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The functional differential equation of neutral type is studied. We consider the corresponding operator model in Hilbert space M 2 = C n × L 2 (-1, 0; C n ) and prove that there exists a sequence of invariant finite-dimensional subspaces which constitute a Riesz basis in M 2 . We also give an example emphasizing that the generalized eigenspaces do not form a Riesz basis.

Bases généralisées de Riesz pour les systèmes de type neutre Résumé On étudie une équation différentielle fonctionnelle de type neutre. Nous considérons le modèle opérationnel dans l'espace de Hilbert M 2 = C n × L 2 (-1, 0; C n ) et montrons qu'il existe dans cet espace une base de Riesz de sous-espaces de dimensions finies invariants par l'opérateur générateur infinitésimal du système. Nous donnons également un exemple précisant qu'il n'existe pas de base de Riesz de sous-espaces propres.

la stabilité dite forte (cf. par exemple [START_REF] Brumley | On the asymptotic behavior of solutions of differential-difference equations of neutral type[END_REF]), nous proposons de considérer (1) sous un forme opérationnelle abstraite et d'étudier ses propriétés spectrales dans des espaces de dimension infinie. Dans [START_REF] Hale | Theory of functional differential equations[END_REF], l'approche est basée sur une description des systèmes de type neutre dans l'espace de fonctions C([-1, 0]; C n ). Une autre méthode [START_REF] Yamamoto | A new model for neutral delay-differential systems[END_REF] consiste à traiter le système dans l'espace M 2 = C n × L 2 (-1, 0; C n ), qui est un espace de Hilbert. On peut ainsi utiliser les techniques fines de la théorie des operateurs dans les espaces de Hilbert [START_REF] Akhiezer | Theory of linear operators in Hilbert space[END_REF][START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators (English) Translations of Mathematical Monographs[END_REF]. Dans ce contexte nous mettons en valeur l'importance du concept remarquable de base de Riesz dans l'analyse du modèle fonctionnel. Nous utilisons le modèle proposé dans [START_REF] Yamamoto | A new model for neutral delay-differential systems[END_REF] pour écrire le système (1) sous la forme [START_REF] Bellman | Differential-difference equations[END_REF], où l'operateur A est le générateur d'un C 0 -semigroupe dans M 2 . Nous montrons que A est un opérateur discret spectral [START_REF] Dunford | Linear operators, Part II: Spectral theory. Self adjoint operators in Hilbert space[END_REF] et nous étudions les conditions d'existence d'une base spectrale de Riesz.

Traditionnellement par base spectrale de Riesz on entend une base de vecteurs propres, de vecteurs propres généralisés ou de sous-espaces propres (cf. par exemple [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF]). Il se trouve que l'operateur A ne possède pas une telle base dans le cas général (voir Exemple 8). Dans un premier temps nous étudions le cas de l'opérateur Ā correspondant au système (1) avec A 2 (θ) = A 3 (θ) = 0. On montre que les vecteurs propres et les vecteurs propres généralisés de cet opérateur forment une base de Riesz et donc une base de Riesz de sous-espaces propres généralisés. Ceci permet, par une technique d'approximation basée sur la théorie des perturbations des opérateurs linéaires [START_REF] Kato | Perturbation theory for linear operators[END_REF], d'approximer une famille de sous-espaces invariants de A par ceux de Ā. Il vient alors le résultat suivant:

Théorème. L'opérateur A donné en (2), correspondant au système de type neutre (1), possède une suite de sous-espaces invariants, de dimensions finies, qui forment une base de Riesz de M 2 .

Ce résultat est d'une grande importance dans l'étude de la stabilité et de la stabilisabilité fortes des systèmes de type neutre.

Introduction and operator model

In this paper we analize the functional differential equation of neutral type

ẋ(t) = A -1 ẋ(t -1) + 0 -1 A 2 (θ) ẋ(t + θ)dθ + 0 -1 A 3 (θ)x(t + θ)dθ (1) 
where A -1 is constant n × n-matrix, det A -1 = 0, A 2 , A 3 are n × n-matrix whose elements belong to L 2 (-1, 0). This equation occurs, for example, when a system of neutral type is stabilized. Even if the initial system contains pointwise delays only, then the set of natural feedback laws contains distributed delays (see e.g., [START_REF] Pandolfi | Stabilization of neutral functional differential equations[END_REF][START_REF] O'connor | On stabilization by state feedback for neutral differential equations[END_REF]), so the corresponding closed-loop system takes the form [START_REF] Akhiezer | Theory of linear operators in Hilbert space[END_REF].

