, 46, Avenue Félix Viallet, F-38031 Grenoble, France

ABSTRACT
The objective of this work is to develop a new methodology for behavioural synthesis using a flow of synthesis, better suited to the scheduling
of independent calculations and non-concurrent online testing. The traditional behavioural synthesis process can be defined as the compilation
of an algorithmic specification into an architecture composed of a data path and a controller. This stream of synthesis generally involves
scheduling, resource allocation, generation of the data path and controller synthesis. Experiments showed that optimization s tarted at the high
level synthesis improves the performance of the result, yet the current tools do not offer synthesis optimizations that from the RTL level. This
justifies the development of an optimization methodology which takes effect from the behavioural specification and accompanying the
synthesis process in its various stages. In this paper we propose the use of algebraic properties (commutativity, associativity and distributivity)
to transform readable mathematical formulas of algorithmic specifications into mathematical formulas evaluated efficiently. This will
effectively reduce the execution time of scheduling calculations and increase the possibilities of testability.

Keywords
High-Level Synthesis, Expression Evaluation, Algebraic Transformations, Scheduling, Testability.

1. INTRODUCTION
The high-level synthesis is defined as a sequence of successive
refinements to transform a specified behaviour in a Hardware
Description Language into a list of interconnected numerical
operators or logic gates. More formally, behavioural synthesis is
an automated design process that interprets an algorithmic
description of a desired behaviour and creates hardware that
implements that behaviour [2]. It corresponds to the passage from
the behavioural domain to the structural domain. High-level
synthesis tools seek, first, to compile a behavioural view of a
target model suitable for the synthesis and independent of the used
language. Then, they optimize the model before making a
structural projection on an abstraction level immediately below.
Thus, there are several levels of synthesis and each synthesis step
can, therefore, to refine the granularity of the description of the
circuit, and at the expense of its complexity. The final description
takes the form of drawing plans masks defining the circuit
topology [3]. To achieve this goal, several steps corresponding to
different modelling levels are presented in logical sequence,
including descriptions of circuit behaviour, architecture, logical
structure (Boolean model with two values 0 and 1, modelling the
voltages across the circuit), electrical structure (assembly and
sizing of transistors) and topological structure (drawing plans
masks respecting strict geometric constraints) [5].
The online testing provides the ability to detect any occurrence of
a failure in a circuit without affecting its normal operation;
particularly the non-concurrent online testing contributes to safe
operation of integrated circuits for the realization of the
operational parts self-controllable [8]. This technique consists in
anticipation of faults by modifying the scheduling of data flow
graph to insert the test operations of functional units during their
rest periods. In short, it is a modification of scheduled data flow
graph with idle-time utilization for on-line testability [11]. While
concurrent fault detection is mainly achieved by hardware or

software redundancy, like duplication, non-concurrent fault
detection, particularly useful for periodic testing, is usually
achieved through hardware-based self-test [6].
Note that two main criteria for judging the quality of a synthesis
tool, namely: the expressiveness of its input language and
powerful of its optimization methods. Also, whatever the level of
abstraction, synthesis takes into account different optimization
objectives such as minimizing the delay, the surface, the circuit
consumption, and more recently testability. However, current tools
do not provide an appropriate optimization of high-level synthesis,
hence the need to develop an optimization methodology which
takes effect from the behavioural specification and accompanying
synthesis process throughout its various stages [7]. This will
produce better results through improved scheduling and testability.
The interest of this work is to optimize the evaluation of algebraic
expressions in behavioural synthesis. This assessment is at the
heart of most scientific computing applications. For example,
modelling of any physical phenomenon results in a construction of
a mathematical equation, and this is then interpreted into the form
of one or more formal expressions in the computer program.
Generally, thanks to the algebraic properties such as associativity
and commutativity of operators, there are several ways to write or
evaluate an expression. Moreover, the evaluation time of two
mathematically equivalent expressions can be significantly
different. Speed of the program is strongly linked to the
effectiveness evaluation of these expressions. Because of the
algebraic properties of operators handled, we propose to introduce
a technique for rewriting expressions into equivalent mathematical
forms, but better suited (as containing less dependencies) with a
parallel instruction execution, including the scheduling and the
online test in the high level synthesis.
*

