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Abstract. This work deals with certain point patterns of an Euclidean space,
for which the calculation of the Ellis enveloping semigroup of their associated
dynamical systems is performed. The algebraic structure and the topology of
the Ellis semigroup, as well as its action on the underlying space, are explicitly
described. The present work is illustrated with the treatment of the vertex pattern
of the so-called Amman-Beenker tiling of the plane.

Introduction

This article proposes to study certain aspects of dynamical systems which are
associated with point patterns of an Euclidean space. The topic of point patterns
takes its origins in symbolic dynamic, and concerns also aperiodic tillings. It has
however been increasingly addressed by numerous authors since these past thirty
years after the discovery by Schetchmann et al. of physical materials now commonly
called Quasicrystals. In this context a point pattern of an Euclidean space Rd is
thought as an alloy, where points are understood as positions of atoms, or molecules
or electrons, and the quasicrystalline structure then comes when a certain long range
order is observed on the disposition of points within the pattern.

A great success in the topic of point patterns is the possibility to handle a pattern
Λ0 of Rd by considering the dynamical system associated to it. It consists of a space
XΛ0

called the hull of Λ0, which is formed of all other point patterns locally looking
as Λ0 and endowed with a suitable compact topology, together with an action of
the space Rd by homeomorphisms. Natural properties of a pattern which are of
geometric, combinatoric and/or statistical nature are then displayed by topological,
dynamical and/or ergodic features on this dynamical system. This is particularly
true for long range order on point patterns, where the counterpart seems to rely on
the existence of eigenfunctions for the associated dynamical system. For instance,
within the class of substitutive point patterns the Meyer property, which is a strong
form of internal order [23], is equivalent to the existence of a non-trivial eigenfunction
for the associated dynamical system [22]. This type of statement also exists outside
the realm of substitution patterns [17]. Another example concerns the subclass of
regular model sets, which can be viewed as the most ordered aperiodic patterns, where
the property to be a regular model set is equivalent, among patterns admitting the
Meyer property, with the property that continuous eigenfunctions forms a separating
family for a full measure subset of the associated hull [4] [21]. A third striking result
is that pure point diffractivity of a pattern [15], with is truly of statistical nature
[25], is known to be equivalent to the existence of a basis of eigenfunctions for the
Hilbert space provided by the hull together with a certain ergodic measure (there
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is a widely developed literature about this aspect of patterns, see for instance [20]
[3] and references therein). These statements have been shown under various mild
assumptions on the considered pattern.

A certain form of this eigenvalue problem for a point pattern can be addressed,
on a topological point of view, by the knowledge of the Ellis enveloping semigroup
of its dynamical system (X,Rd). This semigroup has been introduced for dynamical
systems by Ellis and Gottschalk [7] as a way to study actions of a group on a compact
space from an algebraic point of view. In a series of papers, Glasner investigated this
semigroup for fairly general dynamical systems (see the review [11] and references
therein), and him together with Megrelishvili showed in [13] that a dichotomy occurs
on the Ellis semigroup E(X,Rd): It is either sequentially compact or contains a topo-
logical copy of βN the Stone − Čech compactification of the integers. The former
situation admits several equivalent formulations and when it occurs the underlying
dynamical system is called tame [10]. Tame systems are dynamically simple: Indeed
it is proved in [12] that they are uniquely ergodic, almost automorphic and measur-
ably conjugated with a Kronecker system. In the vocabulary of eigenfunctions this
means that continuous eigenfunctions of the system separates a residual subset of
full measure in the underlying compact space. In the topic of point patterns this
just asserts that, following the characterization of model sets provided in [4], a point
pattern admitting the Meyer property and with a tame dynamical system must be a
regular model set.

In this work we propose to provide a qualitative description of the Ellis semigroup
of dynamical systems systems associated with particular point patterns, the almost
canonical model sets. These particular patterns are relevant in the crystallographic
sense, as well as very accessible mathematically: One can get a complete picture
of the hull XΛ0

of such patterns [19], as well as there associated C∗-Algebras (a
recent source is [27], see references therein), and also perform the computation of
their cohomology and K-theory groups [8] [9] [27] as well as the asymptotic exponent
of their complexity function [16]. We show that in our situation it is possible to
completely describe elements of the Ellis semigroup, their action onto the underlying
space, as well as the algebraic and topological structure of this semigroup. The type
of calculation made here can be compared with the calculation performed in [26]
about Sturmian and Sturmian-like systems (see also example 4.5 of [11]). We also
show that for those dynamical systems the Ellis semigroup is of first class on the sense
of the dichotomy of [13], that is, almost canonical model sets have tame systems.

Presentation of the content

In order to construct a model set of Rd, one begin by considering a higher dimen-
sional Euclidean space Rn+d together with a lattice Σ in it, a well as an embedded
d-dimensional slope, usually placed in an ’irrational’ manner, which is thought as the
space Rd itself. Such an environment used to construct a model set is called a cut
& project scheme. Then a second step is to consider a suitable region W of the Eu-
clidean subspace Rn orthogonal to Rd. The model set in question thereby emerges as
the orthogonal projection in Rd of certain points of Σ, namely those with orthogonal
projection in Rn falling into the region W . Mathematically a model set thus writes

Λ0 :=
{

γ‖ | γ ∈ Σ and γ⊥ ∈ W
}
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where ‖ and ⊥ denotes the orthogonal projections onto Rd and Rn respectively. In
the above context we will speak about a real model set (see the discussion of section
1), the word "real" resulting from the fact that the summand Rn used here to form
the cut & project scheme is an Euclidean space.

