R Rabah 
email: rabah@emn.fr
  
G M Sklyar 
email: sklar@sus.univ.szczecin.pl
  
A V Rezounenko 
email: rezounenko@univer.kharkov.ua
  
Stability analysis of neutral type systems in Hilbert space

Keywords: Neutral type systems, exponential stability, strong stability, infinite dimensional systems. Mathematical subject classification. 34K06, 34K20, 34K40, 93C23

The asymtoptic stability properties of neutral type systems are studied mainly in the critical case when the exponential stability is not possible. We consider an operator model of the system in Hilbert space and use recent results on the existence of a Riesz basis of invariant finite-dimensional subspaces in order to verify its dissipativity. The main results concern the conditions of asymptotic non exponential stability. We show that the property of asymptotic stability is not determinated only by the spectrum of the system but essentially depends on the geometric spectral characteristic of its main neutral term. Moreover, we present an example of two systems of neutral type which have both the same spectrum in the open left-half plane and the main neutral term but one of them is asymptotically stable while the other is unstable.

Introduction

A number of applied problems from physics, mechanics, biology and other fields can be described by partial differential or delay differential equations. This leads to the construction and study of infinite-dimensional dynamical systems. In our work we are interested in stability theory of systems with a delayed argument. It is almost impossible to overview the huge literature on the subject, so we only cite some monographs [START_REF] Bellman | Differential-difference equations[END_REF][START_REF] Diekmann | Delay equations. Functional, complex, and nonlinear analysis[END_REF][START_REF] Hale | Theory of functional differential equations[END_REF][START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF][START_REF] Kolmanovskii | Stability of functional differential equations[END_REF] which are among the main references. The most used methods and approaches are developed for retarded differential equations while the case of neutral type systems remains more difficult and less studied so far. Our attention is attracted by the fact that in the case of neutral type systems one meets two essentially different type of stability: exponential and strong asymptotic non-exponential stability. The last type of stability is impossible for retarded systems, but may occur for neutral type systems. In particular as it is shown in [START_REF] Brumley | On the asymptotic behavior of solutions of differential-difference equations of neutral type[END_REF] for a high order differential equation of neutral type the smooth solutions decay essentially slower that exponential, namely as function 1/t β , β > 0. One of the explanations of this fact is that a neutral type equation may have an infinite sequence of roots of the characteristic equation with negative real parts approaching to zero. It is obvious that in such a case the equation is not exponentially stable and one needs more subtle methods in order to characterize this type of asymptotic stability.

Our approach is based on the general theory of C 0 -semigroups of linear bounded operators (see e.g. [START_REF] Van Neerven | The asymptotic behavior of semigroups of linear operators[END_REF]).

Let us give the precise description of the system and the operator model under consideration. We study the following neutral type system

ż(t) = A -1 ż(t -1) + 0 -1 A 2 (θ) ż(t + θ)dθ + 0 -1 A 3 (θ)z(t + θ)dθ (1) 
where A -1 is constant n × n-matrix,det A -1 = 0, A 2 , A 3 are n × n-matrices whose elements belong to L 2 (-1, 0). This equation occurs, for example, when a system of neutral type is stabilized. Even if the initial system contains pointwise delays only, then the set of natural feedback laws contains distributed delays (see e.g., [START_REF] O'connor | On stabilization by state feedback for neutral differential equations[END_REF][START_REF] Pandolfi | Stabilization of neutral functional differential equations[END_REF]), so the corresponding closed-loop system takes the form (1).

We do not consider here the case of mixed retarded-neutral type systems, i.e. when A -1 = 0, det A -1 = 0, and limit ourselves to one principal neutral term.

One of the main questions for the construction of an operator model and a corresponding dynamical system is the choice of the phase space. In [START_REF] Hale | Theory of functional differential equations[END_REF], the framework is based on the description of the neutral type system in the space of continuous functions C([-1, 0]; C n ). The essential result in this framework is that the exponential stability is characterized by the condition that the spectrum is in the open left-half plane and bounded away from the imaginary axis (see also [START_REF] Henry | Linear autonomous neutral functional differential equations[END_REF]Theorem 6.1]). The case when the spectrum is not bounded away from the imaginary axis is much more complicated. It has been shown in [START_REF] Gromova | On trigonometric series whose sums are continuous unbounded functions on the real axis-solutions of equations with retarded arguments[END_REF] that a linear neutral differential equation can have unbounded solutions even though the associated characteristic equation has only purely imaginary roots (see also [START_REF] Datko | An example of an unstable neutral differential equation[END_REF][START_REF] Gromova | Stability of solutions of nonlinear equations of neutral type in the asymptotically critical case, (Russian)[END_REF][START_REF] Zverkin | The connection between boundedness and stability of solutions of linear systems with an infinite number of degrees of freedom. (Russian) Differencial'nye Uravnenija[END_REF]). In [START_REF] Brumley | On the asymptotic behavior of solutions of differential-difference equations of neutral type[END_REF] a lower and upper estimations for the behavior of smooth solutions are given. This suggests that non exponential stability may occur if the characteristic roots are not bounded away from zero. Such a behavior is impossible for ordinary or retarded linear differential equations.

The main purpose of this paper is to characterize the asymptotic stability in the critical case when the exponential one is not possible.

We consider the operator model of neutral type systems introduced by Burns and al. in product spaces. This approach was also used in [START_REF] Verduyn Lunel | A functional model approach to linear neutral functional differential equations[END_REF] for the construction of a spectral model. In [START_REF] Yamamoto | A new model for neutral delay-differential systems[END_REF] the authors consider the particular case of discrete delay, which served as a model in [START_REF] Rabah | On a class of strongly stabilizable systems of neutral type[END_REF][START_REF] Rabah | Strong stabilizability for a class of linear time delay systems of neutral type, Matematicheskaya Fizika[END_REF] to characterize the stabilizability of a class of systems of neutral type. The distributed delay case of the system (1) was considered by authors of the present paper in [START_REF] Rabah | Generalized Riesz basis property in the analysis of neutral type systems[END_REF].

The state space is M 2 (-1, 0; C n ) = C n ×L 2 (-1, 0; C n ), briefly M 2 , and permits (1) to be rewritten as d dt

y(t) z t (•) = A y(t) z t (•) = 0 -1 A 2 (θ) żt (θ)dθ + 0 -1 A 3 (θ)z t (θ)dθ dz t (θ)/dθ , (2) 
where the domain of A is given by

D(A) = {(y, z(•)) : z ∈ H 1 (-1, 0; C n ), y = z(0) -A -1 z(-1)} ⊂ M 2
and the operator A is the infinitesimal generator of a C 0 -semigroup e At . The relation between the solutions of the delay system (1) and the system (2) is z t (θ) = z(t + θ).

In the particular case when A 2 (θ) = A 3 (θ) = 0, we use the notation Ā for A.

We will show that the properties of Ā can be expressed in terms of the properties of matrix A -1 only. We will show also that some important properties of A are close to those of Ā.

For the dynamical system (e At , M 2 ), we consider the problem of strong asymptotic stability: the system is said to be strongly asymptotically stable if for all x = (y, z(•)) ∈ M 2 , lim t→+∞ e At x = 0.

In contrast to [START_REF] Brumley | On the asymptotic behavior of solutions of differential-difference equations of neutral type[END_REF], the strong asymptotic stability of the dynamical system (e At , M 2 ) means the convergence to 0 of all the solutions even if these solutions are not smooth. This is important for the purpose of further investigations, namely, the stabilizability problem.

The fundation for our investigations is the powerful general Theorem 20 on the strong asymptotic stability of an abstract C 0 -semigroup in Banach spaces. However the verification of the conditions of stability in Theorem 20 is rather difficult in a Banach space setting. At the same time, the structure of Hilbert space gives more advanced techniques [START_REF] Akhiezer | Theory of linear operators in Hilbert space[END_REF][START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF]. We use also results on stability and stabilizability of abstract linear systems in Hilbert spaces [START_REF] Sklyar | Stability of a strongly stabilizing control for systems with a skew-adjoint operator in Hilbert space[END_REF][START_REF] Sklyar | A theorem on the strong asymptotic stability and determination of stabilizing controls[END_REF]. This motivates the choice of M 2 as a phase space.

One of the main ideas in this work is to involve the notion of Riesz bases in the analysis of the stability of neutral type systems [START_REF] Rabah | Generalized Riesz basis property in the analysis of neutral type systems[END_REF][START_REF] Rabah | On strong stability and stabilizability of systems of neutral type, in "Advances in time-delay systems[END_REF]. Usually, one looks for a Riesz basis of eigenvectors or more generally, a Riesz basis of generalized eigenvectors (eigen-and rootvectors). In this connection we refer to [START_REF] Verduyn Lunel | A functional model approach to linear neutral functional differential equations[END_REF] where for a more general system of neutral type a condition for generalized eigenspaces to form a Riesz basis is given. It is noted in [START_REF] Verduyn Lunel | A functional model approach to linear neutral functional differential equations[END_REF] that if the spectrum of the system is contained in a vertical strip and inf{|λλ ′ |, λ, λ ′ ∈ σ(A), λ = λ ′ } > 0, then the generalized eigenspaces form a Riesz basis. We recall [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF] that a basis {V k } of subspaces is called a basis equivalent to orthogonal (a Riesz basis) if there are an orthogonal basis of subspaces {W k } and a linear bounded invertible (with bounded inverse) operator R, such that RV k = W k (see also discussion in [START_REF] Rabah | On strong stability and stabilizability of systems of neutral type, in "Advances in time-delay systems[END_REF]).

A simple example [START_REF] Rabah | Generalized Riesz basis property in the analysis of neutral type systems[END_REF] proves that the neutral type system (1) (or (2)) does not always possess such a basis since the eigenvalues may be not separated.

One of our main ideas is that in spite of the fact that system (1) does not possess a Riesz basis of generalized eigenspaces, it possesses (see Section 2) a Riesz basis of finite-dimensional subspaces which are invariant under the evolution semigroup. Moreover, this basis is quadratically close to the basis of generalized eigenspaces of the operator Ā, and the last basis is found in a constructive way (Theorem 7). It is important to note that in contrast to [START_REF] Verduyn Lunel | A functional model approach to linear neutral functional differential equations[END_REF]Theorem 4.8] for our case we do not assume but prove that generalized eigenspaces of Ā and the finite-dimensional invariant subspaces of A are complete in the whole space (see Theorems 7 and 16). Apart from its own value this result gives the way for studying the stability properties.