The problem of exponential stability of systems like (1) is well studied [START_REF] Hale | Theory of functional differential equations[END_REF][START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF]. In order to analize more subtle properties of stability (and stabilizability), namely strong asymptotic stability (see e.g. [START_REF] Brumley | On the asymptotic behavior of solutions of differential-difference equations of neutral type[END_REF]), one needs to consider an operator model generated by the system (1) in some infinite dimensional space. Such an approach is also helpfull in studying of controllability and other problems of control theory.

In [START_REF] Hale | Theory of functional differential equations[END_REF], the framework is based on the description of the neutral type system in the space of continuous functions C([-1, 0]; C n ). Another way [START_REF] Yamamoto | A new model for neutral delay-differential systems[END_REF] is to treat the system in the space M 2 = C n × L 2 (-1, 0; C n ), which is a Hilbert space. That gives the possibility to use deep ideas and technique of the operator theory in Hilbert space [START_REF] Akhiezer | Theory of linear operators in Hilbert space[END_REF][START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators (English) Translations of Mathematical Monographs[END_REF].

In this context, we emphasize the importance of the remarkable concept of Riesz basis in the analysis of operator models. We use the model [START_REF] Yamamoto | A new model for neutral delay-differential systems[END_REF] to write the system (1) in the form

d dt y(t) z t (•) = A y(t) z t (•) , A y z(•) = 0 -1 A 2 (θ) ż(θ)dθ + 0 -1 A 3 (θ)z(θ)dθ dz(θ)/dθ , (2) 
where the domain of A is given by D

(A) = {(y, z(•)) : z ∈ H 1 (-1, 0; C n ), y = z(0) - A -1 z(-1)} ⊂ M 2
and the operator A is the generator of a C 0 -semigroup. The relation between the solutions of the system (1) and the system (2) is, as usual, given by z t (θ) = x(t + θ) for θ ∈ [-1, 0]. This operator model is an extension of the model introduced in [START_REF] Yamamoto | A new model for neutral delay-differential systems[END_REF][START_REF] Yamamoto | Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems[END_REF] in the case of pointwise delays. We show that A is a discrete spectral operator [START_REF] Dunford | Linear operators, Part II: Spectral theory. Self adjoint operators in Hilbert space[END_REF] and examine its spectral Riesz basis properties.

Traditionally, when studying the concept of spectral Riesz basis, one means the basis of eigen-and generalized eigenvectors, or generally, eigenspaces (see e.g., [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF] and references therein). However, it turns out, that the operator A does not possess such a basis in general case (see Example 8). At the same time, we prove our main result:

Theorem The operator A (see ( 2)) corresponding to neutral type system (1) possesses the following generalized Riesz basis property:

There exists a sequence of invariant for A finite-dimensional subspaces which constitute a Riesz basis in M 2 .

This result is crucial in the investigation of strong stability (stabilizability) of neutral type systems which is to be given in our forthcoming paper.

Preliminary results

In the sequel we will consider the matrix A -1 in a Jordan basis and change the norm in C n such that the corresponding eigen-and rootvectors of A -1 form an orthogonal basis.

Let us denote by µ 1 , ..., µ , µ i = µ j if i = j, the eigenvalues of A -1 and the dimensions of their rootspaces by p 1 , ..., p , k=1 p k = n. Consider the points λ

(k) m ≡ ln |µ m | + i(arg µ m + 2πk), m = 1, .., ; k ∈ Z and the circles L k m of fixed radius r ≤ r 0 ≡ 1 3 min{|λ (k) m -λ (j) i |, (m, k) = (i, j)} centered at λ (k)
m . Proposition 1. The spectrum of A consists of the eigenvalues only which are the roots of the equation det ∆(λ) = 0, where

∆ A (λ) = ∆(λ) ≡ -λI + λe -λ A -1 + λ 0 -1 e λs A 2 (s)ds + 0 -1 e λs A 3 (s)ds. ( 3 
)
The corresponding eigenvectors of

A are ϕ = C-e -λ A -1 C e λθ C
, with C ∈ Ker∆(λ). There exists N 1 such that for any k, such that |k| ≥ N 1 , the total multiplicity of the roots of the equation det ∆(λ) = 0, contained in the circle L k m , equals p m . Proposition 2. The resolvent of A is given by

R(A, λ) x ψ(•) ≡ A -1 e -λ 0 -1 e -λs ψ(s)ds + (I -A -1 e -λ )∆ -1 (λ)D θ 0 e λ(θ-s) ψ(s)ds + e λθ ∆ -1 (λ)D , (4) 
where

D = D(x, ψ) ≡ x + λe -λ A -1 0 -1 e -λs ψ(s)ds -0 -1 A 2 (s)ψ(s)ds -0 -1 {λA 2 (θ) + A 3 (θ)}e λθ { θ 0 e -λs ψ(s)ds}dθ.
The proof of Proposition 2 is straightforward. Let us highlight the main steps of the proof of Proposition 1. It is easy to see from the explicit form of R(A, λ) and the compactness of embedding of

H 1 (-1, 0; C n ) into L 2 (-1, 0; C n ), that R(A, λ) is compact.
It gives that A has point spectrum only. Each eigenvalue is a root of det ∆(λ) of finite multiplicity. Calculations give the form of eigenvectors of A, taking into account the explicit definition of D(A).

