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SPECTRAL RADIUS AND AMENABILITY IN HILBERT

GEOMETRIES

CONSTANTIN VERNICOS

Abstract. We study the bottom of the spectrum in Hilbert geometries, we

show that it is zero if and only if the geometry is amenable, in other words

if and only if it admits a Fölner sequence. We also show that the bottom of

the spectrum admits an upper bound, which depends only on the dimension

and which is the bottom of the spectrum of the Hyperbolic geometry of the

same dimension. Horoballs, from a purely metric point of view, and their

relation with the bottom of the spectrum in Hilbert geometries are briefly

studied.

Introduction and statement of results

For a Riemanniann manifolds of Ricci curvature bounded from below and posi-

tive injectivity radius it is known thanks to the work of P. Buser [Bus82], that the

bottom of the spectrum and the Cheeger constant are equivalent and thanks to M.

Kanai [Kan85] that the manifolds is quasi-isometric to any of its discretisations,

and that positivity of the Cheeger constant of any discretisation is equivalent to

the positivity of the manifold’s Cheeger constant.

The aim of this paper is to prove that such results holds in the setting of Hilbert

geometries.

Before explaining in more details our results let us recall what are the objects

studied here.

A Hilbert geometry (C, dC) is a non empty bounded open convex set C on Rn
(that we shall call convex domain) with the Hilbert distance dC defined as follows:

for any distinct points p and q in C, the line passing through p and q meets the

boundary ∂C of C at two points a and b, such that one walking on the line goes
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2 CONSTANTIN VERNICOS

consecutively by a, p, q b. Then we define

dC(p, q) =
1

2
ln[a, p, q, b],

where [a, p, q, b] is the cross ratio of (a, p, q, b), i.e.,

[a, p, q, b] =
‖q − a‖
‖p− a‖

× ‖p− b‖
‖q − b‖

> 1,

with ‖ · ‖ the canonical euclidean norm in Rn.

Note that the invariance of the cross ratio by a projective map implies the

invariance of dC by such a map.

These geometries are naturally endowed with a C0 Finsler metric FC as follows:

if p ∈ C and v ∈ TpC = Rn with v 6= 0, the straight line passing by p and directed

by v meets ∂C at two points p+C and p−C ; we then define

FC(p, v) =
1

2
‖v‖
(

1

‖p− p−C ‖
+

1

‖p− p+C ‖

)
and FC(p, 0) = 0.

The Hilbert distance dC is the length distance associated to FC .

Thanks to that Finsler metric, we can built a Borel measure µC on C (which

is actually the Hausdorff measure of the metric space (C, dC), see [BBI01], exem-

ple 5.5.13 ) as follows.

To any p ∈ C, let BC(p) = {v ∈ Rn | FC(p, v) < 1} be the open unit ball in

TpC = Rn of the norm FC(p, ·) and ωn the euclidean volume of the open unit ball

of the standard euclidean space Rn. Consider the (density) function hC : C −→ R
given by hC(p) = ωn/Vol

(
BC(p)

)
, where Vol is the canonical Lebesgue measure

of Rn. We define µC , which we shall call the Hilbert Measure on C, by

µC(A) =

∫
A

hC(p)dVol(p)

for any Borel set A of C.
The bottom of the spectrum of C, denoted by λ1(C), is defined as in a Rie-

mannian manifold of infinite volume, thanks to the Raleigh quotients as follows

(1) λ1(C) = inf

∫
C
‖dfp‖∗C

2
dµC(p)∫

C
f2(p)dµC(p)

,

where the infimum is taken over all non zero lipschitz functions with compact

support in C
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Finally the Cheeger constant of C is defined by

(2) I∞(C) = inf
U

νC(∂U)

µC(U)
,

where U is an open set in C whose closure is compact and whose boundary is a

n−1 dimensional submanifold, and νC is the Hausdorff measure associated to the

restriction of the finsler norm FC to hypersurfaces.

When the convex set is a euclidean ball one gets the Klein or projective model

of the Hyrerbolic geometry. Hence one of the objects of research in Hilbert ge-

ometries is to understand how close they can be to the Hyperbolic geometries.

A property which has been studied a lot recently is gromov hyperbolicity (for

related papers on hyperbolicity in Hilbert geometries see [Ben03], [Ben04],[KN02]

and [CVV]).

When we began the study of the spectrum in Hilbert Geometry, we started

by looking at plane Hilbert Geometries in [CV06]. There we found out that the

positivity of the bottom of the spectrum was equivalent to the hyperbolicity in

the sens of Gromov. Two main ingredients were involved. The first one is that in

the two dimensional case, if the boundary of the Hilbert geometry is not strictly

convex, then the bottom of the spectrum is zero. The seconde one consisted in

proving the equivalence for the Cheeger constant, and then thanks to a Cheeger

type inequality deduce it for the bottom of the spectrum.

In Higher dimension we finally found out in [CV07] that a Hilbert geometry

did not need to be strictly convex to have a positive bottom of the spectrum.

However by showing that the Hilbert geometries had bounded local geometry

and using a paper of J. Cao [Cao00]1, we were able to prove that if the geometry

was hyperbolic in the sens of Gromov, once again the Cheeger constant had to

be positive and by our Cheeger type inequality deduce the same for the bottom

of the spectrum.

There however was a missing link to clarify what makes the bottom of the

spectrum zero. Then one thinks of two types of results. The first one, mentioned

at the beggining, is due to P. Buser [Bus82] who shows that in Riemanniann

geometry, under the right assumptions on the curvature and injectivity radius,

the positivity of bottom of the spectrum and that of the Cheeger constant is

1Actually, J. Cao uses a theorem of M. Kanai to conclude that the positivity of the Cheeger

constant of his space is equivalent the positivity of the cheeger constant of some discrete metric

space to which his space is quasi-isometric. However Kanai’s theorem does not apply in J. Cao

setting. Hence one should be careful while using his theorem, or one might make a mistake. In

the present paper we prove that M. Kanai results holds in the setting of Hilbert Geometries,

which fully justifies our result in [CV07].
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in fact equivalent. The second one is due to the late R. Brooks [Bro81] who

shows that the bottom of the spectrum of the covering of a compact Riemannian

manifold is positive if and only if its fundamental group is not amenable.