The existence of a Riesz basis of invariant subspaces means that we can split our infinite-dimensional dynamical system on a family of finite-dimensional ones to study them separately. We found these invariant subspaces as the images of spectral projectors given by Schwartz integrals over certain circles with centers in the points

λ (k) = ln |µ| + i(arg µ + 2πk), µ ∈ σ(A -1 ); k ∈ Z.
In [START_REF] Vlasov | On spectral problems arising in the theory of functional differential equations[END_REF][START_REF] Vlasov | Spectral problems arising in the theory of differential equations with delay, in: Sovremennaya matematika[END_REF][START_REF] Vlasov | On basisness of exponential solutions of difference-differential equations[END_REF], the spectrum of the operator A is needed in the construction of the Riesz basis of subspaces of solutions of the system like (1) in Sobolev spaces.

As one can mention, in our approach, points λ (k) are defined by the matrix A -1 only. This fact gives us an idea to infer as much information as possible on the stability of (1) in terms of the properties of the constant matrix A -1 .

In this context, it is natural to consider three cases: µ max > 1, µ max < 1 and µ max = 1, where µ max = max{|µ|, µ ∈ σ(A -1 )}. As a consequence of the Theorem on the location of the spectrum of operator A (see Theorem 2 below and for the simplest case of one discrete delay see [START_REF] Stepan | Retarded dynamical systems: stability and characteristic function[END_REF] and [START_REF] Niculescu | Delay effects on stability: a robust control approach[END_REF]Proposition 1.4,p.35] ), we can conclude that in the case µ max > 1 there are eigenvalues of A with positive real part, so the system is unstable. On the other hand, the condition µ max < 1 means that if the system is stable, then the stability is of exponential type. So we apply our main efforts to the difficult case µ max = 1.

Our main result on the stability can be formulated as follows.

Assume that σ(A) ⊂ {λ : Re λ < 0} and max{|µ| : µ ∈ σ(A -1 )} = 1, where by Re λ we denote the real part of λ. Let us put σ 1 ≡ σ(A -1 ) ∩ {λ : |λ| = 1}.

Then the following three mutually exclusive possibilities hold true: i) σ 1 consists of simple eigenvalues only i.e., to each eigenvalue corresponds an one-dimensional eigenspace and there are no rootvectors. The system (2) is asymptotically stable. ii) The matrix A -1 has a Jordan block, corresponding to an µ ∈ σ 1 . In this case the system (2) is unstable. iii) There are no Jordan blocks, corresponding to eigenvalues in σ 1 , but there exists an µ ∈ σ 1 whose eigenspace is at least two-dimensional. In this case the system (2) can be either stable or unstable. Moreover, there exist two systems with the same spectrum, such that one of them is stable while the other one is unstable.

The paper is organized as follows. Section 2 is devoted to the analysis of the fundamental properties of the system: semigroup property, analysis of the spectrum, computation of the resolvent of the operator A and basis property of invariant subspaces. Results of this section have been partially announced in [START_REF] Rabah | Generalized Riesz basis property in the analysis of neutral type systems[END_REF]. Section 3 contains the stability analysis: necessary and sufficient conditions of stability and the open problem: when the matrix A -1 has multiple eigenvalues of module 1 without Jordan chain, then the system can be either asymptotically stable or unstable.

2 Preliminaries.

C 0 -semigroup property

In this paragraph we recall that the operator A generates a C 0 -semigroup in the general case and a group when det A -1 = 0. For more details, see [START_REF] Burns | Linear functionaldifferential equations as semigroups on product spaces[END_REF] for a more general case and [START_REF] Rabah | Stability analysis of neutral type systems in Hilbert space[END_REF] for our case.

Suppose that the initial conditions for the system (1) are z(0) = y and ϕ(t) = z 0 (t), t ∈ [- 

(•) = z t (0) -A -1 z t (-1) z t (•) = z(t) -A -1 z(t -1) z(t + •) . If y z 0 (•)
∈ D(A), this gives a strong (classical) solution of the system [START_REF] Arendt | Tauberian theorems and stability of oneparameter semigroups[END_REF] and an absolutely continuous solution of the system (1). For

y z 0 (•) ∈ M 2 ,
it is a generalized or weak solution ( [START_REF] Burns | Linear functionaldifferential equations as semigroups on product spaces[END_REF], [START_REF] Lunel | The closure of the generalized eigenspaces of a class of infinitesimal generators[END_REF]).

Analysis of the spectrum

We start with the expression of the explicit form of the resolvent R(A, λ). We need the following

∆ A (λ) = ∆(λ) = -λI + λe -λ A -1 + λ 0 -1 e λs A 2 (s)ds + 0 -1 e λs A 3 (s)ds. (3) 
It is easy to see that det ∆(λ) ≡ / 0, namely det ∆(λ) = 0 if Re λ is sufficiently large. A more precise description of the set {λ : det ∆(λ) = 0} is given in Theorem 2.

Proposition 1

The resolvent of A is given by

R(A, λ) z ψ(•) = A -1 e -λ 0
-1 e -λs ψ(s)ds+(I-A -1 e -λ )∆ -1 (λ)D(z,ψ)

θ 0 e λ(θ-s) ψ(s)ds+e λθ ∆ -1 (λ)D(z,ψ) , (4) 
where D(z, ψ) = z +λe -λ A -1

0

-1 e -λs ψ(s)ds-0 -1 A 2 (s)ψ(s)ds-0 -1 {λA 2 (θ)+ A 3 (θ)}e λθ { θ 0 e -λs ψ(s)ds}dθ, and for λ such that det ∆(λ) = 0.

Proof: To compute the resolvent, we have to consider the equation

(A -λI) y ϕ(•) = 0 -1 A 2 (θ) φ(θ)dθ+ 0 -1 A 3 (θ)ϕ(θ)dθ-λϕ(0)+λA -1 ϕ(-1) φ(θ)-λϕ(θ) = z ψ(•) . (5) 
From the second line we get ϕ(θ) = e λθ ϕ(0) + θ 0 e λ(θ-s) ψ(s)ds. It gives φ(θ) = λe λθ ϕ(0) + λ θ 0 e λ(θ-s) ψ(s)ds + ψ(θ). Let us replace this in the first line of (5) and use ϕ(-1) = e -λ ϕ(0) -0 -1 e -λs ψ(s)ds • e -λ . Collecting all the terms with ϕ(0) we get ∆(λ)ϕ(0) = D(z, ψ), where D(z, ψ) is defined in the statement of the Proposition. Hence ϕ(0) = ∆ -1 (λ)D(z, ψ) for det ∆(λ) = 0, which gives the second line of (4). The first line of (4) follows from the definition of the domain D(A), i.e. y = ϕ(0) -A -1 ϕ(-1), which ends the proof of Proposition 1. 2

In the sequel we will consider the matrix A -1 in a Jordan basis and change the norm in C n such that the corresponding eigen-and rootvectors of A -1 form an orthogonal basis.

Let us denote by µ 1 , ..., µ ℓ , µ i = µ j if i = j, the eigenvalues of A -1 and the dimensions of their rootspaces by p 1 , ..., p ℓ , ℓ k=1 p k = n. Consider the points

λ (k) m = ln |µ m | + i(arg µ m + 2πk), m = 1, .., ℓ; k ∈ Z and the circles L (k) m of fixed radius r ≤ r 0 = 1 3 min{|λ (k) m -λ (j) i |, (m, k) = (i, j)} centered at λ (k) m .
Now we need a detailed description of the location of the spectrum of A (in the simplest case of one discrete delay see [START_REF] Stepan | Retarded dynamical systems: stability and characteristic function[END_REF] and [START_REF] Niculescu | Delay effects on stability: a robust control approach[END_REF]Proposition 1.4,p.35]). We prove that for any fixed m = 1, .., ℓ, the total multiplicity of eigenvalues of A inside the circles L (k) m is independent of k (for |k| large enough) and is equal to the multiplicity of µ m as an eigenvalue of matrix A -1 . This fact plays an important role in our investigations.

Theorem 2 The spectrum of A consists of the eigenvalues only which are the roots of the equation det ∆(λ) = 0, where ∆(λ) is given by (3). The corresponding eigenvectors of

A are ϕ = C-e -λ A -1 C e λθ C
, with C ∈ Ker∆(λ). There exists N 1 such that for any k, such that |k| ≥ N 1 , the total multiplicity of the roots of the equation det ∆(λ) = 0, contained in the circle L (k) m , equals p m .

Remark 3 We notice that this characterization of the spectrum holds only in the case det A -1 = 0 (see also [START_REF] Niculescu | Delay effects on stability: a robust control approach[END_REF]Proposition 1.4,p.35]) Remark 4 In the simplest case of discrete neutral system

ż(t) = A -1 ż(t -1) + A 1 z(t) + A 2 z(t -1),
we can combine the results of Theorem 2 with [START_REF] Niculescu | Delay effects on stability: a robust control approach[END_REF]Proposition 1.4,p.35] to get an analogous statement to Theorem 2 with a sequence of circles L (k) m of vanishing radius, i.e. sup m=1,...,ℓ r (k) m → 0, when |k| → ∞.

Proof: It is easy to see from the explicit form of R(A, λ) and the compactness of embedding of

H 1 (-1, 0; C n ) into L 2 (-1, 0; C n ), that R(A, λ) is compact. It
gives that A has point spectrum only. Each eigenvalue is a root of det ∆(λ) of finite multiplicity. Calculations give the form of eigenvectors of A, taking into account the explicit definition of D(A).

To describe the location of the spectrum of A we use Rouché theorem.

More precisely, for sufficiently large k and any m we show that |f

1 (λ)| > |f 2 (λ)| for any λ ∈ L (k) m and f 1 (λ) = det(A -1 -e λ I), f 2 (λ) = det(A -1 -e λ I) -det   (A -1 -e λ I) + e λ 0 -1 e λs A 2 (s)ds + e λ λ -1 0 -1 e λs A 3 (s)ds   .
Thus, f 1f 2 will have the same number of roots inside L (k) m as function f 1 has. On the other hand the roots of f 1 (λ)f 2 (λ) are the same as the roots of det ∆(λ) for λ ∈ L (k) m and for sufficiently large k.

Let us rewrite f 2 as follows:

f 2 (λ) = det(A -1 -e λ I) 1 -det(I + (A -1 -e λ I) -1 L(λ)) ,
where

L(λ) = e λ 0 -1 e λs A 2 (s)ds + e λ λ -1 0 -1 e λs A 3 (s)ds. (6) 
To show that |f

1 (λ)| > |f 2 (λ)| it is sufficient to get |1 -det(I + (A -1 -e λ I) -1 L(λ))| < 1. ( 7 
)
We will show that

(A -1 -e λ I) -1 L(λ)) ≤ ν (8) 
for sufficiently small ν (and all large k) which gives [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF].