The dynamical system (X,Rd) associated with a real model set is of very particular
form: It is an almost automorphic extension over a torus Tn+d := Rn+d�Σ (see the
material of section 2). This property will prove to be central in our task, and shows
up with the consideration of a certain factor map, also known as the parametrization
map [2] [30]

X Tn+dπ

This mapping also demonstrate that any pattern Λ in the hull X of a model set Λ0

is in also a model set, such that if it admits [w, t]Σ ∈ Rn+d�Σ = Tn+d as image then
Λ is determined, as model set, by the region W + w in Rn, next translated by the
vector t in Rd. This is described in better details in first section of the main text.

The first step in determining the Ellis semigroup E(X,Rd) is to describe it as a
suspension of another (simplier) semigroup (see section 3). To that end we let Γ
be the subgroup of Rd obtained as orthogonal projection of the lattice Σ used to
construct Λ0 as a model set. Γ is not a lattice of Rd unless Λ0 itself is a lattice, and
will often be dense in Rd, although it is always finitely generated. We now consider
the collection ΞΓ of point patterns in X which are contained, as subsets of Rd, into Γ.
This subset of X remains stable under the action of any vector of Rd which lies in Γ,
and when endowed with a suitable topology it gives rise to a new dynamical system
(ΞΓ,Γ). We call this latter the subsystem associated with Λ0. The space ΞΓ will have
a locally compact totally disconnected topology, and as a result its Ellis enveloping
semigroup E(ΞΓ,Γ) will be a locally compact totally disconnected topological space
(for Ellis semigroup of dynamical systems over locally compact space see section 2).
The importance of this semigroup is our setting justified by theorem 3.6, which yields
a algebraic isomorphism and homeomorphism

E(X,Rd) ≃ E(ΞΓ,Γ)×Γ Rd

where the right hand term is understood as the quotient of E(ΞΓ,Γ) × Rd under
a natural diagonal action of Γ. This theorem shows in particular that the Ellis
semigroup E(X,Rd) is in our context a matchbox manifold : It is locally the product
of an Euclidean open subset with a totally disconnected space. It also asserts that
the non-trivial (and in particular the non-commutative) part of E(X,Rd) is displayed
by the semigroup E(ΞΓ,Γ).

We will thus from know on focus on the calculation of E(ΞΓ,Γ). At first, we show
the existence of an onto continuous semigroup morphism

E(ΞΓ,Γ) Rn
Π∗

This morphism is closely related with the parametrization map presented above,
and will allows us to understand the convergence of a net in E(ΞΓ,Γ) by how the
corresponding net, through this morphism, converge in Rn.

Our wish know is to find a certain semigroup S, together with a certain semigroup
morphism from E(ΞΓ,Γ) into S, such that the Ellis semigroup E(ΞΓ,Γ) embeds in the
direct product S ×Rn. In order to simplify the problem we let the almost canonical
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property enter the game. This property consist of a condition on the region W used
to obtain Λ0 as model set, that is, W must be a polytope of Rn satisfying a particular
condition (see section 4). With the assumption of almost canonicity for the region W
together with the almost automorphic property observed on the dynamical system
(XΛ0

,Rd), we are able to identify the correct semigroup S as the face semigroup
associated with the polytope W in Rn (see sections 5 and 6 for presentation and
results).

We may shortly present the face semigroup TW associated with the polytope W in
Rn as follows: The polytope W determines a finite collection of linear hyperplanes HW

in Rn, namely the ones which are parallel to at least one face of W . This collection
in turns determine a stratification of Rn by cones, all being, for each hyperplane
H ∈ HW , included into H or integrally part of one of the two possible complementary
half spaces. An illustration of this construction is provided in section 7, where W
is there a regular octagon of R2. Now the face semigroup TW is set-theoretically
the finite collection of cones resulting from this stratification process, together with
a (non-commutative) semigroup product stating that the product C.C ′ of two cones
is the cone where the head of C enters after being translated by small vectors of C ′.
The elements of TW are more conveniently described as "side maps", which consist
of mappings from HW to the three symbols set {−, 0,+}, giving the relative position
of any cone with respect to each hyperplane. This formalism has the advantage to
allows for a concise and handy formulation of the product law on this semigroup (see
section 6).

The embedding morphism

E(ΞΓ,Γ) HW × Rn

is made from the observation that a neighborhood basis of any transformation g ∈
E(ΞΓ,Γ) is provided by the vector wg := Π∗(g) of Rn together with a certain cone

Cg ∈ TW , in the sense that a net in Γ converges to g in the Ellis semigroup E(ΞΓ,Γ)
(such a net exists by construction) if and only if the corresponding net in Rn converges
to wg and eventually lies into Cg+wg. In this sense the cone Cg provides the direction
a net must follow in order to converge to the transformation g. This allows us to
calculate the corresponding image subsemigroup in HW × Rn, which is the aim of
theorem 6.3, proved to be a finite disjoint union of subgroups of Rn. Moreover
the topology of E(ΞΓ,Γ) is here completely described by a geometric criterion of
convergence for nets.

Finally, we fusion theorems 3.6 and 6.3 to formulate our main theorem (see the
statement 7.1), setting the existence of an embedding semigroup morphism

E(X,Rd) HW × Tn+d

for which the image subsemigroup together with its topology are identified. Interrest-
ingly, this semigroup remains exactly the same for model sets issued after translating,
dilating, or deforming the region W as long as the hyperplanes determined by the
faces are unchanged. As a byproduct of the previous analysis we show that the topol-
ogy of the Ellis semigroup E(X,Rd) admits a first countable topology, and thus is
sequentially compact. We conclude this work by determining some algebraic features
of this Ellis semigroup, as well as a picture of its underlying action on the space X.
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1. Model sets and associated dynamical systems

1.1. General definition of inter model set. In order to define what a (almost
canonical) model set is in Rd (see [30] as well as [24] for a more detailed exposition),
we consider first an environment used to construct it, namely a cut & project scheme.
It consists of a data (H,Σ,Rd) with associated diagram

H H× Rd Rd

∪ ∪ ∪

Γ∗ Σ Γ

where H is a locally compact Abelian group, with:
- Σ is a countable lattice of H × Rd, that is, a countable discrete and co-compact
subgroup.
- the canonical projection πRd onto Rd is bijective from Σ onto its image Γ.
- the image Γ∗ of Σ under the canonical projection πH is a dense subgroup of H.

