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In this paper, we study the regularity of optimal mappings in Monge's mass transfer problem. Using the approximation to Monge's cost function c(x, y) = |x -y| through the costs c ε (x, y) = ε 2 + |x -y| 2 , we consider the optimal mappings T ε for these costs, and we prove that the eigenvalues of the Jacobian matrix DT ε , which are all positive, are locally uniformly bounded. By an example we prove that T ε is in general not uniformly Lipschitz continuous as ε → 0, even if the mass distributions are positive and smooth, and the domains are c-convex.

Introduction

The Monge mass transfer problem consists in finding an optimal mapping from one mass distribution to another one such that the total cost is minimized among all measure preserving mappings. This problem was first proposed by Monge [START_REF] Monge | Memoire sur la Theorie des Déblais et des Remblais[END_REF] and has been studied by many authors in the last two hundred years: among the main achievements in the 20th century we cite [START_REF] Kantorovich | On the transfer of masses[END_REF] and [START_REF] Evans | Differential equations methods for the Monge-Kantorovich mass transfer problem[END_REF]. In Monge's problem, the cost of moving a mass from point x to point y is proportional to the distance |x -y|, namely the cost function is given by (1.1) c 0 (x, y) = |x -y|.

This is a natural cost function. In the last two decades, due to a range of applications, the optimal transportation for more general cost functions has been a subject of extensive studies. In order to present the framework more precisely, let Ω and Ω * be two bounded domains in the Euclidean space R n , and let f and g be two densities in Ω and Ω * respectively, satisfying the mass balance condition

(1.2) Ω f (x)dx = Ω * g(y)dy.
Let c be a smooth cost function defined on Ω × Ω * .

The problem consists in finding a map T : Ω → Ω * which solves min c(x, T (x))f (x)dx : T # f = g, where the last condition reads "the image measure of f through T is g" and means

A g(y)dy = T -1 (A) f (x)dx for all subsets A ⊂ Ω * . The existence and uniqueness of optimal mappings were obtained in [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Caffarelli | Allocation maps with general cost functions[END_REF][START_REF] Gangbo | Optimal maps in Monge's mass transport problem[END_REF] if the cost function c satisfies (A) ∀ (x 0 , y 0 ) ∈ Ω × Ω * , the mappings x ∈ Ω → D y c(x, y 0 ) and y ∈ Ω * → D x c(x 0 , y) are diffeomorphisms onto their ranges.

The regularity of optimal mappings was a more complicated issue. For the quadratic cost function, it reduces to the regularity of the standard Monge-Ampere equation, of which the regularity has been studied by many authors (see for instance [START_REF] Caffarelli | The regularity of mappings with a convex potential[END_REF][START_REF] Caffarelli | Boundary regularity of maps with convex potentials II[END_REF]). For general costs, the regularity was obtained in [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF] if the domains satisfy a certain convexity condition, f, g are positive and smooth, and the cost function c satisfies the following structure condition (B) ∀ x ∈ Ω, y ∈ Ω * , and vectors ξ, η ∈ R n with ξ ⊥ η, i,j,k,l,p,q,r,s ξ i ξ j η k η l (c ij,rs -c p,q c ij,p c q,rs )c r,k c s,l (x, y)

≥ β 0 |ξ| 2 |η| 2 ,
where β 0 is a positive constant. Loeper [START_REF] Loeper | On the regularity of solutions of optimal transportation problems[END_REF] showed that the optimal mapping may not be continuous if the condition (B) is violated, i.e. when there exist ξ, η ∈ R n with ξ ⊥ η such that the left hand side is negative. There are many follow-up researches on the regularity, in both the Euclidean space [START_REF] Liu | Interior C 2,α regularity for potential functions in optimal transportation[END_REF][START_REF] Trudinger | On the second boundary value problem for Monge-Ampère type equations and optimal transportation[END_REF] and on manifolds [START_REF] Ambrosio | Optimal mass transportation in the Heisenberg group[END_REF][START_REF] Delanoë | Regularity of optimal transport on compact, locally nearly spherical, manifolds[END_REF][START_REF] Figalli | Nearly round spheres look convex[END_REF][START_REF] Kim | Continuity, curvature, and the general covariance of optimal transportation[END_REF][START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF]. See also [START_REF] Villani | Optimal transport, old and new[END_REF] for recent development.

Monge's mass transfer problem is a prototype of the optimal transportation and the function (1.1) is the natural cost function. Therefore the existence and regularity of optimal mappings for Monge's problem are of particular interest. However this cost function does not satisfy both key conditions, namely the condition (A) for the existence and the condition (B) for the a priori estimates.

The existence of optimal mappings for Monge's problem has been studied by many researchers and was finally proved in [START_REF] Caffarelli | Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs[END_REF][START_REF] Trudinger | On the Monge mass transfer problem[END_REF]. Prior to that, the existence was also obtained in [START_REF] Evans | Differential equations methods for the Monge-Kantorovich mass transfer problem[END_REF] under some assumptions, and obtained in [START_REF] Sudakov | Geometric problems in the theory of infinite dimensional probability distributions[END_REF], with a gap fixed in [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF]. See also [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF][START_REF] Champion | The Monge problem for strictly convex norms in R d[END_REF][START_REF] Champion | The Monge problem in R d[END_REF] for the existence of optimal mappings when the norm (1.1) is replaced by a more general norm in the Euclidean space. The proofs in [START_REF] Caffarelli | Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs[END_REF][START_REF] Trudinger | On the Monge mass transfer problem[END_REF] are very similar: both use the approximation |x -y| 1+ε → |x -y| (ε → 0). The key point is choosing an approximation with strictly convex costs of the difference x -y, which satisfy the assumption (A). The optimal mapping for Monge's problem is not unique in general. But there is a unique optimal mapping which is monotone on the transfer rays [START_REF] Feldman | Uniqueness and transport density in Monge's mass transportation problem[END_REF].

In this paper we study the regularity of optimal mappings in Monge's mass transfer problem. As the cost function (1.1) does not satisfy condition (B), the argument in [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF] does not apply to Monge's problem. Indeed, Monge's problem also admits several minimizers T , even if a special one plays an important role: it is the transport map which is monotone on each transport ray (see [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF]: we will call this map monotone optimal trasnport).

The regularity seems a rather tricky problem and very little is known at the moment. Only in the 2 dimensional case, it was proved in [START_REF] Fragalà | Continuity of an optimal transport in Monge problem[END_REF] that the monotone optimal mapping is continuous in the interior of the transfer set (i.e. the union of all transfer rays), under the assumptions that the densities f, g are positive, continuous, and with compact, convex and disjoint supports.