Remark 5 For a matrix D one has det D = ξ k , where {ξ k } = σ(D)-spec- trum of D. Let us denote by {ν 1 , ..., ν n } the eigenvalues of (A -1 -e λ I) -1 L(λ)).
Hence (8) implies |ν i | ≤ ν for all i=1,...,n and so det(

I +(A -1 -e λ I) -1 L(λ)) = (1 + ν i ).
We estimate (see [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF] and ( 8) 8) gives [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF].

): |1 -det(I + (A -1 -e λ I) -1 L(λ))| = |1 -(1 + ν i )| ≤ |1 -(1 + ν) n | ≤ C • ν for sufficiently small ν > 0. So (
Since (A -1 -e λ I) -1 L(λ)) ≤ (A -1 -e λ I) -1 L(λ)) we need two estimates: (A -1 -e λ I) -1 ≤ C 1 , (9) 
for some C 1 > 0 and

L(λ)) ≤ α m,k , λ ∈ L (k) m , lim |k|→∞ α m,k = 0. ( 10 
)
We have

λ = λ (k) m + re iϕ , ϕ ∈ [0, 2π] and hence |µ m -e λ | = |µ m -µ m e re iϕ | = |µ m ||1 -e re iϕ | ≥ C 0 > 0 for all m, k and λ ∈ L k m .
We use here the assumption that det A -1 = 0 which implies min |µ m | > 0. Using the fact that A -1 has a Jordan form and a well known fact that for a Jordan block

B =         µ 1 0 . . . 0 0 µ 1 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . 1 0 0 0 . . . µ         one has (B -e λ I) -1 =       (µ -e λ ) -1 -(µ -e λ ) -2 . . . (-1) n-1 (µ -e λ ) -n 0 (µ -e λ ) -1 . . . (-1) n-2 (µ -e λ ) -n+1 . . . . . . . . . . . . 0 0 . . . (µ -e λ ) -1      
, and we deduce [START_REF] Diekmann | Delay equations. Functional, complex, and nonlinear analysis[END_REF].

To obtain [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF] 

we write λ ∈ L (k) m as λ = λ + i • 2πk, with λ ∈ L (0) m .
To estimate L(λ)) it is enough to consider

0 -1 e λs A i (s)ds = 0 -1 e i•2πk (A i (s)e λs )ds. ( 11 
)
Here functions A i (s)e λs , i = 2, 3, belong to L 2 (-1, 0) and do not depend on k. The functions {e i•2πk } k∈Z form the trigonometric basis of L 2 (-1, 0). So the integral [START_REF] Gromova | Stability of solutions of nonlinear equations of neutral type in the asymptotically critical case, (Russian)[END_REF] is the Fourier coefficient of A i (s)e λs . It implies the estimate [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF].

By ( 9), [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF] we obtain [START_REF] Datko | An example of an unstable neutral differential equation[END_REF]. We apply Rouché theorem and this completes the proof of Theorem 2. 2

The Riesz basis property

The results of this section form the technical foundation for all our considerations about stability properties.

Recall that in the particular case where A 2 (θ) = A 3 (θ) = 0, we use the notation Ā for A. We will show that the properties of Ā can be expressed in terms of the properties of matrix A -1 only. The basis properties of the operator A will be deduced from the ones of Ā.

2.3.1 Basis property of eigen-and rootvectors of the operator Ā.

Let ν m be the number of Jordan blocks, corresponding to µ m ∈ σ(A -1 ). Denote by p m,j , j = 1, .., ν m , νm j=1 p m,j = p m , the orders of these blocks and by {C 0 m,j , ..., C

p m,j -1 m,j
} the orthonormal system of corresponding eigen-and rootvectors, i.e.

(A -1 -µ m I)C 0 m,j = 0, (A -1 -µ m I)C 1 m,j = C 0 m,j , (A -1 -µ m I)C s m,j = C s-1 m,j , s = 1, ..., p m,j -1. ( 12 
)
If there exists k ∈ {1, . . . , ℓ} such that µ k = 1 ∈ σ(A -1 ) we denote by K the rootspace of A -1 corresponding to the eigenvalue 1 and put K = {0} otherwise. Finally, let

K 1 = K ⊥ = Lin{C d m,j , m ∈ {0, .
. . , ℓ} : µ m = 1; j = 1, . . . , ν m ; d = 0, . . . , p m,j -1}. In order to describe eigen-and rootvectors of the operator Ā (see Theorem 7) we need the following lemma.

Lemma 6 Let ν(1) = 0 if 1 ∈ σ(A -1
) and ν(1) = ν k if for some k ∈ {0, . . . , ℓ} we have µ k = 1, then i) for any y ∈ C n there exists the unique polynomial vector P y (θ) of the form

P y (θ) = ν(1) j=1 p k,j -1 d=0 C d k,j p k,j -d-1 i=0 α i,j y θ p k,j -d-i (p k,j -d -i)! + γ y ,
where γ y ∈ K 1 , such that

y = P y (0) -A -1 P y (-1). ( 13 
)
ii) the mapping y

D → P y (•) is a linear bounded operator D : C n → H 1 (-1, 0; C n ).
In the particular case when 1 ∈ σ(A -1 ) the mapping D is given by P y (θ) = (I -A -1 ) -1 y.

Proof: To prove i) we observe that

P y (0) -A -1 P y (-1) = = ν(1) j=1 p k,j -1 d=0 (C d k,j + C d-1 k,j ) × α 0,j y (-1) p k,j -d+1 (p k,j -d)! + α 1,j y (-1) p k,j -d (p k,j -d-1)! + • • • + α p k,j -d-1,j y +(I -A -1 )γ y , (14) 
where C -1 k,j = 0. On the other hand, the vector y is decomposed as

y = ν(1) j=1 p k,j -1 d=0 C d k,j ξ p k,j -d-1,j y + δ y , δ y ∈ K 1 . (15) 
Note that K 1 is an invariant subspace for A -1 and the restriction (I -A -1 ) | K 1 is an invertible operator. Equating ( 14) and ( 15) yields δ y = (I -A -1 )γ y and

ξ 0,j y = α 0,j y , ξ 1,j y = α 0,j y + α 1,j y -1 2 α 0,j y , . . . . . . ξ p k,j -1,j = α p k,j -2,j y -1 2 α p k,j -3,j y + • • • + (-1) p k,j -2 (p k,j -1)! α 0,j y +α p k,j -1,j y -1 2 α p k,j -2,j y + • • • + (-1) p k,j -1
p k,j ! α 0,j y , j = 1, . . . , ν(1), and, therefore, we have

γ y = (I -A -1 ) -1 | K 1 δ y and           α 0,j y α 1,j y . . . α p k,j -1,j y           =           1 0 0 . . . 0 * 1 0 . . . 0 . . . . . . . . . . . . . . . * * * . . . 1           -1           ξ 0,j y ξ 1,j y . . . ξ p k,j -1,j y           , j = 1, . . . , ν (1) 
.

The linearity of the mapping D is obvious and we have already shown that it is invertible. By construction we obtain relation [START_REF] Hale | Theory of functional differential equations[END_REF].

If 1 ∈ σ(A -1 ) then putting P y (θ) = c, with a constant vector c, we get

P y (0) -A -1 P y (-1) = c -A -1 c
and then if c = (I -A -1 ) -1 y we get [START_REF] Hale | Theory of functional differential equations[END_REF]. 2

This allows to state the following result.

Theorem 7 The spectrum of Ā only consists of the eigenvalues which are the roots of the equation det ∆ Ā(λ) = det(λλe -λ A -1 ) = 0, i.e.

σ( Ā) = {λ (k) m = ln |µ m | + i(arg µ m + 2kπ)} ∪ {0},
where µ m ∈ σ(A -1 ), m = 1, . . . , ℓ. The corresponding generalized eigenvectors are of two forms. To each {λ (k) m } and each Jordan chain {C d m,j } of the orthonormal eigen-and rootvectors of the matrix A -1 (see [START_REF] Gromova | On trigonometric series whose sums are continuous unbounded functions on the real axis-solutions of equations with retarded arguments[END_REF]) corresponds the Jordan chain of Ā :

v (k),0 m,j , v (k),1 m,j , ..., v (k),p m,j -1 m,j
, i.e. the vectors v s (the indices k, m, j are omitted) verify the relation ( Ā -λI)v s = v s-1 . They are given by

v (k),s m,j = 0 e λ (k) m θ P s (θ) , P s (θ) = P s m,j (θ) = s d=0 C d m,j s-d i=0 β i,s d θ i i! , ( 16 
)
where s = 0, .., p m,j -1, m = 1, . . . , ℓ, k ∈ Z, j = 1, . . . , ν m .

Besides, to λ = 0 ∈ σ( Ā) correspond n generalized eigenvectors of another form

   e i P e i (θ)    , (17) 
where {e i } n i=1 is an arbitrary orthogonal basis in C n and the polynomial P y (θ) is described in Lemma 6.

The collection ( 16) and ( 17) constitutes a Riesz basis in M 2 which becomes an orthogonal basis if we choose the equivalent norm

(y, z(•) 2 1 = y 2 + 0 -1 T (P y (θ) -z(θ)) 2 dθ, ( 18 
)
where T is a bounded operator in L 2 (-1, 0; C n ) with a bounded inverse.

Let us first discuss the formulation of this result.

Remark 8

We emphasize, that the polynomials P s m,j (θ) in ( 16) do not depend on index k. So vectors v (k),s m,j in (16) only differ (for different k) in the exponential e λ (k) m θ . This property is essential for our investigations.

Remark 9 Note that if the Jordan basis {C d m,j } is not orthogonal in the initial norm, then one can change the scalar product in C n to achieve its orthogonality. So the assumption on {C d m,j } to be orthogonal is not essential for the property of generalized eigenvectors of Ā to form a Riesz basis.

Remark 10

We notice that the rootspace of Ā corresponding to 0 has essentially different structures in cases 1 ∈ σ(A -1 ) and 1 ∈ σ(A -1 ). The difference is in the family [START_REF] Kolmanovskii | Stability of functional differential equations[END_REF]. Let us consider this in more details.

Vector e ϕ(θ) is an eigenvector of Ā, corresponding to 0 iff

Ā e ϕ(θ) = 0, e ϕ(θ) ∈ D(A).
The first property gives ϕ(θ) ≡ C = const, and the second one implies e = ϕ(0) -A -1 ϕ(-1) = (I -A -1 )C. So the number of linearly independent vectors {e i } (e i = 0) which can be the first (nonzero) coordinate of an eigenvector e ϕ(θ) is equal to dim Im(I -A -1 ).