Hence such an environnement consists of an Euclidean space Rd embbedded into
H × Rd in an ’irrationnal position’ with respect to the lattice Σ. There is a well
established formalism for these different ingredients: the space Rd is often called
the physical space whereas the space H is called the internal space. Moreover the
morphism Γ −→ H which maps any γ onto γ∗ := πH(π

−1
Rd (γ)) ∈ Γ∗ is the *-map

of the cut & project scheme, whose graph is the lattice Σ. We will say that a cut
& project scheme is real whenever the internal space H is a finite dimentionnal real
vector space Rn.

We shall in addition consider a certain type of subset in the internal space H,
usually called a window, which consists of a compact and topologicaly regular subset
W , supposed irredundant in the sense that the compact subgroup of elements of
w ∈ H which satisfy W + w = W is trivial.

Now if we are given a cut & project scheme together with a window W in its
internal space, we may form a certain point pattern P(W ) of Rd by projecting into
the physical space the subset of points of the lattice Σ lying within the strip W ×Rd.
To illustrate this we consider the following picture (see also [2])

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b

b

b

b

b

b

b b b b b b b

b

b

b

b

b Rd = R

b

H = R

b

W

The above picture presents the most simple real cut & project scheme one may
consider, that is, with physical and internal spaces being 1-dimensional, and with a
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lattice Σ = Z2 not crossing these spaces except at the origin. As window we consider
the projection into the internal space of the unit square in R2.

The point pattern P(W ) may be written using the ∗-map in the following form

P(W ) := {γ ∈ Γ | γ∗ ∈ W}

We may allows ourselves to translate the resulting point pattern by any vector
t ∈ Rd site by site in the physical space, which we call here physical translation, or
translate the window W by an element w ∈ H, which we call internal translation. In
both cases this leads to a new point pattern of Rd. We now introduce the class of
model sets of Rd as follows:

Definition 1.1. An inter model set Λ associated with a cut & project scheme (H,Σ,Rd)
together with a window W is a subset of Rd of the form

P(w+
◦
W )− t ⊆ Λ ⊆ P(w +W )− t

An inter model set is called regular whenever the window W used to construct it
has boundary of Haar measure zero in H. Due to the assumptions on the underlying
cut & project scheme and on the window W , any inter model set is a Delone set,
that is to say a uniformly discrete and relatively dense subset of Rd. In fact, it also
admits the stronger property of being a Meyer set, meaning that any inter model set
Λ admits a uniformly discrete difference subset Λ− Λ in Rd. Most of the content of
this article is about real cut & project schemes together with polytopal windows in
their internal spaces, hence providing inter model sets which are regular.

1.2. Non-singular model sets. An important notion affiliated with a point pattern
Λ is its language, namely the collection of all ’circular-shaped’ patterns appearing at
sites of the point pattern:

LΛ := {(Λ− γ) ∩B(0, R) | γ ∈ Λ, R > 0}

Not all inter model sets coming from a comon cut & project scheme and window
have same language. However, the class of non-singular model sets, also often called
generic model sets, do share their language:

Definition 1.2. A non-singular model set is an inter model set for which we have
equalities

P(w+
◦
W )− t = Λ = P(w +W )− t

The situation where such equality occurs for a given couple (w, t) clearly only
depends on the choice of w ∈ H. We will then call an element w ∈ H non-singular

when the inter model sets P(w+
◦
W )− t = Λ = P(w+W )− t are non-singular. Such

a subset of non-singular elements may easily described: it consists of all w ∈ H where
no point of the subgroup Γ∗ of H enters the boundary w + ∂W of the translated
window w +W . It thus consists of the complementary subset

NS := [Γ∗ − ∂W ]c

This set is always non-empty from the Baire category theorem, as W was assumed
topologically regular, hence with boundary of empty interior in H, and Σ (hence Γ∗)
was supposed to be countable. As already pointed out, the non-singular model sets
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arising from a common cut & project scheme with window have a common language,
which means that any pattern of some non-singular model set appears elsewhere in
all other non-singular model sets. Denoting LNS this language, we are led to consider
its associated hull

Definition 1.3. Given a cut & project scheme and a window, LNS the language of
any non-singular model set arising from this data, the hull of this data is the collection

X :=
{

Λ point pattern of Rd |LΛ = LNS

}

We call model set any point pattern within the hull X associated with some cut &
project scheme and window.

The hull X associated with some cut & project scheme and window is also called
the local isomorphism class (or simply LI-class) of any model set within this hull.

1.3. The hull as dynamical system. There is a natural topology on the hull X,
which is metrizable and may be described by setting a basis of open neighborhoods
of any point pattern Λ ∈ X (see for instance [24])

UK,ε(Λ) :=
{

Λ′ ∈ X | ∃|t|, |t′| < ε, (Λ− t) ∩K = (Λ′ − t′) ∩K
}

(1)

where K is any compact set in Rd and ε > 0. This topology roughly means that two
point patterns are close if they agree on a large domain about the origin up to small
shifts. Then the hull X endowed with this topology is a compact metrizable space,
and is endowed with a natural action of Rd given by Λ.t := Λ− t, that is, by shifting
any point pattern site by site. This provides so a dynamical system (X,Rd). In order
to figure out what exactly consists this space, we invoke the following beautiful result:

Theorem 1.4. [30] Let X be the hull associated with a cut & project scheme (H,Σ,Rd)
and some window. Then X is compact and the dynamical system (X,Rd) is minimal.
Each Λ ∈ X satisfy inclusions of the form

P(wΛ + W̊ )− tΛ ⊆ Λ ⊆ P(wΛ +W )− tΛ

where (wΛ, tΛ) ∈ H×Rd is unique up to an element of Σ, thus defining a factor map

π : X H×Σ Rd

with H×Σ Rd the compact Abelian group quotient of H× Rd by the lattice Σ.
The map π is injective precisely on the collection of non-singular model sets of X.