To describe the location of the spectrum of A we use Rouche theorem. More precisely, for sufficiently large k and any m we show that

|f 1 (λ)| > |f 2 (λ)| for any λ ∈ L k m and f 1 (λ) ≡ det(A -1 -e -λ I), f 2 (λ) ≡ det(A -1 -e -λ I) - det A -1 -e -λ I + e λ 0
-1 e λs A 2 (s)ds + e λ λ -1 0 -1 e λs A 3 (s)ds . Thus, f 1 -f 2 has the same number of roots inside L k m as function f 1 . Proposition 3. The operator A generates a C 0 -semigroup in M 2 . In the particular case when A 2 (θ) = A 3 (θ) ≡ 0, we will use the notation Ā for A. We will show that the properties of Ā can be expressed in terms of the properties of matrix A -1 only. The basis properties of the operator A will be deduced from the ones of Ā.

Basis property of eigen-and rootvectors of the operator Ā.

Let ν m be the number of Jordan blocks, corresponding to µ m ∈ spec(A -1 ). Denote by p m,j , j = 1, .., ν m , νm j=1 p m,j = p m , the orders of these blocks and by {C 0 m,j , ..., C p m,j -1 m,j } the orthonormal system of corresponding eigen-and rootvectors i.e.,

A -1 C 0 m,j = µ m C 0 m,j , A -1 C d m,j = µ m C d m,j + C d-1 m,j , d = 1, .
., p m,j -1; j = 1, .., ν m . If there exists k ∈ {1, . . . , } such that µ k = 1 ∈ spec(A -1 ) we denote by K the rootspace of A -1 corresponding to the eigenvalue 1 and put K = {0} otherwise. Finally, let K 1 = K ⊥ = Lin{C d m,j , m ∈ {0, . . . , } : µ m = 1; j = 1, . . . , ν m ; d = 0, . . . , p m,j -1}. In order to describe eigen-and rootvectors of the operator Ā (see Theorem 5) we need the following lemma. Lemma 4. i) Let us put ν(1) = 0 if 1 ∈ spec(A -1 ) and ν(1) = ν k if for some k ∈ {0, . . . , } : µ k = 1. For any y ∈ C n there exists an unique polynomial vector P y (θ) of the form

P y (θ) = ν(1) j=1 p k,j -1 d=0 C d k,j α 0,j y θ p k,j -d (p k,j -d)! + α 1,j y θ p k,j -d-1 (p k,j -d -1)! + • • • + α p k,j -d-1,j y θ + γ y ,
such that γ y ∈ K 1 and y = P y (0) -A -1 P y (-1).

ii) The mapping y

D → P y (•) is a linear operator D : C n → H 1 (-1, 0; C n ).
Remark. In particular case when 1 ∈ spec(A -1 ) Lemma 4 gives P y (θ) = (I -A -1 ) -1 y.

Theorem 5. The spectrum of Ā consists of points λ (k) m with corresponding eigen-and rootvectors

0 e λ (k) m θ C 0 m,j , 0 e λ (k) m θ (C 0 m,j θ + C 1 m,j ) , . . . ,   0 e λ (k) m θ (C 0 m,j θ p m,j -1 (p m,j -1)! + ... + C p m,j -1 m,j )   , (5) 
m = 1, . . . , , k ∈ Z, and also of the point 0 for which one can choose eigen-or rootvectors of the form e i P e i (θ) ,

where {e i } n i=1 is an arbitrary orthogonal basis in C n and the polynomial P y (θ) is described in Lemma 4.

The collection ( 5) and ( 6) constitutes a Riesz basis in M 2 which becomes an orthogonal basis if we choose the equivalent norm

(y, z(•) 2 1 = y 2 + 0 -1 T (P y (θ) -z(θ)) 2 dθ, (7) 
where T is a bounded operator in L 2 (-1, 0; C n ) with bounded inverse.

Basis property of finite-dimensional invariant subspaces

Theorem 6. There exists N 0 large enough, such that for any N ≥ N 0 , i) the sequence of subspaces

{V (k) m } |k|>N m=1,..,
form a Riesz basis of the closure of their linear span, say L N . Here

V (k) m ≡ P (k) m M 2 and P (k) m M 2 = 1 2πi L (k) m R(A, λ)dλ are spectral projectors; L (k)
m are circles defined in Section 2; ii) codim L N = (2N + 1)n + n = 2(N + 1)n.