In the case 1 ∈ σ(A -1 ), we have dim Im(I -A -1 ) = n, so there are n eigenvectors (of Ā corresponding to 0) with the first nonzero coordinate. This means that in addition to the set of eigen-and rootvectors from ( 16) one has n eigenvectors from [START_REF] Kolmanovskii | Stability of functional differential equations[END_REF], i.e. with the first (nonzero) coordinate.

In the case 1 ∈ σ(A -1 ), we have dim Im(I -A -1 ) < n, so the number of eigenvectors is less than n. Moreover, there is no rootvector (of Ā) which satisfies

( Ā -0 • I) y ψ(θ) = e ϕ(θ) , e = 0 since Ā y ψ(θ) = 0 d/dθψ(θ)
, because the first coordinate must be zero.

More precisely, the subspace C n ⊖ Im(I -A -1 ) is the linear span of all rootvectors of the highest order of A -1 , corresponding to µ = 1 ∈ σ(A -1 ), i.e. {C p m,j m,j }. In this case the vectors from [START_REF] Kolmanovskii | Stability of functional differential equations[END_REF] with the first coordinate from C n ⊖ Im(I -A -1 ) are rootvectors of Ā which "continue" the corresponding sequence from [START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF]. They are the rootvectors of highest orders in these sequences.

We can illustrate this fact, for example, on particular cases. For simplicity, we choose {e i } n i=1 = {C d m,j } (see vectors ( 17)).

1. Assume that µ m = 1 ∈ σ(A -1 ) is a simple root (ν m = 1 and p m,j = 1).

Hence from the family [START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF] we have one eigenvector

v 0 m,j = 0 e λ (0) m θ P 0 (θ) = 0 C 0 m,j
, and the corresponding rootvector from the family ( 17)

v 1 m,j = C 0 m,j C 0 m,j θ . It is easy to check that ( Ā -0 • I)v 1 m,j = v 0 m,j and v 1 m,j ∈ D( Ā).
Here we are interested in the rootvector with the first (nonzero) coordinate C 0 m,j since only this vector does not belong to Im (I -A -1 ).

2. Assume ν m = 1 and p m,j = 2, i.e. from the family [START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF] we get two vectors

v 0 m,j = 0 C 0 m,j , v 1 m,j = 0 C 0 m,j θ + C 1 m,j
.

In this case we are interested in the rootvector with the first (nonzero) coordinate C 1 m,j since only this vector does not belong to Im (I -A -1 ). The corresponding rootvector (from the family ( 17)) is

v 2 m,j = C 1 m,j C 0 m,j θ 2 2 + C 1 m,j (θ + 1 2 )
.

Proof of the Theorem: We prove by induction.

Step 1. First, check by direct calculation that the vector

v 0 = 0 e λ (k) m θ C 0 m,j
belongs to D( Ā) and satisfies ( Ā -λI)v 0 = 0.

Step 2. s → s + 1.

Consider P s (θ) = s d=0 C d m,j s-d i=0 β i d θ i i! and P s+1 (θ) = s+1 d=0 C d m,j s+1-d i=0 γ i d θ i
i! . We omit some indices which do not change in this part of the proof (we write

β i d = β i,s d and γ i d = β i,s+1 d
). The coefficients β i d are known and we are looking for γ i d . It is easy to check, that the property ( Ā -

λ (k) m I)v s+1 = v s implies d/dθP s+1 (θ) = P s (θ), i.e. s d=0 C d m,j s+1-d i=1 γ i d θ i-1 (i -1)! = s d=0 C d m,j s-d i=0 β i d θ i i! .
Since {C d m,j } are linearly independent, it follows that

s+1-d i=1 γ i d θ i-1 (i -1)! = s-d i=0 β i d θ i i! .
It implies

γ i+1 d = β i d , i = 0, ..., s -d, d = 0, ..., s. (19) 
So, we only need to find γ 0 d , d = 0, ..., s+1 i.e, the coefficients of θ 0 in P s+1 (θ). Consider P s+1 (0) = s+1 d=0 C d m,j γ 0 d and let us use the fact that v s+1 ∈ D( Ā). It gives 0

= P s+1 (0) -A -1 e -λ (k) m P s+1 (-1)
or equivalently, multiplying by µ m = e λ (k) m , we get

µ m P s+1 (0) -A -1 P s+1 (-1) = 0.
We obtain, using [START_REF] Niculescu | Delay effects on stability: a robust control approach[END_REF],

µ s+1 d=0 C d m,j γ 0 d -A -1 s+1 d=0 C d m,j s+1-d i=1 β i-1 d (-1) i i! + γ 0 d = 0.
Collecting the terms with γ 0 d and using

(A -1 -µ m )C d m,j = C d-1 m,j , (A -1 - µ m )C 0 m,j = 0, one gets s+1 d=1 C d-1 m,j γ 0 d + s+1 d=0 C d-1 m,j + µC d m,j s+1-d i=1 β i-1 d (-1) i i! = 0.
Here we denote C -1 m,j = 0. Collecting the coefficients of C d m,j , we arrive for each d = 0, ..., s to equation

γ 0 d+1 + s-d i=1 β i-1 d+1 (-1) i i! + µ s+1-d i=1 β i-1 d (-1) i i! = 0 ( 20 
)
which is the formula for γ 0 d+1 . The coefficient γ 0 0 can be chosen arbitrarily, say γ 0 0 = 0 for simplicity. This and [START_REF] Niculescu | Delay effects on stability: a robust control approach[END_REF] give all coefficients γ i d so the existence of polynomial P s+1 (θ) with the desired properties is proved. These polynomials give the sequence of eigen-and rootvectors (see [START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF]).

Remark 11 It follows from (20) that γ 0 s+1 = µ m β 0 s or, more precisely, β 0,s+1 s+1 = µ m β 0,s s = µ s+1 m β 0,0 0 for all s = 0, ..., p m,j -1.

Remark 12 If β 0,0 0 = α ∈ C (see the definition of P s in ( 16)), then β s,s 0 = α for all s = 0, ..., p m,j -1. We remind that β s,s 0 is the coefficient of θ s s! , where s is the highest order of θ in P s . Now we prove that the sequence of eigen-and rootvectors ( 16), [START_REF] Kolmanovskii | Stability of functional differential equations[END_REF] forms a Riesz basis in M 2 . First we show that the functions

{ e λ (k) m θ C 0 m,j , e λ (k) m θ C 1 m,j , . . . , e λ (k) m θ C p m,j -1 m,j }, m = 1, ..., ℓ; j = 1, ..., ν m ; k ∈ Z. (21) 
form an orthogonal basis of L 2 (-1, 0; C n ). This follows from the fact that {C i m,j } forms an orthogonal basis of C n and { e λ (k) m θ } k∈Z -an orthogonal basis of L 2 (-1, 0; C), for each m. We use here that λ

(k) m -λ (j) m = i • 2π(k -j). Now in each subspace L 2 (-1, 0; L m,j ), L m,j = Lin {C d m,j } p m,j -1 d=0
we consider the operator T m,j = {t s,d (θ)}; s, d = 0, .., p m,j -1, where elements t s,d (θ) are polynomials (see the definition of P s in ( 16)) such that t s,d (θ) = 0 for s < d and t s,d (θ

) = s-d i=0 β i,s d θ i i! for s ≥ d. T m,j =        β 0,0 0 0 . . . . . . 0 t 2,1 (θ) β 0,1 1 0 . . . 0 * * β 0,2 2 0 0 . . . . . . . . . . . . 0 t p m,j -1,1 (θ) * . . . * β 0,p m,j -1 p m,j -1       
The operator T m,j is bounded and has bounded inverse since it is a polynomial matrix whose determinant is a constant different from zero. Such matrix is called an elementary polynomial (see e.g. [4, Theorem 53.1, p.142]). In our case det T m,j = p m,j -1 s=0 β 0,s s = µ 1+2+..+(p m,j -1) • β 0,0 0 = 0 (see Remark 11).

Thus the diagonal operator T = diag [ T m,j ] is bounded, has bounded inverse and maps the orthogonal basis [START_REF] Pandolfi | Stabilization of neutral functional differential equations[END_REF] into the Riesz basis (in L 2 (-1, 0; C n )):

{ e λ (k) m θ P 0 m,j (θ), e λ (k) m θ P 1 m,j (θ), . . . , e λ (k) m θ P p m,j -1 m,j (θ)}, m = 1, .., ℓ; j = 1, .., ν m ; k ∈ Z.
In order to define the new norm (see [START_REF] Lyubich | Asymptotic stability of linear differential equations in Banach spaces[END_REF]) we put

T = T -1 .
Since the collection (17) consists of n linearly independent vectors which do not belong to the subspace {0} × L 2 (-1, 0; C n ) ⊂ M 2 we then conclude that ( 16), ( 17) is a Riesz basis in M 2 .

Let us show that vectors [START_REF] Kolmanovskii | Stability of functional differential equations[END_REF] are eigen-or rootvectors corresponding to the eigenvalue 0 for operator Ā. In the same way as in the construction of polynomials P s m,j (see ( 16)) we look for a rootvector such that

Ā   C p m,j -1 m,j P (θ)   = 0 P p m,j -1 m,j (θ) 
.

It is easy to see that the property

C p m,j -1 m,j P (θ)
∈ D(A) and Lemma 6 imply

P (θ) = P y (θ) for y = C p m,j -1 m,j
(by the uniqueness of polynomial P y (θ)). In general, y = y 1 + y 2 , y 1 ∈ K, y 2 ∈ K ⊥ and linearity of the mapping y → P y (•) (see Lemma 6 item ii) ) gives the rootvectors of the form [START_REF] Kolmanovskii | Stability of functional differential equations[END_REF].

It remains to prove that the basis ( 16), ( 17) is orthogonal in the norm • 1 . First we observe that

(0, z(•)) 1 = T z(•) L 2 (-1,0;C n ) .
Hence all the vectors of the collection ( 16) are orthogonal to each others. Then we note

   y P y (•)    ,    0 z(•)    1 = (y, 0) + 0 -1
(T (P y (θ) -P y (θ)), T z(θ)) dθ = 0. Therefore, any vector from ( 16) is orthogonal to each from [START_REF] Kolmanovskii | Stability of functional differential equations[END_REF]. And finally, we get

   e i P e i (•)    ,    e j P e j (•)    1
= (e i , e j ) = 0 as i = j. This completes the proof of the theorem. 2

Basis property of finite-dimensional invariant subspaces

Let us recall [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF] that a basis {V k } of subspaces is called a basis equivalent to orthogonal (a Riesz basis) if there are an orthogonal basis of subspaces {W k } and a linear bounded invertible (with bounded inverse) operator R, such that RV k = W k . See also the discussion in [START_REF] Rabah | On strong stability and stabilizability of systems of neutral type, in "Advances in time-delay systems[END_REF].