By factor map we mean here a continuous, onto and Rd-equivariant map, where on
the compact Abelian group H×ΣR

d the space Rd acts through [w, t]Σ.s := [w, t+s]Σ.
In the context of real cut & project schemes the compact Abelian group is given by
[

Rn+d
]

Σ
, that is, a n+ d-torus. In the topic of point patterns the above factor map

is called the parametrization map, and shows in particular that any model set of X is
an inter model set in the sense of definition 1.1. In fact, the collection X of model sets
of a given cut & project scheme and window is precisely the collection of repetitive
inter model sets arising from this data (see for instance [30]).
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1.4. An explicit example. A well-known example of model set is the vertex point
pattern of the famous Ammann-Beenker tiling, from which an uncolored local pattern
about the origin shows up as

b

0
b e1

b
e2b

e3

b
e4

We can set a cut & project scheme and window giving rise to the desired point
pattern as follows: We set in a physical space R2 the group Γ algebraically generated
by four vectors whose coordinates in an orthonormal basis read

e1 = (1, 0) e2 = ( 1√
2
, 1√

2
) e3 = (0, 1) e4 = (− 1√

2
, 1√

2
)

These four vectors are algebraically independent, and thus Γ is isomorphic with Z4.
Next we set an internal space R2

int to be a 2-dimensional real vector space, into which
we define a ∗−map through the images of the four above vectors, reading in some
orthogonal basis of R2

int

e∗1 = (1, 0) e∗2 = (− 1√
2
, 1√

2
) e∗3 = (0,−1) e∗4 = ( 1√

2
, 1√

2
)

The four vectors ẽi := (ei, e
∗
i ), i = 1, 2, 3, 4, are linearly independant in R2

int×R2 and
thus form a lattice Σ, which project into R2

int into a dense subgroup Γ∗. This sets a
real cut & project scheme. We chose the window to be canonical, that is, to be the
projection into the internal space of the unit cube of R2

int × R2 with respect to the
basis (ẽ1, ẽ2, ẽ3, ẽ4). Hence we get a regular octagonal window Woct of the form

b e
∗

1
b

0

b

e∗2

b

e∗3

b

e∗4

Then the vertex point pattern appearing in the Ammann-Beenker tiling is given

by the non-singular model set P

(

Woct −
e∗1 + e∗2 + e∗3 + e∗4

2

)

.
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2. Ellis semigroups of dynamical systems

2.1. Ellis semigroup and equicontinuity. Let us consider a compact dynamical
system, that is, a compact (Hausdorff) space X together with an action of a group T
by homeomorphisms. Following [1] we let

Definition 2.1. The Ellis semigroup E(X, T ) is the pointwise closure of the group
of homeomorphisms given by the T -action in the space XX of self-mappings on X.

The Ellis semigroup E(X, T ) is then a family of transformations on the space
X which are pointwise limits of homeomorphisms coming from the T -action, and is
stable under composition. Moreover it is a compact (Hausdorff) space when endowed
with the pointwise convergence topology coming from XX. In case the acting group
is Abelian then, although the Ellis semigroup may not be itself Abelian, all of its
transformations commutes with any homeomorphism coming from the action.

The Ellis semigroup construction is functorial (covariant) in the sense that any onto
continuous and T -equivariant mapping π : X ։ Y gives rise to an onto continuous
semigroup morphism π∗ : E(X, T ) ։ E(Y, T ), satisfying π(x.g) = π(x).π∗(g) for
any x ∈ X and any transformation g ∈ E(X, T ). Here we have written x.g for the
evaluation of a mapping g at a point x. With this convention the Ellis semigroup
is always a compact right-topological semigroup, that is, if some net (hλ) converges
pointwise to h then the net (g.hλ) converges pointwise to g.h for any g, where g.h
stands for the composition map which at each point x reads (x.g).h.

Among the whole category of dynamical systems, the certainly most simple objects
are the equicontinuous dynamical systems. These are the dynamical systems such that
the family of homeomorphisms coming from the group action is equicontinous, and
within the more specific class of compact minimal dynamical systems they exactly
shows up as the well known class of Kronecker systems. About these particular
dynamical systems one has the following:

Theorem 2.2. [1] [14] Let (X, T ) be a minimal dynamical system over a compact
metric space, with Abelian acting group. Then the following assertions are equiva-
lents:

(1) the dynamical system (X, T ) is equicontinuous.
(2) E(X, T ) is a compact group acting by homeomorphisms on X.
(3) E(X, T ) is metrisable.
(4) E(X, T ) has left-continuous product.
(5) E(X, T ) is Abelian.
(6) E(X, T ) is made of continuous transformations.

In this case one has E(X, T ) = X as compact Abelian group.

Here the compact Abelian group structure of a compact minimal equicontinuous
system (X, T ) with Abelian acting group is only determined by the choice (which is
arbitrary) of one element e ∈ X which plays the role of unit, from which the group
structure extends that of T mapped on the dense orbit e.T . In this case the equality
E(X, T ) = X is performed by identifying a transformation g ∈ E(X, T ) with e.g in
X.
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Outside the scope of equicontinuous systems, The Ellis semigroup is a quite com-
plicated object as it is formed of mappings neither necessarily continuous nor invert-
ible, and is not commutative. However a general construction allows to attach to any
compact dynamical system a particular factor:

Theorem 2.3. Let (X, T ) be a compact dynamical system. There exist an equicon-
tinuous dynamical system (Xeq, T ) together with a factor map π : X ։ Xeq such that
any equicontinuous factor of (X, T ) factors through π.