* Corresponding author. Email: Bernard.Kamsu-Foguem@enit.fr

2. BEHAVIOURAL SYNTHESIS AND
TESTABILITY
The behavioural synthesis also called high-level synthesis, is the
transformation of an algorithmic description into a Register-
Transfer Level (RTL) description. More concretely, the high-level
synthesis is a sequence of tasks that transform a data flow graph or
control flow graph in a more detailed description called register
transfer level. This description gives the two major components
forming a circuit, namely the processing unit and control unit. The
processing unit, also called data path, contains the functional units
and registers. The control unit determines at each clock cycle
which operations of the data flow graph or control flow graph
must be performed and by which functional units. The objective of
the high-level synthesis is to find a digital circuit that satisfies a
given specification in the form of an algorithm, but from a
behavioural description, it is possible to generate a large number
of architectural solutions, at the heart of the problem is therefore to

obtain the best architecture within the constraints imposed [1]. The
first stage of the high-level synthesis usually involves the
compilation of the algorithmic description into an internal
representation.
At the highest level of abstraction, the specification describes the
functionality of the circuit and without regard to hardware or other
implementation details. The specification is given in a hardware
description language such as VHDL. It is then translated into a
graph representation called the Data Flow Graph (DFG). In its
simplest form DFG is a directed graph whose nodes represent
atomic operations that the system must perform, and the arcs
represent the precedence between operations which are due to data
dependencies. The DFG will serve as an input model for the
scheduling step.
The high-level synthesis is composed of four interdependent tasks
[14]: (1) the selection of functional units, (2) the scheduling of the
operations of DFG, (3) registers allocation to variables, and (4) the
bus allocation to data transfers.

Figure 1. the different steps of a behavioural synthesis:

(a) The DFG expression (b) Scheduling (c) The Time to Live of variables with a registers allocation (d) Data path
obtained after connections synthesis

2.1 Scheduling operations of DFG
In what follows, we will focus on the step of scheduling operations
of DFG. The objective of this task is to determine a static
execution order of operations of DFG by the functional units. The

order must respect the dependencies between operations. There are
usually two types of scheduling: scheduling under resources
constraints and scheduling under performance constraints. In the
first category, the maximum number of functional units for use in
the circuit is fixed in advance, and the objective is to minimize the

duration of the scheduling. In second category, the duration of the
scheduling is fixed, and the objective is to minimize the number of
functional units used.
Example: suppose we have two adders {add1, add2} and a
multiplier (MUL). The duration of an addition is a unit of time and
the duration of a multiplication is two units of time. Figure 2b
shows a scheduling feasibility of DFG.
Techniques for improving testability applicable at the RTL level
are to redesign the circuit by the addition of dedicated test
structures. These structures induce an increase in the circuit
surface and a degradation of speed that may violate the constraints
used during synthesis. Considering testability at such a late stage
in the design flow limits efficient design space exploration [17].
Furthermore the inclusion of testability at more detailed
description levels is complicated by the volume of data to process.
The displacement of the inclusion of testability to the behavioural
level allows us to consider testability as a constraint for the
synthesis (as well as surface and latency). In this way, the
synthesis system seeks to generate among all solutions which
respect the constraints of surface and latency, the best from the
testability point of view, notably in terms of enhanced the test fault
coverage. In this paper, we consider testability as a design
objective alongside area and delay.

2.2 Scheduling for Improved Testability in
Behavioural Synthesis
New strategies have appeared in the behavioural synthesis, to take
into account testability at the same time as the surface and / or
performance [10, 11, 12, 13]. In this way, testability problems can
be avoided or resolved by the most appropriate decisions for the
architecture definition. The scheduling technique is time
constrained which minimizes the number of resources (operations)
and the number of registers based on a cost function. This
improves the life time of primary input and primary output
variables, reduces the life times of intermediate variables and
hence improves the controllability and observability [10]. The
testability of the register transfer level (RTL) structure generated
by this schedule is therefore improved. Particularly, in the context
of on-line testability, each functional unit (FU) of a data path is
tested at least once within their idle-time. A given scheduled data
flow graph is utilized to estimate the number of FUs and their idle
periods in which certain testing operations are scheduled [11].
Testing time is reduced by minimizing the number of types of
operations assigned to each module needed to synthesize a given
scheduled data flow graph (SDFG), and by creating sufficient idle
time [12]. The time constrained scheduling and resource
constrained scheduling take any behavioural description
represented as a data flow graph as input and generate a data path
composed of resources like modules, registers and multiplexers
[13].