If amenability makes sense for a divisible Hilbert geometry (which admits a

group of isometry which acts cocompactly on it), in the general case there is no

group big enough to do anything [SM02]. However for a discrete metric spaces,

one may require the pseudo group of bounded perturbations of the identity to be

amenable [dlHGCS99] (see also section 3.2 in the present paper). For such metric

spaces, similar results combining the equivalence of R. Brooks and P. Buser exist

under suitable conditions [dlHGCS99]

Hence we are naturally led to say that a Hilbert Geometry is amenable if and

only if it is quasi-isometric to a discrete metric space which is amenable. Taking

that path and in the light of M. Kanai paper [Kan85], we are bound to study

discretisations of the Hilbert Geometry themselves. This led us to our first result

Theorem 1. Let (C, dC) be a Hilbert geometry, then it is quasi-isometric to any

of its discretisation, and thus any two of its discretisations are quasi-isometric.

Thanks to this first result we see that focusing on a discretisation is a good idea,

for amenabilty is invariant by quasi-isometry. Furthermore these discretisations

are also of bounded geometry and thus the classical results linking amenability,

spectral radius of a simple random walk and the cheeger constant apply to them.

However we still have to climb back to the Hilbert geometry. This is possible

thanks the local boundedness of the geometry proved in [CV07], and we finally

obtain

Theorem 2 (Main Theorem). Let (C, dC) be a Hilbert geometry then the following

are equivalent

(1) The bottom of the spectrum of C si positive;

(2) The spectral radius of any discretisation is less than 1;

(3) The Cheeger constant of C is positive;

(4) The Cheeger constant of any discretisation is positive;

(5) C is not amenable.

The strategy consists in showing the equivalence between (1) and (2) (which

is the content of section 4.5), (3) and (4) (we do it in section 4.3) and showing

that a discretisation has the good property for (2), (4) and (5) to be equivalent

(see [dlHGCS99] and section 4.4 of this paper). For the convenience of the reader,

these equivalences are proved in full details in the setting of Hilbert Geometries.
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However one will find out while reading our proof that in fact the real important

property is the fact that Hilbert Geometries are of local bounded geometry.

In section 3 I also introduce a familly of convex sets whose Hilbert geometry

is amenable which I call Gn-polygons (where Gn stands for PGLn(R)). I believe

that they are the only ones to have a Hilbert geometry which is amenable.

After focusing on the lower bound, it’s logic to focus on the upper bound. In

this paper we answer to the first part of a question of B. Colbois in the following

way

Theorem 3 (Upper bound of the spectrum). Let (C, dC) be a Hilbert Geometry

with C a bounded open convex set in Rn. Then

λ1(C) 6 (n− 1)2

4
.

Hence now the second part of the question makes sense: Is there a rigidity

involved in that equality, i.e., is the equality only achieved by the Hyperbolic

geometries ?

In the first section of this paper, we also study Horoballs, in a purely metric

point of view (no dynamics, sorry !) and their links with the bottom of the

spectrum (there one can replace it with the Cheeger constant and obtain the

same kind of results).

Acknowledgment: I wish to thank A. Valette for his never-ending patience

in answering my questions on amenability and pointing out to me the paper

[dlHGCS99].

1. Horoballs of Hilbert Geometries

In this section we give a definition of Horoballs, some examples,

and study their relationship with the bottom of the spectrum.

Definition 1.1. Let C be a properly open convex set in Pn. We will call H an

horoball of C if there exists a point x0 and p ∈ ∂C such that the familly of balls

BC
(
x, dC(x, x0)

)
where x ∈ (x0, p) converges to H as x → p for the hausdorff

topology of Pn. We say that ∂H is the horosphere based at p passing through x0.

We may some time denote this by Hp,x0 .

Property 1.1. For any points (x0, p) ∈ C × ∂C, there is a Horosphere based at p

passing by x0.

Proof. Let x, x′ in (x0, p) such that

dC(x, x0) < dC(x
′, x0)
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and let y ∈ BC
(
x, dC(x, x0)

)
), which means that d(y, x) 6 dC(x, x0). Then

d(y, x′) 6 d(y, x) + d(x, x′) 6 dC(x, x0) + dC(x, x
′)

as x, x′ and x0 are on the same line we obtain

dC(x, x0) + dC(x, x
′) = dC(x

′, x0)

thus y ∈ BC
(
x′, dC(x

′, x0)
)
). Hence the familly of ball BC

(
x, dC(x, x0)

)
is increas-

ing, and bounded, thus it converges to some subset of C. �

Examples 1.1. The following figure illustrate the previous proof in a triangle

x0

p

In an hexagone, a Horosphere looks like that:

x0

p
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The following gives exemples of Horoballs in C = {x4 + y1.1 6 1} centered at the

same point p
p

Proposition 1.2. For a properly open convex,

λ1(C) = inf
H
λ1(H)

where the infimum is taken over all horoballs H.

Proof. We just need to prove that

(3) λ1(C) > inf
H
λ1(H).

Let us fix a point x0. Then for any R, taking a line passing by x0 it crosses the

boundary of ∂C at two points p and q and the ball BC(x0, R) at y and x. Let

us suppose that the point on the line are consecutively p,x,x0,y and q. Then the

ball BC(x0, R) is inside the Horoball based at p passing by y. Hence

λ1(BC(x0, R)) > inf
H
λ1(H).

Passing to the limit in R we get our result. �

Recall that a convex domain is said to be divisible if their is a subgroup of

isometries acting co-compactly on it. Let us make the last statement, in the

divisble case, more precise.

Proposition 1.3. For a divisible convex set C, let H be a Horoball then,

λ1(C) = λ1(H)
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Proof. What is clear is that

(4) λ1(C) 6 λ1(H).

Consider a point x0 in C, and a point p on the boundary. Let x be a point on

the segment (x0, p) and consider the dC ball centered at x and passing by x. As

x→ p, this balls converges to the horoball passing by x0 based at p.