The space Xeq with T -action is called the maximal equicontinuous factor of (X, T ),
and is a Kronecker system whenever (X, T ) is topologically transitive. From theorem
2.2 one has E(X, T ) = Xeq as compact groups, and from the fonctorial property of the
Ellis semigroup the quotient factor map π from X onto its maximal equicontinuous
factor gives rise to an onto and continuous semigroup morphism

π∗ : E(X, T ) ։ Xeq

2.2. The tame property. There exists among dynamical systems over compact
metric spaces with jointly continuous action of a topological group, a dichotomy
about their Ellis semigroups:

Theorem 2.4. [11] The Ellis semigroup E(X, T ) of a dynamical system over a com-
pact metric space is either sequentially compact or contains a topological copy of βN
the Stone− Čech compactification of the integers.

The first alternative admits several different formulations (see [11] [14] and refer-
ences therein) and whenever it occurs then the underlying dynamical system is called
tame. Obviously if a compact metric dynamical system admits an Ellis semigroup
with first countable topology then it is automatically a tame system. The tameness
property is in fact very strong, as the next result shows:

Theorem 2.5. [12] If a compact metric minimal dynamical system (X, T ) with T
Abelian is tame then its factor map π : X ։ Xeq is 1-to-1 above a full Haar measure
subset X0

eq of the compact Abelian group Xeq.

Hence on the measure side these dynamical systems are endowed with a unique
ergodic probability measure m, such that (X,m) identifies, through π, as measure
space with Xeq endowed with its Haar probability measure. On the topological side a
tame dynamical system is more generally an almost automorphic dynamical system:

Definition 2.6. A compact dynamical system (X, T ) is almost automorphic if the
factor map π : X ։ Xeq possess a of one-point fiber.

In case of metrisability of the space X a result of Veech [32] shows that any almost
automorphic system has in fact a residual subset of one-point fibers with respect to
the mapping π. In the situation of a hull X of model sets the factor map π onto
the maximal equicontinuous factor is precisely the parametrization map of theorem
1.4. This theorem also asserts that, as π is 1-to-1 on a non-empty subclass of X (the
non-singular model sets), the dynamical system (X,Rd) is almost automorphic. It
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can even been shown [21] that a hull of model sets consists of regular model sets
(meaning that the region W as its boundary of null Haar measure in H) if and only
if the map π is 1-to-1 above a full haar measure subset of Xeq.

2.3. Ellis semigroup for locally compact dynamical systems. We wish to in-
clude here two elementary results about the Ellis semigroups one may define for
dynamical systems over locally compact spaces. Let X be a locally compact space
together with an action of a group T by homeomorphisms, and as in the compact
case, set the Ellis semigroup E(X, T ) to be the pointwise closure in the product space
XX of the group of homeomorphisms coming from the T -action. In order to extend
some results available in the compact case to this setting we consider the one-point
compactification X̂ of X, endowed with a T -action by homeomorphism so that the in-
finite point remains fixed through any such homeomorphism. Let us denote by FX the

subset of X̂X̂ of transformations mapping X into itself and keep the point at infinity
fixed, endowed with relative topology. Then FX is a semigroup which is isomorphic
and homeomorphic with the product space XX, and under this identification

E(X, T ) = E(X̂, T ) ∩ FX

Observe that E(X, T ) is, as in the compact flow case, a right-topological semigroup
containing T as a dense subgroup (or rather the subsequent group of homeomor-
phisms). The following is a general fact, whose proof for compact dynamical systems
can be found in [1]:

Proposition 2.7. Let π : X ։ Y be a continuous, proper, onto, and T -equivariant
map between locally compact spaces. Then there exist a continuous, proper, and onto
morphism π∗ : E(X, T ) ։ E(Y, T ) satisfying the equivariance condition: π(x.g) =
π(x).π∗(g) for any x ∈ X and g ∈ E(X, T ).

Proof. Denote by ⋆X and ⋆Y the respective points at infinity in the compactified
spaces. Since π is continuous and proper, it extends to a continuous and onto map
π̂ : X̂ ։ Ŷ, such that π̂−1(⋆Y) = {⋆X}. Obviously π̂ is T -equivariant with re-
spect to the extended T -actions. There exist then a continuous and onto morphism
π̂∗ : E(X̂, T ) ։ E(Ŷ, T ), satisfying the equivariance equality for any x ∈ X̂ and

g ∈ E(X̂, T ): π̂(x.g) = π̂(x).π̂∗(g). The later equivariance condition implies that a

transformation g of E(X̂, T ) lies into FX if and only if π̂∗(g) lies in FX: it follows that
E(X, T ) = (π̂∗)−1(E(Y, T )). Restricting the morphism on E(X, T ) gives the map,
together with the onto property. Finally a compact set of E(Y, T ) has to be compact

in E(Ŷ, T ) as it is easy to check, so have a compact inverse image in E(X̂, T ) under
π̂∗. This latter is entirely included in E(X, T ), so is compact for the relative topology
on E(X, T ). This gives the properness.

�

Observe that π∗(t) = t holds for any t ∈ T . As in the compact setting, if the acting
group T is Abelian then any induced homeomorphism commutes with any mapping
in E(X, T ). To end this paragraph we set without proof the following easy property
on locally compact Kronecker systems:

Proposition 2.8. If T is a dense subgroup of a locally compact Abelian group G, T
acting by translation, then E(G, T ) is topologically isomorphic with G for which any
g ∈ G is identified with its translation map in E(G, T ).
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3. The internal system of a hull of model sets

3.1. Internal system. What we introduce here is an analog, in the hull X, of the
internal space H we may find in the compact Abelian group H ×Σ Rd (the torus
[

Rn+d
]

Σ
in case of a real cut & project scheme). We call this analog the internal

system of a hull of model sets. The consideration of this particular space is not new
(it appeared in [8] as well as in the formalism of C∗-algebras in [27]), although it is
often not explicitly mentioned, and we set here the main aspects about this space.