Our strategy to attack the regularity in Monge's problem is to establish uniform estimates for the optimal mappings with respect to the cost function

(1.3) c ε (x, y) = ε 2 + |x -y| 2
where ε ∈ (0, 1] is a constant. The cost function c ε satisfies both conditions (A) and (B). Therefore there is a unique optimal mapping T ε associated with c ε , given by

T ε (x) = x - εDu ε 1 -|Du ε | 2 .
where u ε is the potential function. By direct computation, u ε satisfies the Monge-Ampère equation [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF] (1.4)

det w ij = 1 ε n 1 -|Du| 2 n+2 2 f g , with {w ij } = 1 -|Du| 2 ε δ ij -u x i u x j -u x i x j .
Under appropriate assumptions, the a priori estimate

(1.5) sup Ω ′ |D 2 u ε (x)| ≤ C ε ∀ Ω ′ ⊂⊂ Ω.
was established in [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF], where the upper bound C ε depends on ε. Notice that the assumptions involve in particular lower bounds on the densities f and g on their respectives domains Ω and Ω * . these domains should be c ε -convex w.r.t. each other, which typically reduces (if we want to impose it for all ε → 0) to the case of Ω ⊂ Ω * , with Ω * convex. In particular, this rules out the assumption of [START_REF] Fragalà | Continuity of an optimal transport in Monge problem[END_REF], since the supports will not be disjoint. The case we study is thus completely different form that of [START_REF] Fragalà | Continuity of an optimal transport in Monge problem[END_REF].

Equation (1.4) is strongly singular as ε → 0 . Note that, due to the small ε, a uniform bound for D 2 u ε does not mean a uniform estimate for the optimal mapping T ε . Therefore we need to work directly on the mapping T ε .

We wished to prove a uniform bound for DT ε , namely the uniform Lipschitz continuity of the optimal mapping T ε . By tedious computations, we are able to prove that all the eigenvalues of the matrix DT ε , which are all positive, are locally uniformly bounded as ε → 0. This is one of the two main results of the paper. Notice that this should bring some information on the behavior of DT 0 , where T 0 is the monotone optimal mapping in Monge's problem. Yet, two problems arise: i) the condition on the eigenvalues being strongly nonlinear and applied to non-symmetric matrices, it is not easy to pass it to the limit, nor to give a meaning to the eigenvalues of DT 0 (which is a priori a distribution); ii) even the fact that the maps T ε do converge to the monotonic optimal transport is not that easy if the supports of the measures are not disjoint (which is not the case for us).

However, as the matrix DT ε is -as we said -not symmetric, the boundedness of the eigenvalues of DT ε does not imply the matrix itself is uniformly bounded. Interestingly, we find that the matrix DT 0 is not bounded in general. There exist positive and smooth f, g such that DT 0 is unbounded at interior points (here by T 0 we mean the monotonic Monge optimal transport, and not the limit of T ε ; however, it is possible to prove (see Section 4) that, should DT ε be bounded, then T ε → T 0 , and hence this implies that DT ε cannot be uniformly bounded as ε → 0). This is the second main result of the paper. This paper is arranged as follows. In section 2, we state our main estimate, Theorem 1. Section 3 is then devoted to the proof of Theorem 1. In section 4, we provide positive and smooth densities f, g such that the monotonic optimal mapping T 0 is not Lipschitz continuous at interior points. We conclude the paper with some remarks and perspectives in Section 5.

Uniform a priori estimates

Let c = c ε be the cost function given in (1.3). The optimal mapping T = T ε : Ω → Ω * is given by [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF] (2.1)

T (x) = [D x c(x, •)] -1 Du(x),
where u = u ε is a c-concave potential function. In this and the next sections, we deal with the a priori estimates for DT . We will omit the subscript ε when no confusions arise.

From [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF], the potential function u satisfies the fully nonlinear PDE of Monge-Ampère type,

(2.2) det(D 2 x c -D 2 u) = | det D 2 xy c| f g • T in Ω.
For the cost function (1.3), one has

(2.3) Dc(x, y) = x -y ε 2 + |x -y| 2 .
Hence by (2.1),

(2.4)

T (x) = x -L(x)Du(x),
where the function L is given by

(2.5) L(x) =: ε √ 1 -v and (2.6) v =: |Du| 2 .
From (2.4) and (2.5), we can solve

(2.7) v = d 2 (x) ε 2 + d 2 (x)
and consequently (2.8)

L = ε 2 + d 2 (x),
where (2.9)

d (x) = |x -T (x)| .
As in [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF] , we denote

A ij (x) = D 2 x i x j c(x, T (x)) (2.10) = 1 L (δ ij -D i uD j u).
Then equation (2.2) can be written in the form

(2.11) det w ij = ε 2 L n+2 f g • T ,
where (2.12)

w ij =: A ij -D 2 ij u is a nonnegative symmetric matrix.
We observe from (2.10) that A ij is positive definite, and the inverse matrix of A ij is given by (2.13)

A ij = L δ ij + L 2 ε 2 D i uD j u . Let us denote (2.14) W =: n α,β=1
A αβ w αβ .

Then we have following uniform estimates: 

Theorem 1. Suppose Ω, Ω * are bounded domains in R n (n ≥ 2), f ∈ C 1,1 (Ω), g ∈ C 1,1 (Ω * ), f,
W (x) ≤ C,
where C depends on n, dist(x, ∂Ω), f and g, but is independent of the constant ε ∈ (0, 1].

By (2.4) (2.12) and (2.13), it is ready to check that the Jacobian matrix of T is given by

T i j = δ ij -L j u i -Lu ij (2.16) = δ ij -L(u ij + L 2 ε 2 u i k u k u kj ) = k A ik w kj .
Since the matrices {A ij } and {w ij } are positive, then DT is diagonalizable, and its eigenvalues λ 1, • • • , λ n of Jacobian DT are positive, and n i=1 λ i = W . So if W is bounded, one immediately sees that all the eigenvalues of DT are bounded from above and below. We therefore have Corollary 1. Under the assumptions of Theorem 1, we have for any Ω ′ ⊂⊂ Ω, (2.17)

C -1 ≤ min i λ i ≤ max i λ i ≤ C in Ω ′ ,
where C depends on n, dist(Ω ′ , ∂Ω), f and g, but is independent of ε ∈ (0, 1].

In view of (2.13) and (2.14), one finds that

W = L i w ii + L 3 ε 2 i,j u i u j w ij .
Hence we obtain L w ii ≤ C By (2.10) and (2.12), we also obtain the estimate for D 2 u.

Corollary 2. Under the assumptions of Theorem 1, we have for any

Ω ′ ⊂⊂ Ω, (2.18) |D 2 u| ≤ C/L in Ω ′ ,
where C depends on n, dist(Ω ′ , ∂Ω), f and g, but is independent of ε ∈ (0, 1].