Furthermore, by cocompactness, if Γ is a group which divides C, then there

exists some constant C, such that for every x ∈ (x0, p), there exist γ ∈ Γ such

that

dC(x, γx0) 6 C

hence for any x such that dC(x, x0) > C we have,

BC
(
x, dC(x, x0)− C

)
⊂ BC

(
γx0, dC(x, x0)

)
⊂ BC

(
x, dC(x, x0) + C

)
by which we deduce that

(5) λ1

(
BC
(
x, dC(x, x0) + C

))
6

λ1

(
BC
(
x0, dC(x, x0)

))
6

λ1

(
BC
(
x, dC(x, x0)− C

))
this implies that

lim
x→p

λ1

(
BC
(
x0, dC(x, x0)

))
= lim
x→p

λ1

(
BC
(
x, dC(x, x0)

))
.

Now notice that

lim
x→p

λ1

(
BC
(
x0, dC(x, x0)

))
= lim
R→∞

λ1
(
BC(x0, R)

)
= λ1(C).

(This comes the fact that if fk is a sequence of functions with compact support

such that their Rayleigh quotient converges to the bottom of the spectrum, then

we can find a sequence of balls with increasing radius on which they are defined)

Now let us finally notice that

lim
x→p

λ1

(
BC
(
x, dC(x, x0)

))
> λ1

(
H(x0, p)

)
From which we deduce, thanks to (4) that

λ1(C) = λ1
(
H(x0, p)

)
which also implies that the right part of this equality neither depends on p nor

on x0. �



AMENABILITY IN HILBERT GEOMETRIES 9

2. Upper bound

In this section we give an optimal upper bound on the bottom of

the spectrum of Hilbert geometries.

Let us recall that by adding a projective hypreplane to Rn, we can see it as

subset of the projective space Pn. Then, convex domains of Rn coincide with open

and bounded convex subspaces of Pn which doesn’t meet at least one projective

hyperplane. We call such subspace of Pn properly open convex sets.

Let us first begin with an easy case :

Lemma 2.1. Let C be a properly open convex set in Pn which admits an osculating

ellipsoid then

λ1(C) 6 (n− 1)2

4
.

Proof. By a result due to Benzecri (see [Ben60] page 325, proposition 10), if

C admits an osculating ellipsoid E , then there exists a sequence of projective

transformations gn ∈ Gn such that gnC tends to E as n goes to ∞. Now a result

of Colbois-Vernicos [CV06], implies that the λ1 is upper semi-continuous with

respect to the haussdorf topology on properly open convex sets, hence

lim sup
n→∞

λ1(gnC) 6 λ1(E)

however λ1(E) = (n − 1)2/4 and for any n, λ1(gnC) = λ1(C), thus our lemma

follows. �

Remark also that the upper semi-continuity implies that the family of convex

sets such that λ1 = (n−1)2/4 is not dense in the familly of properly open convexe.

More precisely, the only familly which is dense, is the familly with zero λ1.

There remains the general case, for this one we will use Alexandroff’s theorem

which states that any convex set is almost everywhere two times differentiable.

This implies that at almost every point of the boundary there is a an ellipsoid

tangent and localy inside the convexe (see also Berck-Vernicos [GBV]).

If one considers a point x0 inside the convex and the asymptotic balls, these are

the images of the boundary under the dilation centered at x0 of ratio tanh(R), and

pull back the finsler area of this asymptotic balls divided by e(n−1)R as R→ +∞
on the boundary, one gets a measure on the boundary which is in L1 (see Berck-

Vernicos [GBV]). From Egoroff theorem, this implies, that on the boundary, for

any η > 0 there is a set of measure η on the complement of which there is uniforme

convergence of these measures to the limit measure.

This gives the following
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Proposition 2.2. Let C be a properly open convex set in Pn then

λ1(C) 6 (n− 1)2

4
.

Proof. Let 0 be a fixed point of our convex, and let us denote for any ε > 0

hε = (n− 1) + ε.

Let η > 0 and consider the subset of the boundary Sη on the complement of

which there is uniform convergence of the density of area of asymptotic spheres.

Let us denote by Bη the set of lines from 0 to the complement of Sη on the

boundary.

Thanks to the coarea formula and Egoroff’s theorem, exp(−(n−1)·R)Vol(BH(R)∩
Bη) converges to some number (see also Berck-Vernicos [GBV]). Hence

exp(−hε ·R)Vol(BH(R) ∩Bη)→ 0.

The idea is a classical one and consists in showing that for ε > 0 we have

λ1(C) 6 h2ε
4

passing to the limit our results will then follow.

We will consider the familly of funtions (FR) defined as follows:

x 7→ exp
(
−hε/2dH(0, x)

)
− exp

(
−hε/2R

)
= ϕhε(x)− exp(−hε/2R)

on the ball of radius R centered at 0 and equal to 0 outside this ball.

We will compute the rayleigh quotient on Bη, because we have λ1(C) 6 λC1 (Bη).

Let us compute the differential of the function FR (we write ψ(x) = dH(0, x))

where it is not 0

d|xFR · v = −hεϕhε(x)

2
d|xψ · v

From this we deduce the following expression of the Rayleigh quotient of FR

R(FR) =
h2ε
4

∫
BC(R)∩Bη ϕ

2
hε

(x)dµ(x)∫
BC(R)∩Bη

(
ϕhε(x)− exp(−hε/2R)

)2
dµ(x)

Thus to obtain our results it suffices to show that this quotient tends to h2ε/4 for

a suitable subfamilly of real numbers.
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In other words we must show that as R → ∞ the following quotient tends to

something smaller than 1:

(6)

∫
BC(R)∩Bη ϕ

2
hε

(x)dµ(x)∫
BC(R)∩Bη ϕ

2
hε

(x)− 2ϕhε(x) exp(−hε/2R) + exp(−hε ·R)dµ(x)

6
K(R)

K(R) + P (R)− P (R)1/2K(R)1/2

where

K(R) =

∫
BC(R)∩Bη

ϕ2
hε(x) dµ(x), and(7)

P (R) = exp(−hε ·R)Vol(BC(R) ∩Bη)(8)

Hence it suffices to show that K(R) does not go to 0 as R → ∞, while P (R)

does.