Definition 3.1. Let X be the hull of model sets associated with a cut & project
scheme (H,Σ,Rd) and a window W . Then its internal system is the subclass ΞΓ of
point patterns which are supported on the structure group Γ in Rd, that is,

ΞΓ := {Λ ∈ X | Λ ⊂ Γ}

According to theorem 1.4, any model set admits inclusions of the form stated in
definition 1.1, and here as we can see the subclass ΞΓ exactly consists of the model
sets for which these inclusions write

P(w+
◦
W ) ⊆ Λ ⊆ P(w +W )

Equivalently, ΞΓ is the subclass of model sets in X whose image under the parametriza-
tion map π of theorem 1.4 is of the form [w, 0]Σ in the compact Abelian group H×ΣR

d.
On the other hand, there exists a natural morphism mapping any element w of the
internal space H onto [w, 0]Σ in H ×Σ Rd, which is 1-to-1 and continuous. This sug-
gests the existence of a mapping from the internal system ΞΓ onto the internal space
H of the cut & project scheme. However, similar to the fact that H is in general
not topologically conjugated with its image in H ×Σ Rd, one cannot just consider
the topology of X induced on ΞΓ. Rather, we consider on the internal system the
topology whose open neighborhood basis at any Λ ∈ ΞΓ is specified as

UK(Λ) :=
{

Λ′ ∈ ΞΓ | Λ ∩K = Λ′ ∩K
}

(2)

where K is any compact set in Rd. This means that two point patterns are close in
ΞΓ if they exactly match on a large domain about the origin. On the internal system
equipped with the above topology, we consider the action of the group Γ by homeo-
morphisms given by translation site by site on each model set, so that one obtains a
dynamical system (ΞΓ,Γ). From the minimality of the dynamical system (X,Rd) by
theorem 1.4, this dynamical system is also minimal. Of particular importance is the
sub-collection, often called the transversal, of point patterns containing the origin

Ξ := {Λ ∈ X | 0 ∈ Λ ⊂ Γ}

Any model set containing the origin must be entirely included in the structure group
Γ, that is, Ξ is a subset of the internal system ΞΓ. A fact of fundamental importance
is that Ξ is in fact a clopen set, that is, a subset which is both open and closed in the
internal system ΞΓ: Indeed any accumulation point pattern of Ξ must possess the
origin in its support, and thus is actually an element of Ξ, and on the other hand for
each Λ ∈ Ξ and any radius R > 0 the collection UB(0,R)(Λ) is an open neighborhood

of Λ in ΞΓ that is clearly contained into the transversal Ξ.

About the topology of the transversal one may observe that there is a one to
one correspondence between circular-shaped local configuration of radius R in the
language LNS and subsets in Ξ of the form UB(0,R)(Λ), for the same radius R and
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Λ chosen in Ξ. Thus compactness of Ξ is rephrased by the existence of only a finite
number of such circular-shaped patterns for any radius R, a property called finite
local complexity for the underlying point patterns in X. This property holds in our
context [30] [24], so that Ξ is a compact open subset of the internal system ΞΓ.

Proposition 3.2. The internal system ΞΓ of a hull of model sets is a totally discon-
nected locally compact topological space, and a sub-basis of its topology is formed of
all Γ-translates of Ξ and its complementary set Ξc.

Proof. Any point pattern Λ ∈ ΞΓ is uniquely determined by the knowledge of whether
a point γ ∈ Γ lies in Λ of not, for each γ ∈ Γ. Thus a sub-basis for the topology of
the internal system is given by subsets

Ξγ :=
{

Λ ∈ ΞΓ | γ ∈ Λ
}

or their complementary sets Ξc
γ , for γ ∈ Γ. Since they are both open they are thus

both closed as well, giving that the internal system is totally disconnected. Now any
Ξγ or Ξc

γ is nothing but the −γ translate of Ξ or the complementary set Ξc, as

Λ ∈ Ξ.(−γ) ⇐⇒ Λ.γ ∈ Ξ ⇐⇒ 0 ∈ (Λ− γ) ⇐⇒ γ ∈ Λ ⇐⇒ Λ ∈ Ξγ

As any point pattern Λ ∈ ΞΓ must contain at least one element γ ∈ Γ one gets that
the compact open subsets Ξγ form a covering of ΞΓ, giving the local compactness. �

Proposition 3.3. [30] Let ΞΓ be the internal system associated with a cut & project
scheme (H,Σ,Rd) and some window. Then there exists a factor map

Π : ΞΓ H

mapping a point pattern Λ onto the unique element Π(Λ) = wΛ of H satisfying

P(wΛ + W̊ ) ⊆ Λ ⊆ P(wΛ +W )

Moreover, the map Π satisfies Π(Ξ) = −W , and is injective precisely on the dense
family of non-singular model sets of ΞΓ, whose image is the dense subset NS of H.

From the above proposition we thus have a correspondence between any w ∈ NS
with a unique non-singular model set P(w +W ) ∈ ΞΓ, and we may also write NS
for the dense subclass of non-singular model sets of ΞΓ. Thus the internal system ΞΓ

and the internal space H as different completions of a single set NS. This observation
allows us to set, for any subset A of H, a corresponding subset of ΞΓ of the form

[A]Ξ := A ∩NS
ΞΓ

(3)

Such a [A]Ξ will be non-empty if and only if A intersect NS. In particular [A]Ξ will
have non-empty interior (and hence will be non-empty) whenever A has non-empty
interior. We will have use of the following lemma, which we state without proof:

Lemma 3.4. Let X be a topological space, and Y a dense subset. Then each clopen
subset V of X is equal to the closure of V ∩ Y . Moreover, if two clopen subsets
coincides on Y then they are equal.