Corollary 2 morally gives a C 1,1 estimate for the potential function u 0 = lim ε→0 u on the set

E δ = {x ∈ Ω : |T (x) -x| ≥ δ > 0} .
This recovers a well-known result which reads "the potential is C 1,1 in the interior of transport rays", which was also used by [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF] in order to prove the countable Lipschitz property of the direction of Du. At a point x 0 with v(x 0 ) > 0, denote

ν = - Du (x 0 ) |Du (x 0 )| ,
and let ξ α be unit vectors such that {ν, ξ α } α=1,...,n-1 are orthonormal. We denote

T ν ν = i,j ν i ν j T i j , T ξ α ξ α = i,j ξ α i ξ α j T i j .
By (2.16) and (2.13),

D ν ν, T = T ν ν = i,j,k ν i A ik w kj ν j (2.19) = L i,j,k 1 + vL 2 ε 2 ν k w kj ν j = L 3 ε 2 j,k ν k w kj ν j .
Similarly,

(2.20)

D ξ α ξ α , T = T ξ α ξ α = L j,k ξ α k w kj ξ α j .
Noticing that {w ij } is positive definite, it is clear from (2.19) and (2.20) that T ν ν and T ξ α ξ α are positive. Recall that

W = T ν ν + n-1 α=1 T ξ α ξ α .
Hence by (2.15) we obtain Corollary 3. Under the assumptions of Theorem 1, we have for any

Ω ′ ⊂⊂ Ω, (2.21) T ν ν ≤ C T ξ α ξ α ≤ C in Ω ′ ,
where C depends on n, dist(Ω ′ , ∂Ω), f and g, but is independent of ε ∈ (0, 1].

At the limit, this corresponds to saying (even if what we state here is not rigorous) that the limit mapping T 0 is Lipschitz continuous in the direction of transfer rays, and for any unit vector ξ perpendicular to the transfer rays, ξ, T 0 is Lipschitz continuous in the ξ-direction. The Lipschitz continuity along transport rays is not surprising, since we are doing one-dimensional optimal transport between two measures with upper and lower bounds on their densities; yet, the densities of the one-dimensional problem along each ray are affected by a Jacobian factor (due to the decomposition of f and g along rays), and this makes this Lipschitz result not completely evident. In section 4, we will construct an example to show that the component ν 0 , T 0 is in general not Lipschitz continuous in ξ, even though the mass distributions are positive and smooth, where ν 0 is a direction of transfer rays and ξ⊥ν 0 .

In Theorem 1, we assume that u ∈ C 3,1 . This assumption is not needed if Ω ⊂ Ω * and Ω * is a bounded convex domain in R n , as it implies that Ω * is c * -convex with respect to Ω and by approximation, and the condition u ∈ C 3,1 is always satisfied, see [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF].

Proof of Theorem 1

To prove Theorem 1, we introduce the auxiliary function

(3.1) H(x) = η(x)W (x),
where η is a cut-off function. Suppose that H attains its maximum at some point x 0 . To prove that H(x 0 ) is uniformly bounded in ε, the computation is rather complicated. We find the computation can be made a little simpler if we first make a linear transformation such that

(3.2) A ij (x 0 ) = δ ij ,
and then make a rotation of coordinates such that

(3.3) w ij (x 0 ) = diag {λ 1 , ..., λ n } .
It is well-known that A ij , w ij are tensors [START_REF] Kim | Continuity, curvature, and the general covariance of optimal transportation[END_REF]. An advantage of working on tensors is that one may choose a particular coordinate system to simplify the computation. As we only made a linear transform on the Euclidean space R n , the Riemannian curvature tensor under the metric σ ij vanishes, which allows us to exchange the derivatives freely.

In the following we will use D to denote the normal derivatives in R n and ∇ to denote covariant derivatives under the metric σ.

Suppose the linear transformation is given by y = P -1 x (i.e. x i = P ik y k ) such that P T AP = I is the unit matrix at x 0 . Then by ( 2.10) and (2.12), Āij = k,l

A kl P ki P lj = P T AP ij , wij = k,l w kl P ki P lj = P T wP ij ,
where bar denotes quantities in the y-coordinates.

Denote {σ ij } = P T P , and {σ ij } = P T P -1 . Then by (2.10) and (2.13),

δ ij = Āij = P T AP ij (3.4) = 1 L (σ ij -ūi ūj )
and

δ ij = Āij = P -1 A -1 (P T ) -1 ij (3.5) = L σ ij + L 2 ε 2 ūi ūj ,
where ūi =: k σ ik ūk . Note that by (2.7) and (2.8), v and L are invariant under the coordinate transformation, and

v = σ ij ūi ūj = ūi ūi ≤ 1, (3.6) ε 2 ≤ L2 ≤ C. (3.7)
For simplicity we will omit the bar below. In view of (3.4), we have, at x 0 , (3.8)

σ ij = Lδ ij + ∇ i u∇ j u.
By (3.5), we have, at x 0 ,

u i = j δ ij u j = j L σ ij + L 2 ε 2 u i u j u j = L 1 + L 2 ε 2 v u i ,
where u i = ∇ i u. By (2.5), it follows that (3.9)

u i = Lu i 1 -v = L 3 ε 2 u i .
Hence u i = ε 2 L 3 u i and by (3.5) ,

(3.10)

σ ij = 1 L δ ij - ε 2 L 3 u i u j .
Formulas (3.8), (3.9) and (3.10) will be repeatedly used in our calculation below. Without loss of generality, we may also assume

(3.11) λ 1 ≥ λ 2 ≥ • • • ≥ λ n at x 0 .
Since x 0 is the maximum point, we have

0 = ∇ i log H(x 0 ) = η i η + W i W (3.12) = η i η + w αα;i W - A αα;i w αα W , 0 ≥ ∇ 2 ij log H(x 0 ) = η ij η -2 η i η j η 2 + W ij W
as a matrix, where subscripts i, j on the R.H.S. denote covariant derivatives in the metric σ. We thus obtain, at x 0 ,

(3.13) 0 ≥ W w ij ( η ij η -2 η i η j η 2 ) + w ij W ij ,
where w ij is the inverse of w ij .

Differentiating (2.11) gives

w ij w ij;a = ϕ a , (3.14) w ij w ij;ab = w is w jt w ij;a w st;b + ϕ ab , (3.15)
where ϕ is given by

(3.16) ϕ = log ε 2 L n+2 f g • T .
In our computation we use the notation

w ij;k = ∇ k w ij , w ij;kl = ∇ l ∇ k w ij , A ij;k = ∇ k A ij and A ij;kl = ∇ l ∇ k A ij .
To estimate the term w ij W ij in (3.13), we first prove the following lemma.

Lemma 1. We have

A ij;k = L 2 ε 2 A ij u h w hk + 1 L (u j w ik + u i w jk ) - 1 L (A ij u k + A ik u j + u i A jk ), A ii;β -A iβ;i = L 2 ε 2 (A ii u t w tβ -A iβ u t w ti ) + 1 L (w iβ u i -w ii u β ),
(we use the summation convention u h w hk = h u h w hk ).

Proof.

Recall that v = σ ij u i u j = u i u i . Therefore dL dv = 1 2 L 3 ε 2 , v k = 2u h u hk . By (3.4), A ij = 1 L (σ ij -u i u j )
. Differentiating, we get

A ij;k = - 1 L 2 dL dv v k (σ ij -u i u j ) + 1 L (-u ik u j -u i u jk ) (3.17) = - L 2 ε 2 A ij u h u hk + 1 L (-u ik u j -u i u jk ) = L 2 ε 2 A ij u h w hk + 1 L (w ik u j + u i w jk ) - 1 L (A ij u k + A ik u j + u i A jk ).
The second formula follows from (3.17) immediately.