+



+











+

Step 1

Step 2

Step 3

a b c d e

test

test

test

Figure 2. SDFG with idle-time operation for improving on-line testability

This improvement in testability has not required the addition of
dedicated test structures and does not cause an increase in the
number of hardware resources allocated. It is accomplished
through an appropriate decision taken during the synthesis [4].
This example also shows that taking into account the criterion of
testability during synthesis enables the generation of more testable
circuits. Using this approach allows minimizing (or eliminating)
the number of dedicated test structures added to the circuit and
increasing the fault coverage [15].

3. EXPRESSIONS OPTIMIZATION OF
DATA FLOW GRAPH
Using the associativity of the operators allows to build different
versions of the same expression that are mathematically equivalent
but structurally different, since for instance the position of the
operands in the tree representing the expression varies. We
therefore wish to count the number of structurally different trees
that can be built from a DFG expression containing n distinct
operands. Commutative equivalent trees are counted here only
once, because they are structurally very similar. The interest of
this work is to optimize the evaluation of algebraic expressions in
order to give preference to those that are better suited (as
containing less dependencies) with a parallel instruction execution,
including scheduling and on-line testing the high level synthesis.

3.1 Counts of different commutative binary
trees
Let  be an associative-commutative operator and X1, X2, ... Xn
with n distinct ordered operands. We call (, n) the procedure for
construction of all different commutative binary trees containing n
operands and n-1 identical commutative operators, described by
the algorithme1. The construction is done recursively by
introducing at each step a new operand to all possible positions in
the trees constructed in previous steps. We call "different
commutative binary trees," two trees such that it is impossible to
switch from one to another by application of the commutativity of
the operators. Counting proposed therefore focuses on expressions
such as depth of the operands in the tree is different. The notation
en-1 [Y   (Y, Xn)] describes the substitution of the subtree Y by
the subtree  (Y, Xn) within the tree en-1.
Algorithme 1: construction of commutative binary trees
- Function P(, n) return En the set of constructed trees
-  : a commutative operator/ n : the number of distinct

ordered operands {X1, X2 ,…Xn}

Figure 3: Flowchart representing algorithm for construction of commutative binary trees

For reasons of combinatorial explosion, it is hardly possible to
browse the entire space of solutions (around n!  2n different trees
with P (, n)), for each of these expressions in a program. It
should also perform a static a priori evaluation of the execution
time. Our approach is heuristic in nature and attempt to select from
a subset of equivalent expressions, a solution with good results (in
terms of evaluation time). We will seek to establish selection
criteria that reflect the characteristics (number of operations,
balancing, etc...) that we want, given the specific set of modern
architectures and their compilers. Our goal is to exploit the
algebraic properties of operators to rewrite the expressions with
appropriate performance criteria. First, we are looking at ways of
reducing the number of additional operations to be executed; such
a transformation is mostly beneficial. Moreover, because of the
parallelism of instructions, taking into account the structure of the
studied expressions becomes an essential consideration.

3.3 Description of the selection criteria
We call wi the weight associated with node i in the tree
representing the expression. This value models the cost required to
evaluate a given operation, and therefore it approaches the latency
of an operation. The total weight of an expression containing n
nodes (operations), noted WE, is defined by: WE = i

n
=1 wi.

The total weight of an expression used to characterize the
computational effort to be applied to evaluate a given expression.
This value is particularly important for architecture with only a
single computing unit. We note di distance or depth of a root node
of the tree structure. The critical path of an expression containing
n nodes, denoted CE, is defined by: CE = max di, 1 i  n.
The critical path of an expression captures the maximum length
dependencies between the different operations that must be linked

sequentially. The current trend is that modern processors have
multiple processing units, each of which is pipelined, but without
having unlimited computing capacity. The total weight and the
critical path of an expression must both be considered. For this, it
was defined a new measure called gravity: The gravity of an
expression containing n nodes, denoted by GE, is defined by:
GE = i

n
=1 wi  di  WE

This measure describes the average depth of the tree operations.
This "estimated cost" is a good estimate taking into account both
the weight of calculations and their position in the tree. The
decisions from the critical path or gravity are very close. However,
gravity is used to distinguish two expressions of the same critical
path but with a different number of occurrences of this critical
path. Gravity is a decision criterion for effective superscalar
processors with instruction-level parallelism.