In order to give a complete proof of the main result of this section, we need the following important Lemma and Theorem.

Lemma 13 For any m = 1, .., ℓ and |k| > N 1 (N 1 is defined in Theorem 2) the following estimate holds

sup λ∈L (k) m R(A, λ) -R( Ā, λ) ≤ γ k , with |k|>N 1 γ 2 k < ∞. (22) 
Proof: Using the explicit form of resolvent (4), we get

[R(A, λ) -R( Ā, λ)] z ψ(•) = (I-A -1 e -λ ){∆ -1 A (λ)D A -∆ -1 Ā (λ)D Ā} e λθ {∆ -1 A (λ)D A -∆ -1 Ā (λ)D Ā} , (23) 
where

D A = D A (z, ψ) = z+λe -λ A -1 0 -1 e -λs ψ(s)ds-0 -1 A 2 (s)ψ(s)ds-0 -1 {λA 2 (θ)+ A 3 (θ)}e λθ { θ 0 e -λs ψ(s)ds}dθ and D Ā = D Ā(z, ψ) = z+λe -λ A -1 0 -1 e -λs ψ(s)dθ
Now we write

{∆ -1 A (λ)D A -∆ -1 Ā (λ)D Ā} = [∆ -1 Ā (λ) -∆ -1 A (λ)]D A + ∆ -1 Ā (λ)[D A -D Ā].( 24 
)
Let us show that there exists C 2 > 0 such that for any λ ∈ L (k) m , m = 1, .., ℓ and large enough |k|, one has

∆ -1 Ā (λ) ≤ C 2 |λ| -1 . (25) 
We have ∆ -1 Ā (λ) = (-λI + λe -λ A -1 ) -1 = λ -1 (-I + e -λ A -1 ) -1 and (-I + e -λ A -1 ) -1 = [(A -1e λ I)e -λ ] -1 = (A -1e λ I) -1 e λ . Hence

(-I + e -λ A -1 ) -1 = (A -1 -e λ I) -1 |µ m ||e re iϕ | ≤ C 1 max m=1,...,ℓ |µ m |e r ≡ C 2 ,
where C 1 is defined in (9) and λ = λ (k) m + re iϕ , ϕ ∈ [0, 2π], r is the fixed radius of all circles L (k) m (see the proof of (9) for details). It gives [START_REF] Rabah | Stability analysis of neutral type systems in Hilbert space[END_REF].

In a quite similar way we get the estimate for ∆ -1 A (λ) similar to (25):

∆ -1 A (λ) ≤ C 3 |λ| -1 . (26) 
More precisely, from (3), we get

∆ A (λ) = λe -λ   -Ie λ + A -1 + e λ 0 -1 e λs A 2 (s)ds + e λ λ -1 0 -1 e λs A 3 (s)ds   = λe -λ (A -1 -Ie λ + L(λ)) = λe -λ (A -1 -Ie λ ) I + (A -1 -Ie λ ) -1 L(λ) ,
where L(λ) is defined in [START_REF] Burns | Linear functionaldifferential equations as semigroups on product spaces[END_REF].

Hence

∆ -1 A (λ) = λ -1 e λ I + (A -1 -Ie λ ) -1 L(λ) -1 (A -1 -Ie λ ) -1 .
Now estimates ( 9) and ( 8) with ν small enough give [START_REF] Rabah | On strong stability and stabilizability of systems of neutral type, in "Advances in time-delay systems[END_REF].

Remark 14 It is easy to check for arbitrary matrices A and K, such that A and A + K are nonsingular, the identity

A -1 -(A + K) -1 = (A + K) -1 KA -1 .
We get this by multiplying the identity (A + K) -A = K by (A + K) -1 from the left and by A -1 from the right.

The last Remark gives

∆ -1 Ā (λ) -∆ -1 A (λ) = ∆ -1 A (λ)   λ 0 -1 e λs A 2 (s)ds + 0 -1 e λs A 3 (s)ds   ∆ -1 Ā (λ).
Using the last estimate together with ( 25) and ( 26) we deduce

for any λ ∈ L (k) m ∆ -1 Ā (λ) -∆ -1 A (λ) ≤ C 4 |λ| -1 . (27) 
We also obtain

[∆ -1 Ā (λ) -∆ -1 A (λ)]D A (z, ψ) ≤ ≤ C |λ| (z, ψ) + C |λ| λe -λ A -1 0 -1 e -λs ψ(s)ds + + C |λ| λ 0 -1 {A 2 (θ) + λ -1 A 3 (θ)}e λθ { θ 0 e -λs ψ(s)ds}dθ . (28) 
Let us first estimate the second term in [START_REF] Sklyar | A theorem on the strong asymptotic stability and determination of stabilizing controls[END_REF].

We can write λ ∈ L (k) m as λ = i • 2πk + λ, where λ ∈ L (0) m . Since e -λs ψ(s) ∈ L 2 , from the second term in [START_REF] Sklyar | A theorem on the strong asymptotic stability and determination of stabilizing controls[END_REF], that 0 -1 e -λs ψ(s)ds = 0 -1 e -i•2πks e -λs ψ(s)ds is the Fourier coefficient of function e -λs ψ(s). Notice that for any λ ∈ L (0) 

m one has e -λ• ψ(•) L 2 (-1,0;C n ) ≤ C ψ L 2 (-1,0;C n ) , i.
Consider the function χ(θ)

≡ θ 0 A 2 (t)e λt dt • ψ(θ) and notice that |χ(θ)| = |ψ(θ)| • | θ 0 A 2 (t)e λt dt| ≤ |ψ(θ)| • 0 θ |A 2 (t)|e t Reλ dt ≤ |ψ(θ)| • 0 θ |A 2 (t)|dt • C 5 , where C 5 ≡ exp{sup |Reλ|, λ ∈ λ ∈ L (k) m , k ∈ Z, m = 1, ..., ℓ} < ∞, since all the circles L (k)
m are located in a vertical strip of the complex plane. Hence we conclude χ

L 2 (-1,0;C n ) ≤ ψ L 2 (-1,0;C n ) A 2 L 2 (-1,0;C n ) C 5
and we arrive to the same case as in the consideration of the second term in [START_REF] Sklyar | A theorem on the strong asymptotic stability and determination of stabilizing controls[END_REF], i.e. we have the Fourier coefficient of χ instead of ψ. The same calculations give an analogous estimate for the first term in ( 29) and the term A 3 instead of A 2 (see the third term in ( 28)). Moreover, the factor λ -1 simplifies estimation.

This gives for any

λ ∈ L (k) m that [∆ -1 Ā (λ) -∆ -1 A (λ)]D A (z, ψ) • (z, ψ) -1 ≤ α k,m ( λ), λ ∈ L (0) m , such that k∈Z m=1,..,ℓ α 2 k,m = S( λ) ≤ S < ∞ where S is inde- pendent of λ ∈ L (0)
m . Essentially the same considerations lead to an analogous estimate for the second term in [START_REF] Rabah | Generalized Riesz basis property in the analysis of neutral type systems[END_REF].

Collecting this with ( 24)-( 28) and taking into account that for all λ ∈ L (k) m , one has |λ| -1 ≤ (2π|k| -Ĉ) -1 with Ĉ independent of k and m, we get [START_REF] Rabah | On a class of strongly stabilizable systems of neutral type[END_REF]. Lemma 13 is proved. 2 Theorem 15 There exists N 0 large enough, such that for any N ≥ N 0 , i) the sequence of subspaces {V (k) m } |k|≥N m=1,..,ℓ form a Riesz basis of the closure of their linear span, say L N . Here V (k)

m = P (k) m M 2 and P (k) m = 1 2πi L (k) m R(A, λ)dλ are spectral projectors; L (k) m are circles defined in Para- graph 2.2; ii) codimL N = (2N + 1)n + n = 2(N + 1)n.
Proof: An essential tool of the proof is the estimation of the norm of the difference

P (k) m -P (k) m = 1 2πi L (k) m [R(A, λ) -R( Ā, λ)]dλ, (30) 
where P (k) is the same eigenprojector corresponding to the operator Ā. This is given by the application of the Lemma 13.

From [START_REF] Rabah | On a class of strongly stabilizable systems of neutral type[END_REF] we infer ℓ m=1

|k|>N 2 P (k) m -P (k) m 2 < ∞.
Here N 2 ≥ N 1 (see Theorem 2). Using this we easily obtain N 0 such that for any N ≥ N 0 one has ℓ m=1

|k|>N 0 P (k) m -P (k) m 2 < 1.
The last estimate means that the sequences of subspaces {V (k) m } |k|≥N m=1,..,ℓ and { V (k) m } |k|≥N m=1,..,ℓ are quadratically close. Theorem 5.2 [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF] (see also Theorem 2.20 and Corollary 2.22 in [START_REF] Kato | Perturbation theory for linear operators[END_REF]) completes the proof of item i).

Let us prove item ii). We use that the sequence { V (k) m } k∈Z m=1,..,ℓ forms an orthogonal basis in M 2 (see Theorem 7) and

{ V (k) m } |k|≤N m=1,..,ℓ ∪ {V (k) m } |k|>N m=1,..,ℓ is quadratically close to the sequence { V (k) m } k∈Z m=1,..,ℓ
(see the proof of item i). Hence

{ V (k) m } |k|≤N m=1,..,ℓ ∪ {V (k) m } |k|>N m=1,..,ℓ forms a Riesz basis in M 2 and dim{ V (k) m } |k|≤N m=1,..,ℓ = 2(N + 1)n.
The proof of Theorem 15 is complete. 2

The following result is very important in our framework.

Theorem 16 There exists a sequence of A-invariant finite-dimensional subspaces which constitute a Riesz basis in M 2 . More precisely, these subspaces are

{V (k) m } |k|≥N m=1,..,ℓ
defined in Theorem 15 and a 2(N +1)n-dimensional subspace W N spaned by all eigen-and rootvectors, corresponding to all eigenvalues of A, which are outside all circles L (k) m , |k| ≥ N, m = 1, .., ℓ.

Proof: Let X 1 = L N , where L N is defined in Theorem 15. The subspace X 1 is of finite co-dimension and A-invariant, i.e. for any x ∈ D(A) ∩ X 1 , one has Ax ∈ X 1 .