By definition of the Bη we have limR→∞ ln(P (R))/R 6 −ε. This means that

for any sequence of real number (Rn) which goes to infinity, and for some N ∈ N,

then for any n > N we have

ln(P (Rn))/Rn 6 −ε/2,

hence P (Rn) 6 exp(−εRn/2)). As for K(Rn) we have K(Rn) > K(1).

Thus as n→∞ we deduce that

λ1(C) 6 λC1 (Bη) 6
h2ε
4

.

This being true for any ε we finally get

λ1(C) 6 (n− 1)2

4
.

�

3. Positivity of the bottom of the spectrum

3.1. Gn-Polygons.

Definition 3.1. Let C be a properly open convex set in Pn, we will say that C is

Gn-polygonal, if there is a polygone in GnC

Remark 3.1. In the two dimensional case, one can replace ”polygon” by ”tri-

angle”, and then by Y. Benoist’s result in [Ben03] a plane convex set is not

Gn-polygonal if and only if it is δ-hyperbolic.
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Proposition 3.1. Let (C, dC) be a Gn-polygonal properly open convex set in Pn,

then the bottom of its spectrum is zero.

In fact this proposition follows from the following property and the semicon-

tinuity of the bottom of the spectrum with respect to the Hausdorff topology on

compact sets of Pn.

Property 3.2. The bottom of the spectrum of a polygon is zero.

Proof. To do this we show that a polygon has polynomial volume growth. We

do this by induction. Claim: This is true for 2-dimensional polygones.

Suppose that a all n-dimensional polygons have polynomial volume growth and

consider Pn+1 a n+1 dimensional polygons. Choose a point x0 inside Pn+1. Now

a non trivial argument used and proved in [GBV] (see also [CV04] and lemma

4.4 in the present paper), says that the spheres of radius R centered at x0 and

the asymptotics spheres obtained by a dilation of ratio tanhR centered at x0
of Pn+1 have the same asymptotic behaviour in terms of n-volume. However

the asymptotic volume of a face of the asymptotic sphere of ratio tanhR is of

order Rn. This implies the existence of two constants C(Pn+1)i, i = 1 and 2,

such that the n-volume of the sphere of large radii is between C(Pn+1)1 ·Rn and

C(Pn+1)2 ·Rn). Now using the co-area inequality showd in Berck-Vernicos [GBV]

(see also [CV06]), one gets that the asympotic volume of the balls of radius R is

polynomial of order n+ 1, i.e., there exists two constants A and B such that

A ·Rn+1 6 VolC
(
B(x0, R)

)
6 B ·Rn+1.

Now let us show the claim. This is done by showing that taking a point x0 in P2,

and the asymptotic sphere of radius R, then its edges have length asympotically

equal to 2 ·R (easy computation left to the reader). Hence the asympotic length

of a ball is of order 2 times the number of sided of P2 times R. Again the co-areas

inequality implies that the asymptotic volume of P2 is of order R2.

Now taking adapted test functions on the balls one easily shows that the λ1 of

our polygons is zero. �

Another consequence is the following.

Proposition 3.3. Let Fλ = {C ∈ Rn | λ1(C) > λ}, then Fλ is a closed, Gn-

invariant such that none of its elements are Gn-polygonal.

Proof. The only real difficulty lies in the closenesness. Indeed, let C be in Fλ,

then it can’t be a polygon, by the previous property. Moreover the upper semi-

continuity of the λ1 (See Colbois-Vernicos [CV06]) implies that for any sequence
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Cn in Fλ converging to some convex set C one has

λ 6 lim sup
n→∞

λ1(Cn) 6 λ1(C)

thus C is in Fλ, hence Fλ is closed. �

3.2. Amenability. We recall some definitions from [dlHGCS99].

Definition 3.2 (Pseudogroup of transformation). A pseudo group G of trans-

formations of a set X, also denoted by (G, X) is a set of bijections γ : S → T

between subsets S, T of X which satisfies the following conditions

(1) The identity X → X is in G;

(2) if γ : S → T is in G, so is the inverse γ−1 : T → S;

(3) if γ : S → T and δ : T → U are in G so is δ ◦ γ : S → U ;

(4) if γ : S → T is in G and if S′ ⊂ S, the restriction γS′ : S′ → γ(S′) is in G;

(5) if γ : S → T is a bijection between two subsets S,T of X and if there is

a finite partition of S = t16j6nSj (t stands for disjoint union) with γSj
in G for j ∈ {1, . . . , n} then γ is in G.

For γ : S → T in G we write also α(γ) for the domain S of γ and ω(γ) for its

range T .

In the following definition we denote by P(X) the set of all subsets of X.

Definition 3.3 (G-invariant mean). A G-invariant mean on X is a mapping

µ : P(X)→ [0, 1] which is

(1) Finitely additive: µ(S1 ∪ S2) = µ(S1) + µ(S2) for S1, S2 ∈ P(X) with

S1 ∩ S2 = ∅;
(2) Invariant: µ

(
ω(γ)

)
= µ

(
α(γ)

)
;

(3) normalised: µ(X) = 1

Hence we say that the pseudogroup G is amenable if there exists a G-invariant

mean on X.

We are going to focus on a specific pseudogroup associated to metric spaces.

Definition 3.4 (The bounded perturbations). For a metric spave (X, d), the

pseudogroup W(X) of bounded perturbation of the identity consists of bijection

γ : S → T , where S and T are subsets of X and

sup
x∈S

d
(
γ(x), x

)
<∞.

Let us recall that a subset X ∈ (C, dC) is a separated net if there exists a

constant r > 0 for which the two following properties hold:
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(1) dC(x, y) > r for all x, y ∈ X, x 6= y;

(2) X is a maximal subset of C for this property;

Thus we are now able to define our notion of amenability related to the Hilbert

geometries

Definition 3.5 (Amenability). Let (C, dC) be Hilbert geometry, we will say that

C is amenable if and only if, for some separated net X of C, the pseudo group of

bounded perturbation of the identity, W(X) is amenable.