Differentiating (2.14) twice and using

A ij (x 0 ) = δ ij , i,j w ij W ij = w ij w αα;ij -2 w ij A αβ;i w αβ;j - w ij A αα;ij w αα (3.18) +2 w ij A αk;i A βk;j w αβ ≥ w ij w αα;ij -2 w ij A αβ;i w αβ;j - w ij A αα;ij w αα .
We have by (3.15) i,j,α

w ij w αα;ij = w ij A αα;ij - w ij u ααij (3.19) = w ij w ij;αα + w ij (A αα;ij -A ij;αα ) ≥ ϕ αα + w ii (A αα;ii -A ii;αα ) .
By the first formula in Lemma 1 i,j,α,β

w ij A αβ;i w αβ;j = L 2 ε 2 w αα;i u i - 1 L w ij u j w αα;i + 2 L u β w αβ;α - 2 L w ij u β w jβ;i .
By (3.9), it follows i,j,α,β

w ij A αβ;i w αβ;j = 3 L 2 ε 2 w αα;i u i - 1 L w ij u j w αα;i + 2 L u β (A αβ;α -A αα;β ) - 2 L w ij u β w ij;β - 2 L w ii u β (A iβ;i -A ii;β ).
By (3.14) and the second formula in Lemma 1, we then obtain i,j,α,β

w ij A αβ;j w αβ;i = 3 L 2 ε 2 w αα;i u i - 1 L w ii u i w αα;i -2 L 2 ε 2 ϕ β u β + 2 Lv ε 2 (W -n) +2 L ε 2 (W -n) w ii u i u i ,
where

W =: w ii = 1 λ i .
Recalling (3.9) and (3.6),

(3.20) 0 ≤ u i u i ≤ u i u i ≤ 1
for any given i. Hence i,j,α,β

w ij A αβ;j w αβ;i ≤ 3 L 2 ε 2 w αα;i u i - 1 L w ii u i w αα;i (3.21) -2 L 2 ε 2 ϕ β u β + L ε 2 Q.
Here and below we use Q to denote quantities satisfying

Q ≤ C 1 + W η + W 2 + 1 η W W .
Inserting (3.19) and (3.21) into (3.18), we obtain

w ij W ij ≥ w ii (A αα;ii -A ii;αα ) - w ii A αα;ii w αα (3.22) -6 L 2 ε 2 w αα;i u i + 2 L w ii u i w αα;i + ϕ αα + 4L 2 ε 2 ϕ α u α - L ε 2 Q.
To proceed further, we need the following lemma.

Lemma 2. We have i,α w ii (A αα;ii -A ii;αα ) ≥ L ε 2 W w 2 ii - 2 L w ii u i w αα;i - L 2 ε 2 W w αα;h u h + (n + 2) L 2 ε 2 ϕ β u β - L ε 2 Q and i,α w ii A αα;ii w αα ≤ -2 L ε 2 W w 2 ii u i u i - L ε 2 WW w ii u i u i + L 2 ε 2 W ϕ β u β + 2L 2 ε 2 w ii u i ϕ i + L ε 2 Q.
Proof. In view of Lemma 1, (3.23)

A αα;i = - L 2 ε 2 A αα u h u hi - 2 L u α u αi .
By differentiating (3.23),

A αα;ii = - L 2 ε 2 A αα u h u hii - L 2 ε 2 A αα σ ht u ti u hi (3.24) - L 2 ε 2 A αα;i u h u hi -2 L 4 ε 4 A αα u t u ti u h u hi - 2 L u α u iαi - 2 L u 2 iα + 2L ε 2 u h u hi u α u iα . Plugging (3.23) into (3.

24), we infer that

A αα;ii = - L 2 ε 2 A αα u h u iih - L 2 ε 2 A αα σ ht u ti u hi - L 4 ε 4 A αα u t u ti u h u hi - 2 L u α u iiα - 2 L u 2 iα + 4L ε 2 u h u hi u α u iα . By (3.10), - L 2 ε 2 A αα σ ht u ti u hi = - L ε 2 A αα u 2 ii + L 4 ε 4 A αα u 2 ii u i u i .
Hence

A αα;ii = - L 2 ε 2 A αα u h u iih - L ε 2 A αα u 2 ii - 2 L u α u iiα - 2 L u 2 iα + 4L ε 2 u ii u iα u α u i = L 2 ε 2 A αα u h w ii;h - L 2 ε 2 A αα u h A ii;h - L ε 2 A αα u 2 ii + 2 L u α w ii;α - 2 L u α A ii;α - 2 L u 2 iα + 4L ε 2 u ii u iα u α u i .

Employing (3.23) again, it follows

A αα;ii = L 2 ε 2 A αα w ii;h u h + 2 L u α w ii;α (3.25) - L ε 2 A αα u 2 ii - 2 L u 2 iα + 4L ε 2 u ii u iα u α u i + L 4 ε 4 A αα A ii u ht u h u t + 2 L ε 2 A αα u ii u i u i +2 L ε 2 A ii u αα u α u α + 4 L 2 u iα u α u i . Hence i,α w ii A αα;ii w αα = L 2 ε 2 W ϕ h u h + 2 L 2 ε 2 w ii u i ϕ i (3.26) - L ε 2 W w ii u 2 ii - 2 L u 2 ii + L ε 2 4u 2 ii u i u i + 4u ii u i u i + 2W w ii u ii u i u i + L ε 2 W W u ii u i u i + 2W w ii u ii u i u i . Recalling (3.20), {4u 2 ii u i u i + 4u ii u i u i + 2W w ii u ii u i u i } ≤ Q, and 
W W u ii u i u i + 2W w ii u ii u i u i ≤ -W W w ii u i u i + 2W w 2 ii u i u i + Q,
the second inequality of Lemma 2 follows from (3.26).

From (3.25) it follows that

A αα;ii -A ii;αα = L 2 ε 2 A αα w ii;h u h + 2 L u α w ii;α - L 2 ε 2 A ii w αα;h u h - 2 L u i w αα;i - L ε 2 A αα u 2 ii + 4L ε 2 u ii u iα u α u i + L ε 2 A ii u 2 αα - 4L ε 2 u αα u iα u i u α .
Hence

w ii (A αα;ii -A ii;αα ) = (n + 2) L 2 ε 2 ϕ i u i (3.27) - L 2 ε 2 W w αα;h u h - 2 L w ii u i w αα;i - nL ε 2 w ii u 2 ii + L ε 2 W u 2 ii . Since - nL ε 2 w ii u 2 ii ≥ - L ε 2 Q and L ε 2 W u 2 ii ≥ L ε 2 W w 2 ii - L ε 2 Q,
the first inequality of Lemma 2 follows from (3.27).