Step 1. Let us show that M 2 can be split into the direct sum M 2 = X 1 ⊕X 2 , and the operator A can be presented in the triangular form A = A 11 0

A 12 A 22 , where A 11 = P 1 AP 1 : X 1 → X 1 , A 22 = P 2 AP 2 : X 2 → X 2 , A 12 = P 1 AP 2 : X 2 → X 1 .
Here P i are projectors on X i along X j , j = i.

First, we have to show that there exists X 2 , such that D(A) ∩ X 2 = {0}. Since codim X 1 < ∞, and A is densely defined, we get the existence of y 1 ∈ X 1 , y 1 ∈ D(A). Now denote by X 1 1 = Lin{y 1 , X 1 }. The same arguments give the existence of y 2 ∈ X 1 1 , y 2 ∈ D(A) and so on. Since codim X 1 < ∞, we have a finite number of y i , whose linear span gives X 2 . Hence the splitting M 2 = X 1 + X 2 and the invariance of X 1 gives the triangular form of A, mentioned above, if we identify

X 1 + X 2 with X 1 × X 2 .
Step 2. Let us show that σ(A 11 ) ∩ σ(A 22 ) = ∅. Let us assume that there exists μ ∈ σ(A 11 ) ∩ σ(A 22 ) = ∅. By Theorem 15, item i), X 1 possesses a Riesz basis of invariant subspaces.

Consider the generalized eigenspace for A 11 corresponding to μ and present it as

V μ = Im(A 11 -μI)| V μ + K μ.
Here K μ is spaned by rootvectors (of A 11 ) of the highest orders from the rootchains giving the Jordan basis of A 11 | V μ . Notice that the dimension of K μ equals the number of Jordan blocks of

A 11 | V μ . Since (A 11 -μI) is invertible on X 1 ⊖ V μ, X 1 itself is presented as X 1 = Im(A 11 -μI) + K μ.
Now consider the eigenvector h ∈ X 2 for A 22 corresponding to μ, i.e. A 22 h = μh. We are going to show that there exist y ∈ X 1 and v ∈ K μ, such that

A 11 0 A 12 A 22 y h = μ y h + v 0 . ( 31 
)
Since A 12 h ∈ X 1 , there exist w ∈ Im(A 11 -μI) and v ∈ K μ, such that A 12 h = w + v. If we substitute this decomposition into the first row of ( 31):

(A 11 -μI)y = -A 12 h -v = -w -v + v = -w,
we can find y. As a result, we get the existence of a rootvector y h for A, corresponding to μ, which is of higher order than v 0 . The contradiction gives the result of this step.

Step 3. Let us show that M 2 can be split into the direct sum

M 2 = X 1 + X 2 ,
with an invariant X 2 . Consider finite-dimensional operator A 22 . There exists σ(A 22 ) = {μ 1 , .., μs } with the total multiplicity equals to dimX 2 = codimX 1 .

Consider h-an eigenvector of A 22 corresponding to μ and find y ∈ X 1 such that A y h = μ y h . Such y is given by y = -(A 11 -μI) -1 A 12 h (see the triangular form of A). This is due to the property σ(A 11 ) ∩ σ(A 22 ) = ∅, which implies μ ∈ σ(A 11 ). Exactly in the same way one can find all rootvectors of A for all μ. Hence the number of eigen-and rootvectors of A corresponding to σ(A 22 ) is equal to dimX 2 = 2(N + 1)n. By construction, the linear span of these vectors gives an A-invariant subspace X 2 . Now Theorem 15 completes the proof of Theorem 16. 2

Stability analysis

In this section we study the stability of the system (2). We consider two notions of stability: the strong asymptotic stability and the exponential stability (see for example [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF][START_REF] Van Neerven | The asymptotic behavior of semigroups of linear operators[END_REF] and references therein for abstract systems and different concrete examples).

Definition 17

The system (2) (or (1)) is said to be exponentially stable if for some positive constants M and ω one has

e At ≤ M e -ωt .
It is said to be strongly asymptotically stable if ∀x ∈ M 2 , lim t→+∞ e At x = 0.

Exponential stability.

In the following theorem, using the results on the existence of Riesz bases of subspaces (see Theorem 16) and on the location of σ(A) (see Theorem 2), we (partially) reformulate in terms of the matrix A -1 the condition on the spectrum σ(A) to be bounded away from the imaginary axis (cf. [14, Theorem 6.1]).

Theorem 18 System (2) is exponentially stable if and only if the following conditions are verified

i) σ(A) ⊂ {λ : Re λ < 0} ii) σ(A -1 ) ⊂ {λ : |λ| < 1}.
Proof: Suppose that system (2) is exponentially stable, i.e. there exist positive M and α such that e At ≤ M e -αt . Hence σ(A) ⊂ {λ : Re λ ≤ -α} together with Theorem 2 easily give the properties i), ii).

To show that the conditions of the theorem are sufficient, we use the existence of a Riesz basis of invariant subspaces {W N , V (k) m , k ∈ Z, m = 1, . . . , ℓ} (see Theorem 16). Consider the norm . 1 where the subspaces {W N , V (k) m , k ∈ Z, m = 1, . . . , ℓ} are orthogonal. The semigroup e At | W N is clearly exponentially stable.

Let us consider now e

At | V (k) m . By construction we have e At | V (k) m = 1 2πi L (k) m e λt R(A, λ)dλ.
From the expression of the resolvent (Proposition 1) and using the same estimate as in the proof of Lemma 13 we get

R(A, λ) 1 ≤ C, λ ∈ L (k) m , k ∈ Z, m = 1, . . . , ℓ.
The conditions of the Theorem give Re λ (k) m ≤ -ε 0 < 0 for all k ∈ Z and then

e At | V (k) m 1 ≤ M 1 e -εt L (k) m R(A, λ) 1 dλ, k ∈ Z, (32) 
where 0 < ε < ε 0 and then e At | V (k) m are uniformly exponentially stable for such m:

e At | V (k) m 1 ≤ M e -εt , t ≥ 0, k ∈ Z. (33) 
Since the constant M in the last estimate is independent of m, k and {W N , V (k) m } form a Riesz basis we get the exponential stability. The proof is complete. 2

Strong asymptotic stability

A well known necessary condition is given in the following Proposition. Proposition 19 If system (2) is asymptotically stable, then the spectrum satisfies σ(A) ⊂ {λ : Re λ < 0}.

The proof is obvious because the spectrum of A consists on eigenvalues only (Theorem 2).

We will essentially use the following

Theorem 20 Let e At , t ≥ 0 be a C 0 -semigroup in the Banach space X and A be the infinitesimal generator of the semigroup. Assume that σ(A) ∩ (iR) is at most countable and the operator A * has no pure imaginary eigenvalues. Then e At is strongly asymptotically stable if and only if one of the following conditions hold: i) There exists a norm • 1 , equivalent to the initial one • , such that the semigroup e At is contractive according to this norm:

e At x 1 ≤ x 1 , ∀x ∈ X, t ≥ 0; ii)
The semigroup e At is uniformly bounded: ∃C > 0 such that e At ≤ C, t ≥ 0.

Theorem 20 was obtained first in [START_REF] Sklyar | On asymptotic stability of linear differential equation in Banach space[END_REF] for the case of bounded operator A, then generalized in [START_REF] Arendt | Tauberian theorems and stability of oneparameter semigroups[END_REF][START_REF] Lyubich | Asymptotic stability of linear differential equations in Banach spaces[END_REF] for the general case. The development of this theory concerns a large class of differential equations in Banach space (see [START_REF] Van Neerven | The asymptotic behavior of semigroups of linear operators[END_REF] and references therein).

Theorem 21 System (2) is strongly asymptotically stable if and only if σ(A) ⊂ {λ : Re λ < 0} and A is dissipative in an equivalent norm.

Proof: We apply Theorem 20 to our system and use that, in our case, the operator A has eigenvalues only. 2

The condition σ(A) ⊂ {λ : Re λ < 0} is necessary for asymptotic stability. Then, in order to have more precise conditions of strong stability, the main problem is to verify dissipativity of the operator A. In our framework, the analysis of this problem is given in terms of the spectral properties of the matrix A -1 .

Conditions for stability and instability

In this section, assuming the spectrum σ(A) is in the left-half plane, we present sufficient conditions (in terms of matrix A -1 only) for the system (2) to be stable (Theorem 23) or unstable (Theorem 24). The case when these sufficient conditions are not satisfied is much more complicated and is studied in section 3.2.2.

Theorem 2 gives that the property σ(A) ⊂ {λ : Re λ < 0} implies σ(A -1 ) ⊂ {λ : |λ| ≤ 1}.

Let us split σ(A -1 ) = σ 0 ∪ σ 1 , where σ 0 = σ(A -1 ) ∩ {λ : |λ| < 1}, and σ 1 = σ(A -1 ) ∩ {λ : |λ| = 1}.

Our main result on stability can be formulated as follows.

Theorem 22 Assume σ(A) ⊂ {λ : Re λ < 0} and max{|µ m | : µ m ∈ σ(A -1 )} = 1.

Then the following three mutually exclusive possibilities exist: p1) the part of the spectrum σ 1 ≡ σ(A -1 ) ∩ {λ : |λ| = 1} consists of simple eigenvalues only, i.e. to each eigenvalue corresponds a one-dimensional eigenspace and there are no rootvectors. In this case system (2) is asymptotically stable.

p2) the matrix A -1 has a Jordan block, corresponding to µ ∈ σ 1 . In this case system (2) is unstable.

p3) there are no Jordan blocks, corresponding to eigenvalues in σ 1 , but there exists µ ∈ σ 1 whose eigenspace is at least two-dimensional. In this case system (2) can be stable as well as unstable. Moreover, there exist two systems with the same spectrum, such that one of them is stable while the other one is unstable.

We split the proof on several assertions. Suppose first that m is such that µ m ∈ σ 0 , then Re λ (k) m ≤ -ε 0 < 0 for all k ∈ Z. By the same arguments as in the proof of Theorem 18 (see relations (32 and (33)) we obtain that e At | V (k) m are uniformly exponentially stable and then uniformly bounded for such m. Now consider the critical case when m is such that µ m ∈ σ 1 . By hypothesis this part of spectrum is simple. Let x be in closed span of the corresponding subspaces V (k) m , then

x = k∈Z µm∈σ 1 x (k) m , e At x = k∈Z µm∈σ 1 e λ (k) m t x (k) m ,
This gives e At x 2 1 = k∈Z µm∈σ 1

e 2Re λ (k) m t x (k) m 2 1 ≤ x 2 1 ,
and this means that e At is uniformly bounded in the subspace generated by the corresponding subspaces V (k) m .