3.4 Factorisation heuristic
The factorization of an expression is made to reduce the number of
operations required for its evaluation. In addition to this reduction
in the number of operations, we want to select, among all forms of
a factorized expression, one that is best suited for execution on
modern processors.

3.4.1 Factorization method
The technique is to search for a given node of the tree, all potential
candidates for factorization. The algorithm proposed in Figure 4
returns a list of all factorizations found for a given node. We note
in the form (x, list of yi, z) the factorization of an expression E = x
 i yi + z. The notation n1[n2  n3] describes the substitution of
node n2 by node n3 inside node n1. For a node with n terms each
containing m "in terms", the complexity of this algorithm is

(n2m2). This value is given assuming that the comparison
between two sub-trees is performed in constant time (1). Even if

it's not really the case, this assumption becomes reasonable in
practice through the use of a suitable data structure [18].

Function list _of_candidates(n)
- Input : n is a node
- Output : a list of factorizable candidates

If (operator(n) is "-" then n=child of (n) end if

If (operator(n) is "*" then return children of (n)
else return singleton (n)
end if

Function Factorisation(n)
- Input : n is a node
- Output : a list of possible factorizations for this node

Figure 4 – Flowchart representing algorithm factorization heuristic

3.4.2 Conflict management
Several factored forms can exist for a given expression. It is
necessary in this case to make a choice; sometimes, two
factorizations are indeed incompatible. For example, only one
factorization can both be applied to the expression: a  b + a  x1
+b  x2. The result is either one: a  (b + x1) + b  x2, or the
other: a  x1 + b  (a + x2). Although the number of operations
needed to evaluate this expression in both factorized forms is
identical, the evaluation time can be significantly different. The
respective costs of the terms involved (a, b, x1 and x2) influence in
different effect the total cost of the expression according to the
chosen factorization.
The choice between different forms of a factorized expression will
be performed using as selection criteria the gravity G, and the
selected factorization will be the one that minimizes the gravity so
as to promote the exploitation of instruction-level parallelism. The
proposed approach is based on an iterative progression through
elementary transformation to an expression with "sound"
properties (weight, critical path, gravity, etc.). Consider an

expression containing three candidates’ xa, xb and xc for
factorization. The expression has the following form:

xa.xb.xc.Fabc1 +… xa.xb.xc.Fabcnabc
+ xa.xb.Fab1 +… xa.xb.Fabnab
+ xa.xc.Fac1 +… xa.xc.Facnac

+ xb.xc.Fbc1 +… xb.xc.Fbcnbc + xa.Fa1 +… + xa.Fana
+ xb.Fb1 +… + xb.Fanb + xc.Fc1 +… + xc.Fcnc + F1 +…+ Fn

There are six different factorized forms of this expression, the
number of operations is identical for each of the six possible
factorizations, but the position of terms (xa, xb, xc, Fabci, Fabi,
Faci, etc.) differs according to the factorization. Figure 4 shows
the structure of the tree to a factorization of xa, xb and xc. The
factorized expression is given by the following equation:

xa . [xb .(xc.i=1nabc Fabci + i=1
nab Fabi) + xc .i=1

nac Faci +
i=1

na Fai]+ xb .(xc .i=1
nbc Fbci + i=1

nb Fbi) + xc .i=1
nc Fci +

i=1
n Fi

Figure 5 –Partial factorization with xa then xb and xc

Tree-depth

Partial factorization with xa

Partial factorization with xb

1 F1…Fn

F1 ...Fn

2

xa , Fbc1…Fbcnbc ,
Fb1…Fbnb , Fc1…Fcnc

xb , Fac1…Facnac
Fa1…Fana , Fc1…Fcnc

3

Fa1…Fana Fb1…Fbnb

4 xb ,xc , Fabc1…Fabcnabc ,
Fab1…Fabnab , Fac1…Facnac

xa ,xc , Fabc1…Fabcnabc ,
Fab1…Fabnab , Fbc1…Fbcnbc

Tableau 1 - Tree-depth of partial factorizations

3.5 Balancing a Tree
A transformation of the n-ary expressions in binary trees will be
done because even if all binary trees that can be constructed from
an n-ary tree will contain a number of identical operations,
however they may have different characteristics (depth, gravity,
etc.). The execution time can therefore also vary significantly.