In view of Lemma 2, (3.22) can be rewritten in the form

w ij W ij ≥ L ε 2 W w 2 ii + L ε 2 W(W w ii u i u i + 2 w 2 ii u i u i ) (3.28) - L 2 ε 2 (W + 6) w αα;i u i + ℜ ϕ - L ε 2 Q, where (3.29) ℜ ϕ =: - 2L 2 ε 2 w ii u i ϕ i + (n + 6 -W ) L 2 ε 2 ϕ β u β + ϕ αα .
By (3.12), we have

(3.30) α w αα;k = A αα;k w αα -W η k η . It follows from (3.23) that α w αα;k = -W η k η - L 2 ε 2 W u kk u k - 2 L w kk u kk u k (3.31) = -W η k η + L 2 ε 2 W w kk u k - L 2 ε 2 W u k + 2L 2 ε 2 w 2 kk u k - 2L 2 ε 2 w kk u k .
Hence, by (3.9) and (3.20)

- L 2 ε 2 (W + 6) w αα;i u i ≥ - L ε 2 Q + L 2 ε 2 W ( W + 6) u i η i η (3.32) - L ε 2 W(W w ii u i u i + 2 w 2 ii u i u i ).
Therefore, by inserting (3.32) into (3.28), we find that (3.13) can be written as

0 ≥ L ε 2 W w 2 ii + W w ij ( η ij η -2 η i η j η 2 ) (3.33) + L 2 ε 2 W (W + 6) u i η i η + ℜ ϕ - L ε 2 Q.
Without loss of generality, we may assume the cut-off function η satisfies |Dη| 2 ≤ Cη (otherwise we may replace η by η 2 ) and |D 2 η| ≤ C. Hence it follows

W w ij ( η ij η -2 η i η j η 2 ) + L 2 ε 2 W (W + 6) u i η i η ≥ -C W η ( D 2 η + |Dη| 2 η ) w ij σ ij -C L 2 ε 2 W η (W + 1) ≥ - L ε 2 Q,
where (3.8) is used in the last inequality. Therefore (3.33) can be written as

(3.34) 0 ≥ L ε 2 W w 2 ii + ℜ ϕ - L ε 2 Q. Lemma 3.
We have, at x 0 ,

ℜ ϕ ≥ - L ε 2 Q.
Proof. Recalling (2.6), we have

(3.35) v α = 2u h u hα .
Differentiating (3.16) gives

ϕ α = -(n + 2) L 2 ε 2 u h u hα + f α f - ∇ α (g • T ) g • T , (3.36) ϕ αβ = -2(n + 2) L 4 ε 4 u h u t u hα u tβ - (n + 2) 2 L 2 ε 2 v αβ + f αβ f (3.37) - f α f β f 2 - ∇ 2 αβ (g • T ) g • T + ∇ α (g • T ) g • T ∇ β (g • T ) g • T .
Inserting (3.36) and (3.37) into (3.29 ), we obtain

ℜ ϕ ≥ 2 L 2 ε 2 w ii ∇ i (g • T ) g • T u i -(n + 6 -W ) L 2 ε 2 u α ∇ α (g • T ) g • T (3.38) - ∇ 2 αα (g • T ) g • T - (n + 2) 2 L 2 ε 2 v αα - L ε 2 Q.
Differentiating (3.35), we obtain

v αα = 2 σ th u tα u hα + 2 u h u ααh = 2 σ th u tα u hα + 2 u h A αα;h -2 u h w αα;h .
By (3.9), (3.10) and (3.20),

σ th u tα u hα = 1 L (u 2 ii -u 2 ii u i u i ) ≤ 1 L Q.
From (3.23),

u i A αα;i = - n + 2 L u ii u i u i ≤ 1 L Q.
Also, by (3.31),

- u k w αα;k = W u k η k η - 1 L (W -2) w kk u k u k + 1 L W v - 2 L w 2 kk u k u k ≤ 1 L Q.
Therefore we have

(3.39) v αα ≤ 1 L Q.
It then follows from (3.38)

ℜ ϕ ≥ 2L 2 ε 2 w ii ∇ i (g • T ) g • T u i (3.40) -(n + 6 -W ) L 2 ε 2 u i ∇ i (g • T ) g • T - ∇ 2 αα (g • T ) g • T - L ε 2 Q. Now we compute ∇ α (g • T ) and ∇ 2 αα (g • T ). By (2.16) we have (3.41) ∇ α (g • T ) = g k T k α = g α w αα . By differentiating (2.16), we have ∇ 2 αα (g • T ) = g kl T k α T l α + g k ∇ α T k α = g k A kl w lα;α + g αα w 2 αα - g k A kα;α w αα .
Recalling that A kl = δ kl at x 0 , we have

A kl w lα;α = w kα;α = w αα;k + A kα;α -A αα;k . By (3.30), ∇ 2 αα (g • T ) = g k w αα;k + g k (A kα;α -A αα;k ) + g αα w 2 αα - g k A kα;α w αα = -W g k η k η + g αα w 2 αα + g k (A kα;α -A αα;k ) + g k (A αα;k -A kα;α )w αα .
Using the second formula in Lemma 1, we get

∇ 2 αα (g • T ) = -W g k η k η + g αα w 2 αα + L 2 ε 2 (W -n) w kk u k g k (3.42) + L 2 ε 2 (W - w 2 αα ) u k g k .
Inserting (3.41) and (3.42) into (3.40), we then obtain

(g • T )ℜ ϕ ≥ W g k η k η + 2L 2 ε 2 w 2 kk g k u k (3.43) - 6L 2 ε 2 w kk u k g k - g αα w 2 αα - L 2 ε 2 (W - w 2 αα ) u k g k - L ε 2 Q. By (3.5), g k η k η = L (σ ij + L 2 ε 2 u i u j )g i η j η (3.44) = L η σ ij g i η j + L 2 ε 2 ( g i u i )( η j u j ) .
We have

σ ij g i η j = Dg, Dη ≤ C,
where D is the normal derivative in R n and •, • denotes the standard Euclidean metric. Similarly, σ ij u i g j = u j g j , σ ij u i η j = u j η j and σ ij g i g j are all bounded by a universal constant C. Hence from (3.44),

(3.45) g k η k η ≥ - L ε 2 C η .
Employing (3.9) and (3.20),

(3.46) (u k ) 2 = ε 2 L 3 u k u k ≤ ε 2 L 3
, for any given k. Using (3.10) then (3.9), we have

σ ij g i g j = 1 L g 2 i - L 3 ε 2 ( u i g i ) 2 .
It implies

g 2 i = L σ ij g i g j + L 3 ε 2 ( u i g i ) 2 (3.47) ≤ C L 3 ε 2 .