Hence we obtain

e At | V (k) m 1 ≤ M, k ∈ Z, m = 1, . . . , ℓ,
and the constant M does not depend on k or m. This gives that the semigroup in uniformly bounded on the closed span of the subspaces V (k) m and then, with the boundedness on W N , we obtain the uniform boundedness in M 2 . Then by Theorem 20 the system is strongly asymptotically stable. 2

Theorem 24 If the matrix A -1 has a Jordan block, corresponding to µ ∈ σ 1 , then the system (2) is not asymptotically stable. 

(k) = 1 2πi L (k) m e λT [R(A, λ) -R( Ā, λ)]dλ ≤ 1 2π e ε 0 T L (k) m R(A, λ) -R( Ā, λ) dλ ≤ e ε 0 T γ k , (35) 
where γ k → 0, k → ∞ (see in Lemma 13 the relation ( 22)).

Now we choose an arbitrary large T (we will later pass to the limit T → ∞).

For this T we choose large k such that e ε 0 T α k ≤ ε 1 and P (k) -P (k) ≤ ε 1 for some ε 1 .

Using this and [START_REF] Vlasov | Spectral problems arising in the theory of differential equations with delay, in: Sovremennaya matematika[END_REF] we obtain

e AT P (k) wk ≥ e ĀT P (k) wk -ε 1 ≥ T -1 -ε 1 . (36) 
On the other hand, P (k) -P (k) ≤ ε 1 and wk = 1 give P (k) wk -P (k) wk ≤ ε 1 which implies

P (k) wk ≤ 1 + ε 1 . (37) 
Collecting [START_REF] Vlasov | On basisness of exponential solutions of difference-differential equations[END_REF] and [START_REF] Yamamoto | A new model for neutral delay-differential systems[END_REF], we arrive to e AT P (k) wk

P (k) wk ≥ T -1 -ε 1 1 + ε 1 → +∞ as T → +∞.
Hence e At is unstable by the Banach-Steinhaus theorem. The proof of Theorem 24 is complete. 2 3.2.2 Dilemma: stable or unstable (the case p3)

In this section we prove that in the case σ 1 = σ(A -1 ) ∩ {|λ| = 1} is not simple, system (2) can be either stable or unstable. We give (see Theorem 29) two examples of system (2) (one stable and one unstable) for z ∈ R 2 and A -1 = -I, i.e. σ 1 = {-1} and there are two eigenvectors. In these examples both systems (one stable and one unstable) have the same spectrum located in the open left-half plane.

General auxiliary considerations

We will consider the following particular case of the system (2) with a control d dt

y(t) z t (•) = Ā y(t) z t (•) + Bu(t), (38) 
where

D( Ā) = {(y, z(•)) : z ∈ H 1 (-1, 0; C n ), y = z(0) -A -1 z(-1)} ⊂ M 2 , the control u is m dimensional and Bu = B 0 ,
where B is a n × m matrix.

Let us consider A = Ā+BQ, where Q is a linear bounded operator and assume that σ( Ā + BQ) ∩ σ( Ā) = ∅.

The equation for an eigenvector and eigenvalue of A is ( Ā + BQ)x = λx or equivalently ( Ā -λI)x + BQx = 0. Apply the resolvent R λ = R( Ā, λ) to the last equation x + R( Ā, λ)BQx = 0. Hence there exists a vector c x ∈ C m , such that 

x = R( Ā, λ)Bc x (39) Then c x must satisfy R( Ā, λ)Bc x + R( Ā, λ)BQR( Ā, λ)Bc x = 0. ( 40 
(I + QR( Ā, λ)B)c x = 0, (41) 
where I +QR( Ā, λ)B is m×m. The characteristic equation, for the eigenvalues of A is then given by det (I + QR( Ā, λ)B) = 0.

This result is quite general and may be formulated in the following Lemma.

Lemma 26 Let Ā be a linear operator with ρ( Ā) = ∅ defined in the Hilbert space X and A = Ā + BQ, where B are linear bounded operator from C m to X and from X to C m respectively, B being left-invertible. Then λ / ∈ σ( Ā) is an eigenvalue of A if and only if det (I + QR( Ā, λ)B) = 0 and the corresponding eigenvector is x = R( Ā, λ)Bc x , where c x ∈ Ker(I + QR( Ā, λ)B).

Particular auxiliary case n = 1

We need this scalar case to study the properties of the characteristic equation (see ( 44)) which will be also the characteristic equation of the 2-dimensional system (46) in the next paragraph. Our purpose is to design a 2-dimensional system, which, depending on the feedback, may be asymptotically stable or unstable.

Consider the scalar equation

ż(t) = -ż(t -1) + u (42)
which is a particular case of the system [START_REF] Zverkin | The connection between boundedness and stability of solutions of linear systems with an infinite number of degrees of freedom. (Russian) Differencial'nye Uravnenija[END_REF] with n = 1, A -1 = -1 and the operator is defined as

Bu = b • u, b = (1; ϕ) T ∈ M 2 (-1, 0; C), ϕ(θ) = 0, (43) 
where ϕ(θ), θ ∈ [-1, 0] is a scalar function.

From Theorem 2 the spectrum is σ( Ā) = {λ 0 = 0} ∪ {λ k = i • (2πk + π)} k∈Z , and eigenvectors

v 00 = (1; 1/2) T ∈ M 2 , v k = 0; e λ k θ T ∈ M 2 form an orthogonal basis of M 2 with the norm (y, z(•)) 2 1 = y 2 + 0 1 1 2 y -z(θ) 2 dθ.
It is easy to verify that system (42) satisfies all assumptions of [START_REF] Sklyar | A theorem on the strong asymptotic stability and determination of stabilizing controls[END_REF], more precisely (see [START_REF] Sklyar | A theorem on the strong asymptotic stability and determination of stabilizing controls[END_REF] for more details):

i) Ā is a skew-adjoint (in • 1 -norm) unbounded operator with discrete spectrum consisting of simple eigenvalues {λ k }, ii) there exists a constant

C σ = 1 2 min i =j |λ i -λ j | = π/2 > 0,
iii) the operator B is associated with the vector b ∈ M

2 ; besides, if {v k } is an orthogonal eigenbasis of Ā, i.e. Āv k = λ k v k , then b k = b, v k 1 = 0 for all k.
If we are interested in a bounded control for system (42), i.e. u(x) = q * x ≡ x, q 1 for some q ∈ M 2 , then (see (41)) the characteristic equation for the eigenvalues λ n of the operator

A = Ā + bq * is 1 + q 00 b 00 λ + k q k b k λ n -λ k = 0, (44) 
where b k is defined in iii) and q k = q, v k 1 .

To study the properties of equation ( 44) we apply the following result.

Theorem 27 [START_REF] Sklyar | A theorem on the strong asymptotic stability and determination of stabilizing controls[END_REF]Theorem 4] Let { λ n } be any set of complex numbers such that

a) |λ n -λ n | < C σ for all n; b) n |λn-λn| 2 |bn| 2 < Cσ b 2 1
, where b 1 • q 1 < C σ /2 = π/4. There then exists a unique control u(x) = q * x such that the spectrum σ(A) of the operator A = Ā+bq * is { λ n } and, moreover, the corresponding eigenvectors constitute a Riesz basis.

We will also need the following Corollary 28 Fix any sequence {b k } ⊂ ℓ 2 , b k = 0. Then for any set of complex numbers such that

c1) |λ n -λ n | < π/2 for all n; c2) n |λn-λn| 2 |bn| 2 < π 2 ( i |b i | 2 ) -1
there exists a unique sequence {q k } ⊂ ℓ 2 , such that { λ n } are all the roots of the equation ( 44) and

( i |q i | 2 ) • ( i |b i | 2 ) < π 2 /16.
Particular case n = 2

Consider the system

ż(t) = A -1 ż(t -1) + Bu, A -1 = -1 0 0 -1 , B = 1 0 0 1 . (45) 
B. Unstable part of Theorem 29.

Using (52), we set

q 1 (v k 1 ) = q 1 (v k 2 ) = q 2 (v k 2 ) = q k , q 2 (v k 1 ) = 0. (57) 
Using ( 52) and (57), we get from (50):

I + QR( Ā, λ)B = I + q 00 b 00 λ + k q k b k λ -λ k • D, D = 1 1 0 1 . (58) 
The characteristic equation is again (55) so, as in the stable part of the Theorem, we can apply Corollary 28 to get the existence of { q 00 , q 1 , q 2 , . . .} ⊂ ℓ 2 . This implies that the corresponding operator Q (defined by ( 57)) is bounded.

Since c x = c 1 x = 1 0 is an eigenvector of D (the eigenspace is one-dimensional), we get from (39), ( 41) and ( 58

) that x = v = R( Ā, λ)b 1 is an eigenvector of A.
Let us find the rootvector w of A : ( Ā + BQ) w = λ w + v or equivalently ( Ā -λI) w + BQ w = v. We apply the resolvent R( Ā, λ) to get

w + R( Ā, λ)BQ w = R( Ā, λ) v = R 2 λ ( Ā, λ)b 1 . (59) 
If we set d = Q w, then we obtain

w = R 2 λ ( Ā, λ)b 1 -R( Ā, λ)Bd. (60) 
Replacing this into (59):

R 2 λ ( Ā, λ)b 1 -R( Ā, λ)Bd+R( Ā, λ)BQ (R 2 λ ( Ā, λ)b 1 -R( Ā, λ)Bd) = R 2 λ ( Ā, λ)b 1 .
We now apply the left inverse operator

(R( Ā, λ)B) -1 left to obtain -d+QR 2 λ ( Ā, λ)b 1 - QR( Ā, λ)Bd = 0 or equivalently (I + QR( Ā, λ)B)d = QR 2 λ ( Ā, λ)b 1 . Using (58) and R( Ā, λ)| V (k) = (λ -λ k ) -1
• I, (see also (50)), we can write

I + q 00 b 00 λ + k q k b k λ -λ k • D d = q 00 b 00 λ 2 + k q k b k (λ -λ k ) 2 • 1 0 .( 61 
)
Since λ is a root of the characteristic equation (55), we deduce that

I + q 00 b 00 λ + k q k b k λ -λ k • D = 0 -1 0 0 .
Hence (61) gives 0 -1 0 0 d =   q 00 b 00