To prove item i) we estimate the norm of the difference P (k) m -P (k) m using the explicit form of resolvent (see ( 4)). Then we choose N 0 big enough such that The main result of our work is the following Theorem 7. There exists a sequence of invariant for A finite-dimensional subspaces which constitute a Riesz basis in M 2 .

m=1 |k|>N 0 ||P (k) m - P (k) m || 2 < 1.
More precisely, these subspaces are {V (k) m } |k|>N m=1,.., (see Theorem 6) and a 2(N + 1)ndimensional subspace spaned by all eigen-and rootvectors, corresponding to all eigenvalues of A, which are outside of all circles L (k) m , |k| > N, m = 1, .., . Proof of Theorem 7. The proof consists of three steps.

Step 1. Let us set X 1 = L N , where L N is defined in Theorem 6. The subspace X 1 is of finite co-dimension and invariant for A.

One can show that M 2 can be split into the direct sum M 2 = X 1 + X 2 , and the operator A can be presented in the triangular form A = A 11 0

A 12 A 22 , where A 11 ≡ P 1 AP 1 : X 1 → X 1 , A 22 ≡ P 2 AP 2 : X 2 → X 2 , A 12 ≡ P 1 AP 2 : X 2 → X 1 .
Here P i are projectors on X i along X j , j = i.

Step 2. We prove that spec(A 11 ) ∩ spec(A 22 ) = ∅.

Step 3. Let us show that M 2 can be split into the direct sum M 2 = X 1 + X2 , with an invariant X2 . Consider finite-dimensional operator A 22 . There exists spec(A 22 ) = {μ 1 , .., μs } with the total multiplicity equals to dimX 2 = codimX 1 .

Consider h-an eigenvector of A 22 corresponding to μ and find y ∈ X 1 such that A y h = μ y h . Such y is given by y = -(A 11 -μI) -1 A 12 h (see the triangular form of A). This is due to the property spec(A 11 ) ∩ spec(A 22 ) = ∅, which implies μ ∈ spec(A 11 ). Exactly in the same way one can find all rootvectors of A for all μ. Hence the number of eigenand rootvectors of A corresponding to spec(A 22 ) is equal to dimX 2 = 2(N + 1)n. By the construction, the linear span of these vectors gives an invariant X2 . Now Theorem 6 completes the proof of Theorem 7. We emphasize that the operator A does not possess in general case a Riesz basis of generalized eigenspaces. We illustrate this on the following Example 8. Consider the particular case of the system (1):

ẋ(t) = A -1 ẋ(t -1) + A 0 x(t), A -1 = 1 0 1 1 , A 0 = α 0 0 β . (8) 
One can check that the characteristic equation is det∆(λ) = (α-λ+λe -λ )(β-λ+λe -λ ) = 0 and for α = β there are two sequences of eigenvectors, such that ||v 1 n -v 2 n || → 0, as n → ∞. By definition, such vectors can not form a Riesz basis. More precisely, assume opposite i.e., that {v i n } form a Riesz basis. Then there exists [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators (English) Translations of Mathematical Monographs[END_REF] an orthonormal basis {η i n } and a bounded operator T such that T v i n = η i n , i = 1, 2; n ∈ Z. We have that T (v 1 n -v 2 n ), η 1 n = η 1 n -η 2 n , η 1 n = 1 for all n. On the other hand, one gets T (v

1 n -v 2 n ), η 1 n ≤ T • v 1 n -v 2 n • η 1 n → 0, as n → ∞.
We arrive to a contradiction.

  The last estimate means that the sequences of subspaces {V(k) 

					m=1,.., m } |k|>N	and
	{ V (k) m } |k|>N m=1,..,	are quadratically close. Theorem 5.2 [6] (see also Th.2.20 and Corollary 2.22
	in [8]) and the basis property of { V (k) m } k∈Z m=1,..,	(see Theorem 5) prove item i).
	To prove item ii) we use that the sequence { V (k) m } k∈Z m=1,..,	form an orthogonal basis in
	M 2 (see Theorem 5) and { V (k) m } |k|≤N m=1,..,	∪ {V (k) m } |k|>N m=1,..,	is quadratically close to the sequence
	{ V (k) m } k∈Z m=1,..,	(see item i). Hence { V (k) m } |k|≤N m=1,..,	∪ {V (k) m } |k|>N m=1,..,	form a Riesz basis in M 2 and
	dim{ V (k) m } |k|≤N m=1,..,	= 2(N + 1)n.	
	The proof of Theorem 6 is complete.
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