3.5.1 Huffman coding
To select a binary tree suitable for execution on a processor with
instruction-level parallelism, we will seek to intervene in the tree
structure and the position of the operands. We propose to use a
variation of the encoding technique introduced by David Huffman
[9].
Huffman coding is an entropy encoding algorithm used for data
compression: given "a set of symbols and their weights (usually
proportional to probabilities)", it finds "a prefix-free binary code
(a set of codewords) with minimum expected codeword length

(equivalently, a tree with minimum weighted path length from the
root)". The algorithm is based on the construction of a binary tree
minimizing the formula i=1

n Pi  Li with Pi the property of the
symbol i Li and its depth in the tree.

3.5.2 Construction of binary trees by a variation
of Huffman coding
The similarities between this Huffman coding issue and the
construction of the binary representation of an operation on n
operands led us to implement a variation described by algorithm 3.
The approach is similar to Huffman coding. However, the
combination of two symbols in the case of coding is characterized
simply by a sum of probabilities, no additional costs is introduced.
However, in cost evaluation of a binary operation, the cost of the
two operands and the elementary cost of the operator are involved
are both involved in the global calculation.

Algorithm 3 : Construction of binary trees by a variation of the Huffman algorithm

Function Binarization (, L, C)
-  : An associative-commutative operator
- L : A list of n operands and L[i] the iième

 element of L
- C : A cost function

Figure 6 –Flowchart representing algorithm for construction of binary trees

Given the procedure B(n) for binarization of an operation  for n
operands described by algorithm3; let ci and di be respectively the
cost and the depth of an operator or an operand i in the binary tree,
and given the cost c of the operator . By construction, B(n)
minimizes the cost function: C = i=1

n ci  di + c  j=1
n-1.

And consequently for ci = wi, B(n) minimizes the gravity GE =
i=1

2n1 wi  di  WE .

The intervention on the balanced tree exists at the factorization
level and through the construction of the binary form of the
operations. The motivation of this work is to provide the
expressions containing a large number of evaluable operations
independently. It is usually preferable to place expensive
computations at top of the tree, for example to not block the
execution of lower cost calculations. The used techniques are thus

seeking to facilitate the scheduling calculations in order to
improve data path scheduling scheme for easy testability [16].
Figure 7 shows the construction of a binary expression using the
cost, the notion of weight defined above. The weight of the

operator is set to 1 and the six operands (possibly representing any
sub-tree) are weighted by the variables wi = ci = i. The creative
process and the resulting expression are shown respectively in left
and right of the figure.

Figure 7 –– An illustrative example for construction of an optimal binary tree

4. CONCLUSION
The objective of this work is to analyse the scheduling step in
high-level synthesis in order to influence the testability of the
synthesized circuits. Based on this study, we propose a new
approach taking into account the online test a circuit at a high level
of abstraction, as well as the criteria of latency and area during
synthesis of architectures. For our analysis, it has been necessary
both to provide an overview of the context of behavioural
synthesis. This design methodology is defined as a set of
refinements for compiling algorithmic descriptions of a next lower
abstraction level: register-transfer level. We then place special
emphasis on the influential step of scheduling and its associated
data paths. Subsequently, a study of testing techniques shows the
importance of taking into account the test at a high level of
abstraction. Thus, we have introduced a method for data path
synthesis for testability to eliminate the problems of testability as
soon as possible [19].
This paper presents an efficient testability-improved data path
scheduling scheme based on the algebraic properties of operators
(such as commutativity, associativity or distributivity) used to
optimize expression evaluation in behavioural descriptions. First
experimental results have showed that the transformation of an
expression in a form well suited to running on superscalar
processors achieves significant gains in performance (reduction of
execution time and improve reliability). We have proposed a
method of selection between different equivalent expressions
based on the use of criteria taking into account the number of
operations, the depth of the tree or the weighted average depth of
the operators in the tree. A heuristic factorization scheme
characterized by an iterative mechanism of development has been
introduced to reduce the number of operations of an expression.
This transformation can also build the best expression compared
with a selection criterion (for example reflecting the balance of the
tree) determined in the high-level synthesis. An optimal algorithm
based on a variation of the Huffman algorithm was used to
construct binary trees, from an n-ary representation, minimizing
the "estimated" cost of expression evaluation. This construction
provides means of intervention in the position of each operand;
however, the number of operations does not change. Finally, the
two steps of our process (factorization and construction of the
binary operations) build expressions with more choices not only
for independent scheduling calculations, but also to improve the
opportunities of testability in high level synthesis. A more recent
approach uses the principle of alternate test for offline and online
monitoring purposes [20].