λ 2 + k q k b k (λ-λ k ) 2 0   .
Finally, we obtain

d = p γ , p ∈ C, γ = q 00 b 00 λ 2 + k q k b k (λ -λ k ) 2 . ( 62 
)
We substitute this d into (60) and arrive to the formula for a rootvector w = w k , corresponding to eigenvalue λ k ∈ σ(A)

w k = i 1 ( λ k -λ i ) 2 P (i) b 1 - 1 λ k -λ i P (i) B p i γ i , (63) 
where γ i is defined in (62) for λ = λ k . Let us take p i = ( λ kλ i ) -1 . Then (47) and (63) give

w k = i -γ i λ k -λ i P (i) b 2 . ( 64 
)
The eigenvector v = v k , corresponding to eigenvalue λ k ∈ σ(A) (see (39)) is given by

v k = i 1 λ k -λ i P (i) b 1 . (65) 
Lemma 30 The norms of the eigen-and rootvectors satisfy

lim |k|→∞ v k 1 w k 1 • 1 | λ k -λ k | = 1. ( 66 
)
Proof of the Lemma 30: First, we prove (see (65), (64)), that lim

|k|→∞ v k 1 P (k) b 1 1 • | λ k -λ k | -1 = 1; lim |k|→∞ w k 1 P (k) b 2 1 • | λ k -λ k | -2 = 1.( 67 
)
To prove the first estimate in (67) we use (65) and the orthogonality of the projectors P (k) in • 1 -norm: 

v k 2 1 = P (k) b 1 2 1 | λ k -λ k | 2 + i =k P (i) b 1 2 1 | λ k -λ i | 2 . ( 68 
P (k) b 1 2 1 • | λ k -λ k | -2 ≤ 1 + | λ k -λ k | 2 P (k) b 1 2 1 • 2 b 1 2 1 π . ( 69 
)
The property c2) (see the statement of Theorem) implies | λ k -λ k | 2 Let us show that there exist x ∈ M 2 and {t k } ∞ 1 , t k → ∞, such that e t k A x → ∞, as k → ∞.

Consider x = k α k v k + β k w k ∈ M 2
, where α k , β k ∈ C will be chosen later.

Using (70), we consider

Re t k A x 2 = k e 2tRe λ k (α k + tβ k ) R v k + β k R w k 2 ≥ e 2tRe λ k 0 (α k 0 + tβ k 0 ) R v k 0 + β k 0 R w k 0 2 .
In the sequel, k = k 0 . It gives

Re tA x ≥ e tRe λ k (α k + tβ k ) R v k + β k R w k ≥ e tRe λ k |α k + tβ k | R v k -|β k | R w k . (71) 
To choose α k and β k we first notice that x ∈ M 2 iff Rx ≤ ∞, that is possible if, for example,

i |α i | 2 R v i 2 + |β i | 2 R w i 2 ≤ ∞.
Taking this into account, we set α i = (i • R v i ) -1 and

β i = ξ i • R w i -1 , where i ξ 2 i ≤ ∞, ξ i ≥ 0. Then Rx 2 = i i -2 + ξ 2 i ≤ ∞.
Now we set t k = (-Re λ k ) -1 and get from (71)

Re t k A x ≥ e -1 1 k + (-Re λ k ) -1 ξ k R v k R w k -ξ k .
Since 1 k + ξ k is bounded, we get a sufficient condition for e t k A x → ∞ :

ξ k • 1 (-Re λ k ) • R v k R w k → ∞. (72) 
Due to the equivalence of the norms • and R • , we get the condition similar to (72) with the initial norm • in M 2 .

Let us take, for example, ξ k = 1/k. Then Lemma 30 gives a sufficient condition on the location of the spectrum { λ k } = σ(A) for e At to be an unstable semigroup (see c3) in the statement of the theorem):

1 k • | λ k -λ k | (-Re λ k ) → ∞, k → ∞. ( 73 
)
The proof of Theorem 29 is complete. 2

Conclusion

It is well known that for the systems of neutral type the analysis of stability conditions is more complicated than for a system with simple delays. We have shown that the condition of asymptotic stability may first be analyzed by means of the principal neutral term (the matrix A -1 ). If the part of the spectrum of this matrix, which lies on the unit circle is simple (distinct eigenvalues), or if there is a Jordan chain, then the condition of asymptotic stability can be easily characterized. In the case of multiple eigenvalues without Jordan chain, the analysis of non-exponential asymptotic stability is still an open problem in the sense that the system may be stable or unstable according to other additional terms in the system.

  First of all, due to Lemma 6 these vectors belongto D( Ā). If K = {0} it is obvious that Ā 17) is a collection of eigenvectors corresponding to 0. If K = {0} we notice that K = Lin{C p m,j -1 m,j } νm j=1 , where C p m,j -1 m,jare rootvectors (of A -1 ) of the highest orders, corresponding to µ m = 1. Let us first consider y = C p m,j -1 m,j .

1 A 2 (

 12 e. the family of functions {e -λ• ψ(•)} λ∈L (0) m is uniformly bounded in the space L 2 (-1, 0; C n ). Now to estimate the third term in[START_REF] Sklyar | A theorem on the strong asymptotic stability and determination of stabilizing controls[END_REF], we first consider 0 ψ(θ)dθ.

Theorem 23

 23 Let σ(A) ⊂ {λ : Re λ < 0}. Assume that the part of the spectrum σ 1 consists of simple eigenvalues only, i.e. to each eigenvalue corresponds a one-dimensional eigenspace and there are no rootvectors. Then system (2) is asymptotically stable.Proof: We use the existence of a Riesz basis of invariant subspaces {W N , V(k) m , k ∈ Z, m = 1, . . . , ℓ} (seeTheorem 16). Consider the norm . 1 where the subspaces {W N , V(k) m , k ∈ Z, m = 1, . . . , ℓ} are orthogonal. The semigroup e At | W N is clearly exponentially stable and then uniformly bounded. Let us consider now e At | V (k) m . Let us distinguish two families of eigenvalues corresponding to the spectrum σ 1 and σ 0 of the matrix A -1 .
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 121 Property c1) (see the statement of Theorem) and the location ofλ k gives | λ k -λ i | > π/2, hence | λ k -λ i | -1 < 2/π. This implies i =k P (i) b 1 2

P (k) b 1 2 1 →

 1 0 as k → ∞, hence from (69) to get the first estimate in (67).The second estimate in (67) is proved in the same manner using|γ k | ≈ | λ kλ k | -1 , which follows from the fact that λ k is a root of the characteristic equation (55). Using the explicit form of b 1 , b 2 and v k 1 , v k 2 we see that P (k) b 1 = P (k) b 2 .Hence (67) completes the proof of Lemma 30.As we have shown, one can choose Q in such a way that for each λ k ∈ σ(A), there exist an eigenvector v k and a rootvector w k such that (A -λ k I) w k = v k . Consider L k = Lin { v k , w k } which is an invariant subspace for A. Hence e tA | L k = e tA| L k = e λ k t e t(A-λ k I)| L k = e λ k t i [(Aλ k I)| L k • t ] i /i!.Here (Aλ k I)| L k is 2 × 2-matrix. We also used e tA = e λ k t e t(A-λ k I) .Since (Aλ k I) w k = v k , we get [(Aλ k I)| L k ] i = 0 for all i > 1. Hence e tA w k = e tA | L k w k = e λ k t ( w k + t • v k ). (70)Since L k = V k , where {V k } form a Riesz basis of subspaces on M 2 Theorem 16 (see Theorem 6[START_REF] Rabah | Generalized Riesz basis property in the analysis of neutral type systems[END_REF]), there then exists a bounded operator R : M 2 → M 2 with bounded inverse, such that the subspaces {L k } are orthogonal to each other in the norm R • .
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The operator form [START_REF] Zverkin | The connection between boundedness and stability of solutions of linear systems with an infinite number of degrees of freedom. (Russian) Differencial'nye Uravnenija[END_REF] is then d dt

where the domain of Ā is given by D( Ā) = {(y, z(•)) : z ∈ H 1 (-1, 0; C 2 ), y = z(0) -A -1 z(-1)} ⊂ M 2 .

The operator B associated with the matrix B, is defined as

where

From Theorem 2 the spectrum is

there are no rootvectors and eigenvectors are

Theorems 15 and 16 (see also [START_REF] Rabah | Generalized Riesz basis property in the analysis of neutral type systems[END_REF]) give that the two-dimensional subspaces V (k) = Lin {v k 1 , v k 1 } and V (00) = Lin {v 00 1 , v 00 2 } form an orthogonal basis of subspaces in M 2 . Moreover eigenvectors form an orthogonal basis in the norm

As in [START_REF] Rabah | Generalized Riesz basis property in the analysis of neutral type systems[END_REF] (see also Theorem 15), we define in M 2 the eigenprojectors P

As k P (k) = I and P (k) are orthogonal to each other, we can write the operator in (41) as

Let us study in details the operator Q P

, and use ((47) -(49):

Hence

Now we prove the main result of this section (cf. item p3) of Theorem 22).

Theorem 29 Consider the system (46) (see also (45)). For any sequence of complex numbers { λ k } ⊂ {λ : Re λ < 0} such that

there exist two bounded linear feedback controls

, such that the system (46) with both controls, i.e. ẋ = ( Ā + BQ i )x, i = 1, 2, has the same spectrum σ( Ā + BQ 1 ) = σ( Ā + BQ 2 ) = { λ k } and the corresponding semigroup e t( Ā+BQ 1 ) is asymptotically stable while the semigroup e t( Ā+BQ 2 ) is unstable.

Proof: The proof consists of two parts: stable and unstable.

A. Stable part of Theorem 29

We will show that there exists Q, such that Q P (k) B = q k b k • I for some q k ∈ C. Using (52), we set

Using ( 52) and (53), we get from (50):

The characteristic equation is

Since the characteristic equation (55) coincides with (44), we can apply Corollary 28 to get the existence of { q 00 , q 1 , q 2 , . . .} ⊂ ℓ 2 , such that the roots of (55) are { λ k }. Since eigenvectors ({v k i }) form an orthogonal basis and { q 00 , q 1 , q 2 , . . .} ⊂ ℓ 2 , then the control Q defined by (53) is bounded.

Let us find the eigenvectors of A (see (39), (41) and (54)) to show that the system is stable. In this case we can take c x = c 1 x = 1 0 and c x = c 2 x = 0 1 . Using (47), we get Bc 1

x = b 1 and Bc 2 x = b 2 . These together with the explicit form of the resolvent R( Ā, λ) (see Proposition 1) and (39) give two eigenvectors of A :

Theorem 15 gives that the subspaces V (k) = Lin{ξ k 1 , ξ k 2 } form a Riesz basis of their linear span. The explicit form (56) shows that ξ k 1 , ξ k 2 1 = 0, hence the eigenvectors form a Riesz basis of their linear span. Finally, the condition { λ k } ⊂ {λ : Re λ < 0} allows us to apply the general Theorem 20 to get the stability of the system.