By (3.46) and (3.47) it follows that |g

k u k | ≤ C. Hence (3.48) w 2 kk g k u k ≥ -CW 2 and (3.49) w kk u k g k ≤ CW.
Moreover, in view of (3.8) and (3.9),

σ ii = L + L 3 ε 2 u i u i ≤ C L ε 2 , for any given i. Consequently, (3.50) g αα w 2 αα ≤ D 2 g σ αα w 2 αα ≤ C L ε 2 W 2 .
By virtue of (3.45), (3.48), (3.49 ) and (3.50), we obtain from (3.43) that

ℜ ϕ ≥ - L ε 2 (g • T ) Q ≥ - L ε 2 Q. This completes the proof.
By Lemma 3 and (3.34), we get, at x 0 ,

0 ≥ L ε 2 W w 2 ii -C L ε 2 1 + W η + W 2 + W η W ≥ L ε 2 W W 2 n -C L ε 2 1 + W η + W 2 + W η W .
Multiplying nη 2 L to both sides of the above inequality, we obtain

0 ≥ L 2 ε 2 W(H 2 -CH) -C L 2 ε 2 (1 + H 2 ) (3.51) ≥ C L 2 ε 2 WH 2 -C L 2 ε 2 (1 + H 2 ). Note that by (3.11), (3.52) W ≥ k≥2 1 λ k ≥ k≥2 1 λ k 1 n-1 ≥ Cλ 1 n-1 1 ≥ C W n 1 n-1 ,
where C is independent of ε. Hence from (3.51) we get

(3.53) 0 ≥ L 2 ε 2 H 2+ 1 n-1 -C L 2 ε 2 (1 + H 2 )
. Hence H ≤ C at x 0 and this completes the proof of Theorem 1.

A counterexample to the Lipschitz regularity

In the last section we proved that the eigenvalues of DT ε are uniformly bounded. In this section we give an example to show that the T ε is not uniformly Lipschitz continuous for small ε > 0, i.e., the matrix DT ε is not uniformly bounded, even though the densities f and g are smooth and positive, and the domain Ω * is c-convex with respect to Ω. Our counterexample will be obtained by finding a choice of f and g such that the monotonic optimal transport T 0 between them is not Lipschitz continuous. Even if we said that the convergence T ε → T 0 is not straightforward, we can prove that a uniform Lipschitz bound on T ε would imply such a convergence, and hence the same bound on T 0 . Hence, if T 0 is not Lipschitz, then T ε cannot be uniformly Lipschitz. Lemma 4. Suppose that the sequence of transports T ε is uniformly Lipschitz. Then the whole family T ε converges uniformly as ε → 0 to the unique monotonic optimal transport for the cost |x -y|, which will be Lipschitz with the same Lipschitz constant.

Proof. By Ascoli-Arzelà's Theorem, the uniform Lipschitz bound implies the existence of a uniform limit up to subsequences. Obviously this limit map T will be optimal for the limit problem, i.e. the Monge problem for cost c(x, y) = |x -y| and will share the same Lipschitz constant as T ε .

We only need to prove that T is monotonic along transport rays. Take L ε (x) = ε 2 + |T ε (x) -x| 2 : these maps are also uniformly Lipschitz and converge uniformly to

L(x) = |T ε (x) -x|.
Let us denote by u ε the potentials for the approximated problems and by u the potential for the limit problem. Due to the uniqueness of the Kantorovich potential u, since all the functions u ε are 1-Lipschitz, we have u ε → u uniformly. Moreover, Du ε ⇀ Du and the convergence is actually strong (in L 2 , for instance) if restricted to the set T u = {|Du| = 1} (as a consequence of |Du ε | ≤ 1, which implies that we also have T u |Du ε | 2 → T u |Du| 2 : this turns weak convergence into strong, and hence also implies pointwise, convergence).

The monotonicity of T is proven if one proves DL • Du ≤ 1, since the direction of the transport rays is that of -Du. This inequality is needed on the set of interior points of transport rays, which are exactly points where |Du| = 1. On these points we can use the weak convergence DL ε ⇀ DL (weakly-* in L ∞ ) and the strong convergence Du ε → Du, which means that it is enough to get DL ε • Du ε ≤ 1, and then pass the inequality to the limit. This is the point where we use the uniform Lipschitz bound on T ε : without such a bound we could not have the suitable weak convergence of DL ε .

In order to estimate DL ε , we use (2.8) and (2.4). We come back to the notation without the index ε, and write DL, thus getting

DL • Du = -D i u (T i j -δ ij ) D j u = LD i u D 2 ij u D j u + |Du| 2 DL • Du.
Then, we use (2.10) and (2.12) and the positivity of the matrix w ij , to get

L D i u D 2 ij u D j u ≤ |Du| 2 (1 -|Du| 2 ).
This implies

(1 -|Du| 2 ) DL • Du ≤ |Du| 2 (1 -|Du| 2 ),
which provides DL • Du ≤ |Du| 2 ≤ 1 (notice that, for fixed ε > 0, the norm of the gradient |Du| is strictly less than 1, which allows to divide by 1 -|Du| 2 ).

To construct the counterexample where T 0 is not Lipschitz, our idea is as follows. Let (4.1)

ℓ a = {(x, y) in R 2 | y = √ a (x + 2 + a) , x ∈ [-2 -a, 1]}
be a family of line segments ℓ a , where a ∈ [0, 1]. It is clear that the segments ℓ a do not intersect with each other and ∪ a∈[0,1] ℓ a = ∆ ABC , where ∆ ABC denotes the triangle with vertices A = (-3, 0), B = (1, 4) and C = (1, 0). Let

f ≡ 1, g = 1 + 1 4 x + η (y)
be two densities on ∆ ABC . We first show that there exists a smooth positive function η such that f, g satisfy the mass balance condition (4.2)

∆ PaCQa f = ∆ PaCQa g, for all a ∈ [0, 1].
Here P a = (-2 -a, 0) and Q a = (1, (3 + a) √ a) are the endpoints of ℓ a . We then prove that there is a Lipschitz function u, which is the potential function to Monge's problem in ∆ ABC , with the densities f, g given above. By (4.2) we can construct a measure preserving mapping T 0 , which pushes the density f to the density g, with {ℓ a } as its transfer rays. Using the potential u and the duality we show that T 0 is the optimal mapping of Monge's problem. By reflection in the x-axis, we extend T 0 to the triangle ∆ ABB ′ , where B ′ = (1, -4) is the reflection of B. Then T 0 is not Lipschitz at the interior point (-2, 0).

Lemma 5. There exists a smooth positive function η, such that ( 4.2) holds. This function satisfies η(y) = O(y 2 ) as y → 0.

Proof. By direct computation,

∆ PaCQa f = 1 2 √ a (3 + a) 2 , ∆ PaCQa g = 1 -2-a √ a(x+2+a) 0 1 + 1 4 x + η (y) dydx = √ a 24 (3 + a) 2 (12 -a) + 1 -2-a √ a(x+2+a) 0 η (y) dydx.
In order that (4.2) holds, we need

(4.3) 1 24 a 3/2 (3 + a) 2 = 1 -2-a √ a(x+2+a) 0 η (y) dydx.
Differentiating (4.3) with respect to a, we have

a 24 (9 + 7a) (3 + a) = 1 -2-a (x + 2 + 3a) η √ a (x + 2 + a) dx which is equivalent to (4.4) a 2 24 (9 + 7a) (3 + a) = (3+a) √ a 0 t + 2a √ a η (t) dt.
In order to find η satisfying (4.

3) for all a ∈ [0, 1], we only need to solve (4.4), since the equality in (4.3) is true for a = 0.