REFERENCES
[1] Emmanuel Casseau, Bertrand Le Gal. Design of multi-mode

application-specific cores based on high-level synthesis.
Integration, the VLSI Journal, Volume 45, Issue 1, January
2012, Pages 9-21

[2] Coussy, P.; Gajski, D. D.; Meredith, M.; Takach, A. (2009).
"An Introduction to High-Level Synthesis". IEEE Design &
Test of Computers 26 (4): 8–17.

[3] Alberto A. Del Barrio, Seda Ogrenci Memik, María C.
Molina, José M. Mendías, Román Hermida. A fragmentation
aware High-Level Synthesis flow for low power
heterogenous datapaths; Integration, the VLSI Journal, In
Press, Corrected Proof, Available online 28 February 2012.

[4] Eunkyoung Jee, Junbeom Yoo, Sungdeok Cha, Doohwan
Bae. A data flow-based structural testing technique for FBD
programs. Information and Software Technology, Volume
51, Issue 7, July 2009, Pages 1131-1139.

[5] Ewout S. J. Martens; Georges Gielen (2008). High-level
modeling and synthesis of analog integrated systems.
Springer. ISBN 978-1-4020-6801-0.

[6] Dimitris Gizopoulos. Low-cost, on-line self-testing of
processor cores based on embedded software
routines.Microelectronics Journal, Volume 35, Issue 5, May
2004, Pages 443-449.

[7] Michael Fingeroff. High-Level Synthesis Blue Book. Xlibris
Corporation. ISBN 978-1-4500-9724-6, 2010.

[8] Christoforos N. Hadjicostis. Periodic and non-concurrent
error detection and identification in one-hot encoded FSMs.
Automatica, Volume 40, Issue 10, October 2004, Pages 1665-
1676.

[9] David Huffman, “A method for the construction of
minimum-redundancy codes” In Proceedings of the I.R.E,
pages 1098-1101, September 1952.

[10] A.A. Ismaeel, R. Mathew, R. Bhatnagar. Scheduling and
variable binding for improved testability in high level
synthesis. Computers & Electrical Engineering, Volume 24,
Issue 6, November 1998, Pages 441-461.

[11] A.A. Ismaeel, R. Bhatnagar, R. Mathew. Modification of
scheduled data flow graph for on-line testability.
Microelectronics Reliability, Volume 39, Issue 10, October
1999, Pages 1473-1484.

[12] A.A. Ismaeel, R. Bhatnagar, R. Mathew. Module allocation
with idle-time utilization for on-line testability.

Microelectronics Reliability, Volume 41, Issue 2, February
2001, Pages 323-332.

[13] A.A. Ismaeel, R. Bhatnagar, R. Mathew. On-line testable data
path synthesis for minimizing testing time. Microelectronics
Reliability, Volume 42, Issue 3, March 2002, Pages 437-453.

[14] Saeed Safari, Amir Hossein Jahangir, Hadi Esmaeilzadeh. A
parameterized graph-based framework for high-level test
synthesis. Integration, the VLSI Journal, Volume 39, Issue 4,
July 2006, Pages 363-381.

[15] Emmanuel Simeu. Optimal Detector Design for On-line
Testing of Linear Analog Systems. VLSI Design Volume 11
(2000), Issue 1, Pages 59-74 doi:10.1155/2000/92954.

[16] Emmanuel Simeu, Ahmad Abdelhay, Mohammad A. Naal:
Robust Self Concurrent Test of Linear Digital Systems. Asian
Test Symposium 2001:293-29.