Let us now state our main theorem, which will be proved in the next section

Theorem 3.4. Let (C, dC) be a Hilbert geometry. Then following are equivalent

(1) (C, dC) is amenable;

(2) λ1(C) = 0;

(3) I∞(C) = 0.

This gives a clearer point of view on the nullity of the bottom of the spec-

trum.The following results is a consequence of [CV06] and [CV07]

Corollary 3.5. Let (C, dC) be a Hilbert geometry, if (C, dC) is δ-hyperbolic, then

it is not amenable.

Proof. If (C, dC) is δ-hyperbolic, then the bottom of its spectrum is positive. �

Remark 3.2. Notice that if there is a set Ω ∈ GnC which is quasi-isometric to

an amenable group, then C is amenable.

Proposition 3.6. A Gn-polygon is amenable.

Proof. Indeed we know that a Gn-polygon has a it bottom of the spectrum

which is null, hence thanks to theorem 3.4 we know that it is amenable. �

Proposition 3.7. Let Fλ = {C ∈ Rn | λ1(C) > λ}, then Fλ is a closed, Gn-

invariant such that none of its element is amenable.

Proof. Follows from the upper semi continuity of λ1. �

In the case of divisible convex set C, suppose Γ divides C, then it suffices to

show that Γ is amenable if and only if C is amenable. Hence our results in that

case is merely a generalisation of R. Brooks result [Bro81] to this situation.

Hence one gets new examples of convex sets which are not δ-hyperbolic but

have a λ1 > 0: Take the product of a euclidean ball Bn of dimension n > 2 with

a two dimensional triangle or any amenable divisible Hilbert geometry.

Finally let us finish with a question, which is related to the definition introduced

so far



AMENABILITY IN HILBERT GEOMETRIES 15

Conjecture. A Hilbert geometry is amenable if and only if it is a Gn-polygon.

The conjecture is trivially true in dimension 2, thanks to [CV06].

4. Proof of the main theorem

4.1. Discretisations of Hilbert Geometry.

In this section we make precise some statements related to dis-

cretisations of Hilbert Geometry, noticeably that they also are of

bounded geometry.

Definition 4.1. A subset G of a Hilbert geometry C is said to be ε-separated,

ε > 0, if the distance between any two distinct points of G is greater than or equal

to ε.

If G is an ε-separated net, then one always has only a finite numbers of elements

of G in the ball of radius r centered at a point x ∈ C, B(x, r). This is due to

the compactness of the balls, which can be covered by a finite number of balls of

radius ε/2. The real difficulty usually lies in obtaining a uniform upper bound

for card G ∩B(x, r). This is possible thanks to the results in [CV06] and [CV07].

Lemma 4.1. Let (C, dC) be a Hilbert geometry and G an ε-separated subset of C,

then for all x ∈ C and r > 0

card
{
G ∩B(x, r)

}
6 enε2n

(
(e8r+2ε − 1) · (eε+2 − 1)

eε − 1

)n
Proof. From theorem 9 in [CV06] we have for any hilbert geometry, denoting

by µC its hilbert measure

ωn
4ne2nr

( e2r − 1

e2(r+1) − 1

)n
6 µC

(
B(x, r)

)
6

(
e4r − 1

2

)n
ωn.

hence the lemma. �

Definition 4.2. Let M = (C, dC) be a Hilbert geometry. A discretisation of M

is a graph G, determined by an ε-separated subset G of C for which there exists

ρ > 0 such that

C =
⋃
ξ∈G

B(ξ, ρ).

Then ε is called the separation, and ρ the covering, radius of the discretisation.

The Graph structure G is determined by the collection of ξ,

N(ξ) := {G ∩B(ξ, 3ρ)} \ ξ

for each ξ ∈ G.
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Remark 4.1. The choice of the graph structure is such that the graph is always

connected. Lemma 4.1 implies that the graph G is of bounded geometry, i.e., the

number of edges at each vertices is uniformly bounded.

Proposition 4.2. Let (C, dC) be a Hilbert Geometry and G a discretisation of C.

Then there exist a > 1 and b > 0 for which

a−1dC(ξ1, ξ2) 6 dG(ξ1, ξ2) 6 adC(ξ1, ξ2) + b

for all ξ1,ξ2 in G. Thus C is quasi-isometric to any of its discretisations, and any

two of its discretisations are quasi-isometric.

Proof. Let ρ be the covering radius of the discretization, and consider a path

from ξ1 to ξ2, then it is clear that

dC(ξ1, ξ2) 6 ρdG(ξ1, ξ2).

Now consider two points ξ1 and ξ2 in G and a minimising path in C from ξ1 to ξ2.

Cut this path into pieces of at most ε length. This gives less than dC(ξ1, ξ2)/ε+ 1

points on the path. Now for each points (excepted the extremities) take the point

of G the closest to it. Thanks to the triangle inequality on can see that we built

a path in the graph from ξ1 to ξ2 with a length less than dC(ξ1, ξ2)/ε+ 1. �

Proposition 4.3. Let (C, dC) be a Hilbert Geometry. Then for any discretisation

G of C,

(1) G has polynomial volume growth if and only C has polynomial volume

growth;

(2) G has exponential volume growth if and only C has exponential volume

growth.

Proof. We do the polynomial growth, the exponential growth goes along the

same lines. Suppose G has polynomial volume growth, which means that there

are constants a et an integer d such that card {η | dG(ξ, η) 6 R} 6 aRd. Now let

us consider a ball B(ξ,R) in C, then it has a volume less than

card{η | dG(ξ, η) 6 R} ×
(
e4ρ − 1

2

)n
ωn 6 a

′Rd

by theorem 9 in [CV06]. Now suppose that (C, dC) has polynomial growth, which

means that there is a constant A and an integer d such that

µC
(
B(ξ,R)

)
6 ARd.
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Then

(9) card{η | dG(ξ, η) 6 R}

6 µC
(
B(ξ,R)

)
× 4ne2nε

ωn

(e2(ε+1) − 1

e2ε − 1

)n
6 A′Rd.

�

4.2. Local isoperimetric inequality.

In this section we study the implications of bounded local geom-

etry property on the volume of balls, spheres and prove a local

isoperimetric inequality ”à la” Buser in the setting of Hilbert Ge-

ometries.