Let us introduce (4.5)

y = (3 + a) √ a.
It is clear that y is a strictly increasing function of a. Let a(y) = O(y 2 ) be the inverse function of (4.5). Differentiating (4.4) in y and using a y = 2 √ a 3(a+1) , we obtain √ a

36 27 + 45a + 14a 2 = 3 (1 + a) 2 2 √ a η (y) + y 0 η (t) dt,
Taking derivative again, we obtain (4.6) η ′ (y) + q (a (y)) y η (y) = yp (a (y)) ,

where Solving (4.6), one finds an explicit formula for η:

q (a) = (5a -1) (3 + a) 3 (1 + a) 2 , p (a) 
(4.7) η (y) = y 0 t p (a (t)) exp - y t q (a (τ )) τ dτ dt.
It is clear that

-1 ≤ q (a (y)) ≤ 0 if |y| << 1. Hence 0 ≤ η (y) ≤ C y 0 t exp y t 1 τ dτ dt ≤ Cy 2 .
From (4.7) it follows that In the last two equalities, a is the function of y determined by (4.5). Therefore η is positive and smooth and satisfies the required conditions.

η (y) = y 0 t p (a (t)) exp - 1 2 a(y) a(t 
Remark 1. From (4.5), we can explicitly write

a (y) = h (y) + 1 h (y) -2,
where

h (y) = 3 1 4 y 4 + y 2 + 1 2 y 2 + 1.
It is clear that a (y) is a smooth even function.

Lemma 6. There exists a function u : ∆ ABC → R satisfying

|u (p) -u (q) | ≤ |p -q|, ∀ p, q ∈ ∆ ABC ,
and equality holds if and only if both p and q lie on a common segment ℓ a .

Proof. We will construct a function u : ∆ ABC → R, which decreases linearly along all ℓ a .

For (x, y) ∈ ∆ ABC , let a = a (x, y) be the solution of the equation (4.9) y = √ a (a + 2 + x) .

Hence (x, y) ∈ ℓ a . Differentiating (4.9) with respect to x and y respectively, we get On the other hand, for (x, y) ∈ ∆ ABC , the direction vector of the line segment ℓ a passing through (x, y) is given by (4.13) ν (x, y) = (ν 1 , ν 2 ) = -1, a (x, y)

1 + a (x, y) .

Hence, by (4.12), (4.14)

∂ y ν 1 -∂ x ν 2 = 1 2 (1 + a) 3/2 a y + a x √ a = 0, provided a (x, y) = 0.
Fix a point P = (-2, 1). Let

γ (t) = γ X (t) = (t (x + 2) -2, 1 -t (1 -y)) , t ∈ [0, 1].
Then γ is the segment joining P and X = (x, y) ∈ ∆ ABC . Set u (x, y) = (x + 2)

1 0 ν 1 (γ (t)) dt + (y -1) 1 0 ν 2 (γ (t)) dt.
We claim that u satisfies (4.15) Du (x, y) = ν (x, y) on all segments ℓ a .

Indeed, for any point X 0 = (x 0 , y 0 ) ∈ ∆ ABC with a (x 0 , y 0 ) = 0, by (4.14) we have

u x (x 0 , y 0 ) = 1 0 ν 1 (γ 0 (t)) dt + (x 0 + 2) 1 0 t∂ x ν 1 (γ 0 (t)) dt (4.16) + (y 0 -1) 1 0 t∂ x ν 2 (γ 0 (t)) dt = 1 0 ν 1 (γ 0 (t)) dt + 1 0 t d dt ν 1 (γ 0 (t)) dt = 1 0 d dt (tν 1 (γ 0 (t))) dt = ν 1 (x 0 , y 0 ) ,
where γ 0 = γ X 0 and we used ∂ x ν 2 = ∂ y ν 1 . Similarly, we have u y (x 0 , y 0 ) = ν 2 (x 0 , y 0 ) .

Taking limit, we see that (4.15) also holds on the segment ℓ a | a=0 .

As ν is a unit vector, hence from (4.15) we have

|u (p) -u (q) | ≤ |p -q|, ∀ p, q ∈ ∆ ABC ,
and equality holds if and only if both p and q lie on a common segment ℓ a . This completes the proof.

As in [START_REF] Caffarelli | Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs[END_REF][START_REF] Trudinger | On the Monge mass transfer problem[END_REF], one can show by Lemma 5 that there is a unique measure preserving map T 0 from (f, ∆ ABC ) to (g, ∆ ABC ) such that T 0 (p) and p lie in a common ℓ a for all p ∈ ∆ ABC , and satisfies the monotonicity condition (T 0 (p) -T 0 (q)) • (p -q) ≥ 0 ∀ p, q ∈ ℓ a .

With the help of and Lemma 6, we prove that this T 0 is indeed optimal. This fact is classical in optimal transport theory, but we show it in details for the sake of completeness.

Lemma 7. T 0 is an optimal mapping in the Monge mass transportation problem from (f, ∆ ABC ) to (g, ∆ ABC ).

Proof. Recall that the total cost functional is given by

C (s) = ∆ ABC f (z) |z -s (z) |dz,
where s ∈ S, the set of measure preserving maps from (f, ∆ ABC ) to (g, ∆ ABC ); and the Kantorovich functional is defined as

I (ψ, ϕ) = ∆ ABC f ψ + ∆ ABC gϕ,
where (ψ, ϕ) are function pairs in the set

K = {ψ (x) + ϕ (y) ≤ |x -y| ∀ x, y ∈ ∆ ABC } .
For all s ∈ S and (ψ, ϕ) ∈ K , we have

I (ψ, ϕ) = ∆ ABC f (z) ψ (z) dz + ∆ ABC f (z) ϕ (s (z)) dz (4.17) ≤ ∆ ABC f (z) |z -s (z) |dz = C (s) .

That is sup

K I (ψ, ϕ) ≤ inf S C (s) .
Let u be the function constructed in the proof of Lemma 6, and let v = -u. Then we have (u, v) ∈ K. As T 0 (p) and p lie on the same line segment, Lemma 6 implies

u (z) -u (T 0 (z)) = |z -T 0 (z) |.
So the inequality in (4.17) becomes equality provided (ψ, ϕ) = (u, v) and s = T 0 . Therefore

C (T 0 ) = I (u, v) ≤ sup K I (ψ, ϕ) ≤ inf S C (s) .
Hence T 0 is optimal and the segments ℓ a are transfer rays of Monge's problem.

Let B ′ = (1, -4) be the reflection of the point B in the x-axis and let Ω = Ω * = ∆ ABB ′ . Extend the functions f, g to Ω such that they are symmetric with respect to the x-axis. From the proof of Lemma 5, one sees that f, g are smooth and satisfy the mass balance condition (1.2). The fact that η is quadratic close to 0 shows that it can be reflected as a C 2 function, and Remark 1 shows that it is indeed smooth. It is also known [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF] that Ω and Ω * are c-convex with respect to each other (for the cost function c ε , 0 ≤ ε ≤ 1). Also extend T 0 to Ω so that it is symmetric with respect to the x-axis. By the uniqueness of monotone optimal mappings [START_REF] Feldman | Uniqueness and transport density in Monge's mass transportation problem[END_REF], T 0 is an optimal mapping of Monge's problem from (f, Ω) to (g, Ω).