[17] M. Zwolinski, M.S. Gaur. Integrating testability with design
space exploration. Microelectronics Reliability, Volume 43,
Issue 5, May 2003, Pages 685-69.

[18] Julien Zory, Fabien Coelho: Using Algebraic
Transformations to Optimize Expression Evaluation in
Scientific Codes. IEEE PACT 1998: 376-384.

[19] Bernard Kamsu-Foguem. Knowledge-based support in Non-
Destructive Testing for health monitoring of aircraft
structures. Advanced Engineering Informatics, Volume 26,
Issue 4, October 2012, Pages 859-869.

[20] Emmanuel Simeu, Hoang Nam Nguyen, Philippe Cauvet,
Salvador Mir, Libor Rufer, Rafik Khereddine: Using Signal
Envelope Detection for Online and Offline RF MEMS Switch
Testing. VLSI Design 2008 (2008).

BIOGRAPHIES
Bernard Kamsu-Foguem
is currently a tenured Associate
Professor at the National
Engineering School of Tarbes
(ENIT) of National Polytechnic
Institute of Toulouse (INPT) and
leads his research activities in the
Production Engineering
Laboratory (LGP) of ENIT-INPT,
a research entity (EA 1905) of the
University of Toulouse. He has a
Master’s in Operational Research,
Combinatorics and Optimisation
(2000) from National Polytechnic

Institute of Grenoble, and a PhD in Computer Science and
Automatic (2004) from the University of Montpellier 2.
His current interests are in Knowledge Discovery and Data
Mining, Knowledge Representation, Formal Visual Reasoning,
Ontology-based Semantic Analysis, Knowledge Exploitation for
Collaboration, Decision Support Systems and Intelligent Systems.
Application domains include Continuous Improvement process,
Industrial Maintenance management, Health Information Systems
and Alternative Medical Systems.
He has authored or co-authored a number of papers in the
international scientific journals such as Expert Systems with
Applications, Decision Support Systems, Engineering
Applications of Artificial Intelligence, Computers in Industry,
Advanced Engineering Informatics, Annual Reviews in Control,
International Journal of Production Research and Information
Systems Frontiers.
He is a reviewer for a large number of international scientific
journals such as Engineering Applications of Artificial
Intelligence, Concurrent Engineering: Research and Applications,
Artificial Intelligence Research, Canadian Journal of
Administrative Sciences, International Journal of Computer

Engineering Research, Knowledge Management Research &
Practice, Journal of Intelligent Manufacturing, International
Journal of Production Research, Interacting with Computers, and
Knowledge-Based Systems.
Dr. B. Kamsu-Foguem was recently awarded two prizes (Best
Paper Award in 2009 and 2011 from the SKIMA - IEEE
conferences) and one audience distinction (Most Downloaded
Engineering Applications of Artificial Intelligence Article from
SciVerse ScienceDirect in 2012) for his research topics in
continuous improvement, knowledge reasoning and maintenance
management. He is interested in the international network and
collaboration with other institutions and researchers related to
research projects, course development and delivery.

Emmanuel Simeu
received Master of
Science and Ph.D. in
automatic control and
theory of systems from
National Polytechnic
Institute of Grenoble in
1988 and 1992
respectively. He has been
researcher CNET from
1989 to 1992 and
researcher in Automatic
Control Laboratory of
Grenoble (LAG) from
1988 to 1995. Since

1995 Emmanuel Simeu is associate professor in Electrical
Engineering and Automatic Control in Polytechnic Institute of
Joseph Fourier University of Grenoble.
He also is researcher in Reliable Mixed Signal systems (RMS)
group of TIMA Laboratory and received the HDR (accreditation
to supervise research) degree in Physics from Joseph Fourier
University of Grenoble. His research interests include complex
system modelling, reliability of heterogeneous integrated systems,
diagnosis and control of analogue, digital and mixed signal
embedded systems.
Emmanuel SIMEU is author and co-author of over a hundred
publications of papers in international journal and conference
proceedings. He has supervised twelve Ph.D. theses (including
five in progress).
He is currently Director of Computer Integrated Manufacturing
(CIM) research and development platform of AIP-PRIMECA-DS.
He is actually the chair leader of Afrisciences Journal.