First let us show that we have a uniform control on the volume of spheres in

the Hilbert geometries.

To do this we use the following lemma whose proof is in [GBV]

Lemma 4.4. Let (C, dC) be a Hilbert Geometry in Rn. Consider two convex sets

A and B inside C, such that A ⊂ B. Let us denote by νHT the Holmes-Thompson

n− 1 dimensional measure associated to C. Then

νHT (∂A) 6 νHT (∂B)

Furthermore there exists a constant C(n) such that for the Hausdorff measure one

has

νC(∂A) 6 C(n)νC(∂B).

Theorem 4.5. Let (C, dC) be a Hilbert geometry, then there are two constants

C1(r) > 0 and C2(r) < ∞ such that for any point x in C if S(x, r) denotes the

sphere of radius r centered at x, then

C1(r) 6 νC
(
S(x, r)

)
6 C2(r).

Proof. Let us suppose that C1(r) = 0. This means that for any ε there is a

point xε such that ν
(
S(xε, r)

)
6 ε/r, then for any sphere of radius less than r

centered at xe the same inequality holds, up to a multiplicative constant, thanks

to lemma 4.4. Now applying the coarea inequality [CV07] and [GBV], one would

obtain a ball of measure less than C ′ · ε. Hence this would contradict theorem

9 in [CV06], which states that there is a lower bound on the hilbert measure of

balls of radius r.

Let us now suppose that C2(r) =∞. This means that for any M > 0 there is

a point xM , such that νC
(
S(xM , r)

)
>M/r, then for any sphere of radius bigger
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than r centered at xM the same inequality holds, thanks to lemma 4.4. Again by

the coarea inequality, the volume of the ball of radius 2r centered at xM would

have a volume bigger that C ′′ ·M . This again would contradict the upper bound

of theorem 9 in [CV06]. �

One of the key lemmas in [Bus82] and [Kan85] is a local isoperimetric inequality.

We will need such a lemma, so let us state it in our setting

Lemma 4.6 (local isoperimetric inequality). Let (C, dC) be a Hilbert geometry,

ε > 0 and p ∈ X. If H is a smooth hypersurface in the geodesic ball Bε(p)

dividing it into two non-empty disjoint domains D1 and D2, then the isoperimetric

inequality

νC(H)

min
{
µC(D1), µC(D2)

} > j(C, ε)
holds, where j is a positive constant.

Proof. Let us remark that if φ is a C-lipschitz function from a metric space

(X, dX) to a metric space (Y, dY ), then denoting by µt,X and µt,Y their respective

t-haussdorff measures one has for any subspace A of X, that

µt,Y
(
φ(A)

)
6 Ctµt,X(A)

Now the Hilbert geometries are of local bounded geometry, hence there is a C-

bilipshitz function ϕ from Bε(p) to Rn, thus ϕ
(
Bε(p)

)
is inside the ball of radius

Cε centered at ϕ(p) and contains the ball of radius ε/C centered at ϕ(p). Hence

it remains to show that the images of H, D1 and D2 satisfy a local isoperimetric

inequality in Rn. But this is the content of the local isoperimetric inquality

of lemma 5.1 in P. Buser’s paper [Bus82]. Now using the fact that lipschitz

hypersurface can be approximated by smooth hypersurfaces one deduces the local

isoperimetric inequality in Hilbert Geometry. �

4.3. Discretisations and Isoperimetry.

In this section, we show that the positivity of the Cheeger con-

stant of a Hilbert Geometry is the same as the positivity of the

Cheeger constants of its dicretisations. The results follows from

the bounded geometry of Hilbert geometries. This is quite stan-

dard in the setting of Riemannian geometry and the proof is sim-

ilar.

First we must recall what we call Cheeger constant of a graph
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Definition 4.3. The cheeger constant of a graph G is

I∞(G) = inf
{ |∂F |
|F |

∣∣F is finite and non-empty subset of vertices ofG
}

where ∂F denotes the set of points at a distance less than one from a point of F ,

and which are not in F . As usual we denote by |F | the cardinal of F .

Now let us state the main result of this section

Theorem 4.7. Let (C, dC) be a Hilbert geometry. Then its Cheeger constant is

positive if and only if the Cheeger constant of any discretisation is positive.

This theorem must be linked with the results of M. Kanai [Kan85] related

to Riemannian manifolds with Ricci curvature bounded from below and positive

injectivity radius.

Proof. Suppose that I∞(C) > 0. We may work with any discretisation. Let us

consider a discretisation G with separation constant ε > 0 and covering radius

ρ = R. To show that I∞(G) > 0 it suffices to prove the existence of positive

constants C1 and C2 such that given any K ⊂ G we may find Ω ⊂ C for which

(10) νC(∂Ω) 6 C1card∂K,

and

(11) µC(Ω) > C2cardK.

Given a finite subset K, set

Ω :=
⋃
ξ∈K

B(ξ,R).

Let M(ε,R) be an upper bound on the ratio of the volume of a disk of radius R

by the volume of a disk of radius ε (This is also an upper bound of the maximum

number of ε-separated points in a disk of radius R). This bound exists thanks

to lemma 4.1. Let us also denote by VR the infimum of the volume of a ball of

radius R in C (which is note zero thanks to theorem 9 in [CV06]). Then

(12)
∑
ξ∈K

µC
(
B(ξ,R)

)
6M(ε,R)

∑
ξ∈K

µC
(
B(ξ, ε)

)
= M(ε,R)µC

(⋃
ξ∈K

B(ξ, ε)
)

6M(ε,R)µC

(⋃
ξ∈K

B(ξ,R)
)

= M(ε,R)µC(Ω).

thus we obtain

VRcardK 6M(ε,R)µC(Ω)
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which corresponds to 11. For the upper bound on ν(∂Ω), we claim that

∂Ω ⊂
⋃

ξ∈∂(G\K)

S(ξ,R).