We claim that T 0 is not Lipschitz continuous at the point q 0 = (-2, 0) . Let D a,δ be the strip in ∆ ABC between the segments ℓ a and ℓ a+δ , and let q σ = (-2, σ) be the intersection of ℓ a with the line {x = -2}, where δ, σ > 0 are constants. Let T 0 (q σ ) = (x σ , y σ ) . As T 0 is measure preserving, we have (see the construction of the optimal mappings in [START_REF] Caffarelli | Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs[END_REF][START_REF] Trudinger | On the Monge mass transfer problem[END_REF])

lim δ→0 1 δ D a,δ ∩{x<-2} f (x, y)dxdy = lim δ→0 1 δ D a,δ ∩{x<xσ} g(x, y)dxdy. That is -2 -2-a (x + 2 + 3a)dx = xσ -2-a (x + 2 + 3a) 1 + 1 4 x + η √ a(x + 2 + a) dx.
Making the change t = 2 + a + x, we obtain

a 0 (t + 2a)dt = xσ+2+a 0 (t + 2a) 1 2 + t -a 4 + η √ a t dx
Since both (t -a) and η ( √ a t) tend to 0 when t, a → 0 (recall that η(t) = O(t 2 )), they are negligible in front of the constant 1 2 . This implies that, for small a, we should have (4.18)

x σ ≥ -2 + ( √ 5 -2)a.

Indeed, either x σ + 2 does not tend to 0, in which case (4.18) is satisfied, or it tends to 0, in which case we can write, for small a,

a 0 (t + 2a)dt ≤ xσ+2+a 0 3 4 (t + 2a)dx.
Computing these integrals explicitly we get exactly the inequality (4.18).

On the other hand, by (4.1), we have σ = a 3/2 . Note that x(0) = -2. Hence (4.19) lim

σ→0+ x(σ) -x(0) σ ≥ 1 4 lim σ→0+ a -1/2 = ∞.
Our claim follows.

As q 0 = (-2, 0) is an interior point of ∆ ABB ′ , we have thus constructed positive, smooth densities f, g, and c-convex domains Ω = Ω * = ∆ ABB ′ , such that the associated optimal mapping T 0 is not Lipschitz at interior points.

As the triangle ∆ ABB ′ is c-convex with respect to each other, the optimal mapping T ε is smooth [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF]. By Lemma 4, one has T 0 = lim ε→0 T ε , and the above example shows that T ε is not locally, uniformly Lipschitz continuous as ε → 0.

Applications and perspectives

The regularity problem for the Monge cost is very natural in transport theory and very difficult. For the moment, even the implication f, g ∈ C ∞ ⇒ T 0 ∈ C 0 in a convex domain is completely open. The transport T 0 , among the optimal transports for the cost |x -y| (for which there is no uniqueness), is likely to be the most regular and the easiest to approximate.

The present paper presented a strategy inspired by the previous results introduced in [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF] to get Lipschitz bounds, i.e. L ∞ bounds on the Jacobian. Yet, it only allows for some partial bounds, and the counter-example of Section 4 shows that a Lipschitz result is not possible. However, in the same counter-example, the monotonic transport T 0 is a continuous map, and the point where a non-Lipschitz behavior is observed shows anyway the behavior of a C 0, 2 3 map. Thus, it is still possible to hope for continuous, or even Hölder, regularity results on T 0 . We stress that these results could also be applied to the regularity of the transport density. The transport density is a notion which is specifically associated to the transport problem for the Monge cost (see [START_REF] Feldman | Uniqueness and transport density in Monge's mass transportation problem[END_REF]): it is a measure σ which satisfies (5.1)

     div • (σDu) = f -g in Ω |Du| ≤ 1 in Ω, |Du| = 1
a.e. on σ > 0, together with the Kantorovich potential u.

Several weak regularity results have been established, starting from the absolute continuity of σ if either f or g are absolutely continuous, till the L p estimates f, g ∈ L p ⇒ σ ∈ L p (see [START_REF] Feldman | Uniqueness and transport density in Monge's mass transportation problem[END_REF][START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF][START_REF] Pascale | Integral estimates for transport densities[END_REF][START_REF] Pascale | Sharp summability for Monge Transport density via Interpolation[END_REF][START_REF] Santambrogio | Absolute continuity and summability of transport densities: simpler proofs and new estimates[END_REF]).

An explicit formula for σ in terms of optimal transport plans or maps is available (we will not develop it here, see [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF]) and most possible strategies for the regularity of the transport density need some continuity of the corresponding optimal transport. Yet, one of the advantages of working with σ is that any optimal transport T produces the same density σ. This allows for choosing the most regular one, for instance T 0 , but requires anyway some regularity on it. Here is where our analysis comes into play (without, unfortunately, providing any exploitable result). But there are other features of the transport density that one could take advantage of: from the fact that it only depends on the difference f -g, one can decide to add any common density to both measures. For instance, if f and g are smooth densities with compact support on R n , it is always possible to add common background measure on a same convex domain Ω including both the supports. Ω can be chosen as smooth as we want, and we can for instance take Ω to be a ball. Also, one can add another common density to f and g so as to get g = 1. This last trick allows to avoid some of the tedious computations of Section 3, since in this case g(T ) has not to be differentiated.

In any case, even with these simplifications, the continuity result is not available for the moments. Possible perspectives of the current research involve the use of these partial estimates to prove continuity.

Among the possible strategies

• Use the bounds on DT ε to get estimates on the directions of the transport rays for the limit problem, and use them to estimate how much the disintegrations of f and g vary according to the rays. Using the fact that the monotonic optimal transport (in one dimension) continuously depends on the measures, one can hope for the continuity of T 0 . • Use the fact that the bound on W gives an L ∞ bound on div(LDu) and, since L depends on |Du|, one faces a highly non-linear and highly degenerate elliptic PDE where the goal would be to get uniform continuity results on LDu. This recalls what has been recently done in very degenerate elliptic PDEs for traffic applications (see [START_REF] Santambrogio | Continuity in two dimensions for a very degenerate elliptic equation[END_REF][START_REF] Colombo | Figalli Regularity results for very degenerate elliptic equations[END_REF]), but seems (much) harder because LDu is not a uniformly continuous function of Du. • Write down some elliptic PDEs solved by some scalar quantities associated to T ε , for instance by L, and use the bounds on the matrices A and w that have been proven here in order to apply De Giorgi-Moser arguments (or their wider generalizations, see [START_REF] Benedetto | Degenerate Parabolic Equations[END_REF] for a complete framework). Should it work, this would give Hölder continuity. Unfortunately, our attempts have not given any useful PDE so far.

All in all, up to the two-dimensional result of [START_REF] Fragalà | Continuity of an optimal transport in Monge problem[END_REF] (which requires disjoint and convex supports), the search for continuous optimal transports for the original cost of Monge is still widely open.

= 27 +

 27 135a + 70a 2 162 (1 + a) 3 (3 + a).

  a (x, y) = 0.
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