For instance one is able to show Ξ = [−W ]Ξ = [−W̊ ]Ξ, underlying a link between
the topology of the internal system and the geometry of W in the internal space.
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Proposition 3.5. There exists an onto and proper continuous morphism

Π∗ : E(ΞΓ,Γ) H

which satisfies the equivariance relation Π(Λ.g) = Π(Λ) + Π∗(g) for any model set
Λ ∈ ΞΓ and any mapping g ∈ E(ΞΓ,Γ).

Proof. Let us show that the the map Π of proposition 3.3 is proper, that is, the
inverse image of any compact set of H is compact in ΞΓ: Let K be a compact subset
of H and pick up a model set Λ in its inverse image Π−1(K). Since Γ∗ is dense in H

there exists γ1, ..., γl in Γ such that K ⊂
⋃l

k=1 γ
∗
k − W̊ . Thus wΛ ∈ K falls into some

γ∗k − W̊ , which implies that γk lies into P(wΛ + W̊ ) ⊂ Λ. This in turns means that
0 ∈ Λ− γk, or so Λ− γk ∈ Ξ and thus Λ ∈ Ξ.(−γk). Hence the closed set Π−1(K) is
entirely included into a finite union of translates of Ξ, each being compact, and so is
a compact set of ΞΓ. Now we have that proposition 2.7 applies, giving after invoking
the statement of proposition 2.8 the desired morphism Π∗. �

3.2. Hull and internal system Ellis semigroups. We wish to rely here the Ellis
semigroup of the dynamical systems (X,Rd) with that of (ΞΓ,Γ). To this end, let g
be any mapping in the Ellis semigroup E(ΞΓ,Γ). Using theorem 1.4 together with
the definition of the internal system, one sees that any point patterns Λ in X can
be written as Λ0 = Λ − t for some model set Λ ∈ ΞΓ and some vector t ∈ Rd. The
mapping g is well defined on each Λ ∈ ΞΓ, and we may thus extend it into a self-map
g̃ of X by setting:

Λ0.g̃ = (Λ− t).g̃ := Λ.g − t(4)

This is well defined since if one has Λ−t = Λ′−t′ with Λ and Λ′ ∈ ΞΓ then necessarily
Γ− t = Γ− t′, which means that t− t′ ∈ Γ, and since g commutes with the Γ-action
on ΞΓ then applying (4) gives the same result. Let us now consider the semigroup
E(ΞΓ,Γ) ×Γ Rd to be the (topological) quotient of the direct product semigroup
E(ΞΓ,Γ)× Rd by the normal sub-semigroup formed of elements (γ, γ) with γ ∈ Γ.

Theorem 3.6. Let X and ΞΓ be the hull and internal system generated by a cut &
project scheme (H,Σ,Rd) and some window. Then there is a homeomorphism and
semigroup isomorphism

E(ΞΓ,Γ)×Γ Rd ≃ E(X,Rd)

mapping each element [g, t]Γ of E(ΞΓ,Γ)×Γ Rd onto g̃ − t.

Proof. First we show that the quotient semigroup E(ΞΓ,Γ)×Γ R
d is compact (Haus-

dorff): From the existence of the morphism Π∗ one then gets a natural onto semigroup
morphism Π∗ × id : E(ΞΓ,Γ)×Rd ։ H×Rd, which maps the normal sub-semigroup
formed by elements (γ, γ) with γ ∈ Γ onto the lattice Σ. Since H ×Σ Rd is compact
(Hausdorff), and since Π∗×id is continuous and proper, we deduce that E(ΞΓ,Γ)×Rd

must itself be compact (Hausdorff).

Now it is clear that the mapping associating g ∈ E(ΞΓ,Γ) with g̃ ∈ XX is a semi-
group morphism for the composition laws of mappings. This association is moreover
continuous: For, it suffices to check the continuity of each evaluation map g 7→ Λ0.g̃,
with Λ0 ∈ X. Write Λ0 as Λ−t with some Λ ∈ ΞΓ. If gλ is a net in E(ΞΓ,Γ) pointwise
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converging on ΞΓ to a mapping g, then one has convergence of the net Λ.gλ to Λ.g in
the internal system ΞΓ. Comparing the topologies coming from the topologies (1) on
X and (2) on ΞΓ one sees that the embedding of ΞΓ into the hull X is continuous, so
that the net Λ.gλ also converges to Λ.g in the hull X. Hence the net Λ0.g̃λ = Λ.gλ− t
converges to Λ.g − t = Λ0.g̃, as desired.

From this we can set a continuous semigroup morphism from E(ΞΓ,Γ) × Rd into
XX associating any pair (g, t) with g̃−t. Clearly any pair of the form (γ, γ) with γ ∈ Γ
is mapped onto the identity map, thus giving a continuous semigroup morphism

E(ΞΓ,Γ)×Γ Rd XX

[g, t]Γ g̃ − t

This map is 1-to-1: If [g, t]Γ and [g′, t′]Γ are such that g̃ − t ≡ g̃′ − t′ then they

must in particular coincide at any model set Λ ∈ ΞΓ, thus giving for each such point
pattern Λ.g − t = Λ.g′ − t′. As Λ.g and Λ.g′ are supported on Γ we deduce that
t′ − t =: γ ∈ Γ, and that g′ coincides with g + γ everywhere on ΞΓ. It follows that
[g′, t′]Γ = [g + γ, t+ γ]Γ = [g, t]Γ, hence giving injectivity. Now the stated morphism

conjugates, both topologically and algebraically, the semigroup E(ΞΓ,Γ) × Rd with
its image in XX. To conclude it suffices then to show that this image densely contains
the group of homeomorphisms coming from the Rd-action on X. Obviously this group
is contained into the image in question, appearing as [0, t]Γ where 0 stands for the
identity mapping on ΞΓ, lying into Γ and thus into E(ΞΓ,Γ). Let then g̃− t be some
mapping in this image. A neighborhood basis for this latter in XX may be stated as
finite intersections of sets