To see this, remark that if x ∈ ∂Ω, then dC(x, ξ) > R for all ξ ∈ K, and there

exists ξ0 ∈ K such that x ∈ S(ξ0, R) (for if one of these conditions fails, x is

either outside or inside Ω). But by definition, there must exist ξ′ ∈ G such that

dC(x, ξ
′) < R, which implies ξ′ 6∈ K. However dC(ξ0, ξ

′) < 2R, which implies that

ξ0 ∈ N(ξ′) in other words ξ0 ∈ ∂(C \ K).

Therefore using 4.5, and letting m be the maximum number of points in the

neighbourhood of a point in G, we get

A(∂Ω) 6 C2(R)card∂
(
G \ K) 6 mC2(R)cardK

Assume now that I∞(G) > 0. Suppose we are given Ω, with compact closure

and C∞ boundary in C. Set

K0 :=
{
ξ ∈ G | µC

(
Ω ∩B(ξ, ρ)

)
> µC

(
B(ξ, ρ)

)}
K1 :=

{
ξ ∈ G | µC

(
Ω ∩B(ξ, ρ)

)
6 µC

(
B(ξ, ρ)

)}
Both K0 and K1 are contained in Ωρ, the set of points at distance less or equal

to ρ from Ω. Furthermore for at least one of j = 0, 1 we have

(13)
µC(Ω)

2
6 µC

(
Ω ∩

⋃
ξ∈Kj

B(ξ, ρ)

)
.

Assume equation (13) is valid for j = 0. Denote by VC(ρ) the upper bound on

the volume of balls of radius ρ in C. First notice that

µC(Ω)

2
6
∑
η∈K0

µC
(
(Ω ∩B(η, ρ)

)
6 VC(ρ)card K0

thus it suffices to give a lower bound of ν(∂Ω) by a multiple of card K0, the

multiple being, of course independent of K0. To do this define H ⊂ Ωρ by

H :=
{
x ∈M | µC

(
B(x, ρ)

)
/2 = µC

(
Ω ∩B(x, ρ)

)}
.

For each ξ ∈ ∂K0 there exists η ∈ N(ξ), η ∈ K0. From the defintion of N(ξ) it

follows that

dC(ξ, η) < 3ρ.

The definitions of K0 and ∂K0 imply

µC
(
Ω ∩B(η, ρ)

)
> µC

(
B(η, ρ)

)
, µC

(
Ω ∩B(ξ, ρ)

)
6 µC

(
B(ξ, ρ)

)
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Thus by continuity of the volume, the line between ξ and η contains an element

ζ ∈ H, which implies ∂K0 ⊂ H3ρ, and⋃
ξ∈∂K0

B(ξ, ρ) ⊂ H4ρ

Now let Q be a maximal 2ρ-separated subset of H thus⋃
ξ∈∂K0

B(ξ, ρ) ⊂ Q6ρ

which implies

Vρcard ∂K0 6
∑
ξ∈∂K0

µC
(
B(ξ, ρ)

)
6 Mε,ρ

∑
ζ∈Q

µC
(
B(ζ, 6ρ)

)
by theorem 9 in [CV06] 6 Mε,ρconst.

∑
ζ∈Q

µC
(
B(ζ, ρ)

)
= 2Mε,ρconst.

∑
ζ∈Q

µC
(
Ω ∩B(ζ, ρ)

)
by lemma 4.6 6 2Mε,ρconst.

′
∑
ζ∈Q

νC
(
∂Ω ∩B(ζ, ρ)

)
6 2M2

ε,ρconst.
′νC(∂Ω).

Now assume equation (13) is valid for j = 1. Then we have from lemma 4.6

(14)
µC(Ω)

2
6
∑
ξ∈K1

µC
(
Ω ∩B(ξ, ρ)

)
6 const.

∑
ξ∈K1

νC
(
∂Ω ∩B(ξ, ρ)

)
6 const.Mε,ρ

∑
ξ∈K1

νC
(
Ω ∩B(ξ, ε)

)
= const.Mε,ρνC

(
Ω ∩

⋃
ξ∈K1

B(ξ, ε)
)
6 const.Mε,ρνC(∂Ω)

which finishes the proof. �

4.4. Isoperimetry and bottom of spectrum.

In this section we recall how the Cheeger constant of a discreti-

sation is related to its spectral radius and to amenability.

To go further into the subject one should consult [dlHGCS99], we will extract

from this paper the notion needed here.
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Let us first start by recalling that on a locally finite graph G, whose set of

vertices is G, there is a natural simple random walk with corresponding Markov

operator T. We will also suppose that G is connected and of bounded degree,

which is the case for our discretisations as we saw in the previous sections. Then

one can consider the Hilbert space l2(G, deg) of functions h from the vertices G
to C such that

∑
x∈G deg(x)|h(x)|2 < ∞, and the bounded self-adjoint operator

T defined on this Hilbert space by

(Th)(x) =
1

deg(x)

∑
y∼x

h(y)

where y ∼ x indicates a summation over the neighbours y ∈ N(x) of the vertex

x. The spectral radius of G is

ρ(G) = sup
{
〈h, Th〉

∣∣h ∈ l2(X), ||h||2 6 1
}

= sup
{
|λ| | λ is in the spectrum of T

}
.

With this notions in mind one must also notice that 1−T is a natural analogue

on G of a Laplacian, so that 1− ρ(G) is usually referred to as the bottom of its

spectrum.

Remark 4.2. It is also known that, for a any real number λ > ρ(G) there exists

F : G → ]0,∞[ such that

(15)
1

deg(x)

∑
y∼x

F (y) = λF (x).

Actually this is an equivalence.

Another equivalent definition of ρ(G) is the following. For x, y ∈ G and for

any integer n 6 0, denote by p(n)(x, y) the probability that a simple random walk

starting at x is at y after n steps. Then one has also

ρ(G) = lim sup
n→∞

n

√
p(n)(x, y)

To conclude our paper it remains to finish the exploration of the link between

the bottom of the spectrum and the cheeger constant. This is the content of

the following two results, stated without proof (see [dlHGCS99] and references

werein).

This first lemma is a kind of inverse Cheeger inequality.

Lemma 4.8. For a graph G which is regular of degree d > 2, one has

I∞(G) > 4
1− ρ(x)

ρ(x)



AMENABILITY IN HILBERT GEOMETRIES 23

Finally the missing piece of our puzzle is the following one

Theorem 4.9. Let G be a connected graph of bounded degree. The following are

equivalent

(1) G is not amenable;

(2) I∞(G) > 0;

(3) ρ(G) < 1;

(4) p(n)(x, y) = o(sn) for some s ∈ ]0, 1[ and for all x, y ∈ G.

Should one of this be true, then the simple random walk on G is transient.

4.5. Bottom of the spectrum and discretisations.

In this section, we show that the positivity of the bottom of spec-

trum of a Hilbert Geometry is the same as the positivity of the

bottom of the spectrum of its dicretisations. Once again the path

is standard in Riemannian geometry, and follows by the bounded

geometry property.

Now let us state the main result of this section

Theorem 4.10. Let (C, dC) be a Hilbert geometry. The bottom of the spectrum of

C is positif if and only if the spectral radius of any discratisation is stritly smaller

than 1.

To prove this theorem we will need to raise functions on the discretisations to

functions on the convex. We do as follows.

Consider (φξ)ξ∈G a partition of unity on C subordinate to the locally finite

cover {B(ξ, 2ρ)}ξ∈G , and such that φξ = 1 on B(ξ, ρ). Then for each f : G → R
we define its smoothing F = Sf : C → R by

(Sf)(x) =
∑
ξ∈G

φξ(x)f(ξ).

our main claim, whose proof we postpone, is the following

Lemma 4.11 (smoothing lemma). Let (C, dC) be a Hilbert geometry and G one

discretisation of C. Let S be the smoothing operator defined as above and T the

markov operator associated to the simple random walk on G. There exists two

constants C1 and C2 such that

||f ||22 6 C1||Sf ||22(16)

||dSf ||22 6 C2〈(1− T )f, f〉(17)
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Proof of theorem 4.10. Suppose ρ(G) < 1, then by theorem 4.9 the Cheeger

constant of the graph is positive, I∞(G) > 0. Now theorem 4.7 implies that it

is also the case for the cheeger constant of our hilbert geometry I∞(C). Finally

using the Cheeger inequality proved in [CV06] we obtain that λ1(C) > 0.

Assume now that ρ(G) = 1. Hence for any λ > 1, by the remark 4.2 there

exists a function F : G → R+
∗ such that

1

deg(x)

∑
y∼x

F (y) = λF (x)

(As our discretisations are of bounded degree, without loss we can consider that

deg(x) is a constant, and take this constant equal to 1.)

We can rewrite this last equality under the following form

〈(1− T )F, F 〉 = (1− λ)||F ||2

Hence by taking cut off functions and λ = 1 we deduce the existence of a familly

of functions fn with compact support on G, such that

〈(1− T )fn, fn〉
||fn||2

6
1

n
.

now we can easily conclude thanks to the smoothing lemma 4.11 that λ1(C) =

0. �

Smoothing lemma’s proof. Recall that there is a constant Vρ wich is a lower

bound on the volume of balls of radius ρ in C, thanks to theorem 9 in [CV06].

Hence we have∫
C
(Sf)2dµC(x) >

∑
ξ

∫
B(ξ,ε/2)

(Sf)2dµC(x)

>
∑
ξ

∫
B(ξ,ε/2)

φ2ξ(x)f2(ξ)dµC(x)

=
∑
ξ

∫
B(ξ,ε/2)

f2(ξ)dµC(x) > Vε
∑
ξ

f2(ξ).

Now let us consider the differentials and V ∈ Rn

d(Sf)x · V =
∑
ξ

f(ξ)d(φξ)x · V =
∑

ξ∈B(x,2ρ)

f(ξ)d(φξ)x · V

Given x there exists ηx ∈ G ∩B(x, ρ) hence

(18) d(Sf)x · V =
∑

ξ∈B(ηx,3ρ)

f(ξ)d(φξ)x · V
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and since the φξ are a partition of unity we have
∑
ξ∈B(ηx,3ρ)

φξ(x) = 1, and

differentiating one gets
∑
ξ∈B(ηx,3ρ)

d(φξ)x = 0. Using this in (18) we finally

obtain

d(Sf)x · V =
∑

ξ∈B(ηx,3ρ)

(
f(ξ)− f(ηx)

)
d(φξ)x · V .

Therefore

F ∗C (x, d(Sf)x) 6 C
∑

ξ∈B(ηx,3ρ)

∣∣f(ξ)− f(ηx)
∣∣

which implies for any x ∈ B(η, ρ), η ∈ G that

(F ∗C )2(x, d(Sf)x) 6 C ′
∑

ξ∈B(η,3ρ)

∣∣f(ξ)− f(η)
∣∣2 = C ′′|df |2(η)

and now using the fact that the hilbert geometry is quasi-isometric to its discreti-

sation we deduce the inequality which follows∫
B(0,R)

(F ∗C )2(x, d(Sf)x)dµC(x) 6 C2

∫
β(η0,R+1)

|df |2dV

and taking R→∞ we finally obtain

||dSf ||22 6 C2

∫
β(η0,R+1)

|df |2dV = C2〈(1− T )f, f〉.

�
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paradoxical decompositions for pseudogroups and discrete metric spaces, Tr. Mat.

Inst. Steklova 224 (1999), no. Algebra. Topol. Differ. Uravn. i ikh Prilozh., 68–111.

MR MR1721355 (2001h:43001)

[GBV] A. Bernig G. Berck and C. Vernicos, Volume entropy of Hilbert Geometries, in

preparation.

[Kan85] M. Kanai, Rough isometries, and combinatorial approximations of geometries of

noncompact Riemannian manifolds, J. Math. Soc. Japan 37 (1985), no. 3, 391–413.

MR MR792983 (87d:53082)

[Kan86] , Analytic inequalities, and rough isometries between noncompact Rie-

mannian manifolds, Curvature and topology of Riemannian manifolds (Katata,

1985), Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp. 122–137.

MR MR859579 (88c:53042)

[KN02] A. Karlsson and G. A. Noskov, The Hilbert metric and Gromov hyperbolicity,

Enseign. Math. (2) 48 (2002), no. 1-2, 73–89. MR 2003f:53061
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