VX(Λ, U) :=
{

f ∈ XX |Λ.f ∈ U
}

containing g̃− t. Let then Λ1, ..,Λk be model sets and U1, .., Uk be open subsets of X
such that g̃ − t lies into V (Λj , Uj) for each j. Then to get density it suffices to show

the existence of some element of Rd also contained into V (Λj , Uj) for each j. Let us
write Λj as a sum Λ′

j − tj with Λ′
j ∈ ΞΓ. Hence the mapping g, being the restriction

of g̃ on ΞΓ, lies into each subset

VΞΓ(Λ′
j ,Ξ

Γ ∩ (Uj + t+ tj)) :=
{

f ∈ (ΞΓ)Ξ
Γ

|Λ′
j .f ∈ Uj + t+ tj

}

(5)

The embedding of ΞΓ into the hull X is clearly continuous, so that ΞΓ ∩ (Uj + t+ tj)

are open sets of the internal system and consequently the sets (5) are open in (ΞΓ)Ξ
Γ

.

As E(ΞΓ,Γ) is the closure of Γ into (ΞΓ)Ξ
Γ

one may thus find some γ ∈ Γ within
each set (5), giving that γ − t ∈ Rd lies into each V (Λj , Uj) , as desired.

�

Appart from this, the parametrization map π of theorem 1.4 also implies the
existence of an onto continuous semigroup morphism

π∗ : E(X,Rd) H×Σ Rd

which satisfies the equivariance relation π(Λ.g) = π(Λ) + π∗(g) for any model set
Λ ∈ X and any Ellis transformation g ∈ E(X,Rd). Then the morphism π∗ extends
the morphism Π∗ in the sense that for any transformation g in E(ΞΓ,Γ) and t ∈ Rd

one has the equality

π∗(g̃ − t) = [Π∗(g), t]Σ
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4. The almost canonical property for model sets

We wish to define here the almost canonical property on a model set. To this
end we restrict ourselves to real cut & project scheme (Rn,Σ,Rd), and we ask the
window W to be a n-dimensional compact convex polytope of the internal space Rn.
The definition of almost canonical model sets will be derived from a corresponding
notion on W , which consists of a pair of assumptions we will now present.

In fact, it will be much more convenient to consider the reversed window M := −W
in the internal space. It thus as well consists of a n-dimensional compact convex
polytope in Rn, whose boundary is given by ∂M = −∂W . Now if we let f to be any
n− 1 dimensional face of M we then set

• Af or A0
f to be the affine hyperplane generated by f .

• Hf or H0
f be the corresponding linear hyperplane in Rn.

• StabΓ(Af ) to be the subgroup of γ ∈ Γ with γ∗ ∈ Hf .

We remark that StabΓ(Af ) is precisely the subgroup of elements γ ∈ Γ such that
Af + γ∗ = Af , whence the notation. We may also denote StabΓ(Af )

∗ for its image
in the internal space under the ∗-map.

Assumption 1. For each face f of M , the sum StabΓ(Af )
∗+f covers Af in Rn.

The above assumption implies in particular that StabΓ(Af ) has a relatively dense
image in Hf under the ∗-map, and thus must be of rank at least n − 1. Under the
above assumption we get a nice description of the subset of non-singular vectors

NS := [Γ∗ − ∂W ]c = [Γ∗ + ∂M ]c =





⋃

f face of M

Γ∗ +Af





c

As we see the above subset of non-singular vectors arise as the complementary subsets
of all the Γ-translates of singular hyperplanes, namely the affine hyperplanes Af with
f a face of the reversed window M . Let us in addition set for each n− 1 dimensional
face f of M

• H−
f and H+

f to be the open half spaces with boundary Hf .

• H−0
f and H+0

f to be the closed half spaces with boundary Hf .

• A−
f , A+

f , A−0
f and A+0

f be the corresponding objects with respect to Af .

The choice of orientation on each linear hyperplane provided by the above notation
is not relevant, but will be remained fixed from now on. Observe that a hyperplane
H may be associated with two different faces, which in this case leaves a common
orientation on the corresponding affine spaces.

Recall that to any Euclidean subset A may be associated a corresponding subset
[A]Ξ of the internal system according to (3). We will be specially interested here in
a certain collection of Euclidean subsets which we call the family of admissible half
spaces

A =
{

γ∗ +A±
f | γ ∈ Γ, f face of M

}
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Assumption 2. Any set [A]Ξ where A ∈ A is a clopen set.

It may be in fact shown that assumption 2 implies assumption 1, but as we don’t
really need to prove this fact here we assume both independently. We wish to illus-
trate what type of polytope could satisfies assumptions 1 and 2 by setting situations
where this holds, but first let us define what an almost canonical model set is:

Definition 4.1. A model set is almost canonical when it may be constructed with
a real cut & project scheme and a compact convex polytopal window in its internal
space satisfying assumptions 1 and 2.

The term almost canonical makes reference to the first point patterns defined as
model sets, the canonical model sets, constructed via a real cut & project scheme
(Rn,Σ,Rd) together with a window being the orthogonal projection of a unit cube,
with respect to the lattice Σ, in the internal space. Our example in section 1 is of
this form. The terminology almost canonical has been introduced by Julien in [16] in
order to set slight generalisations of these model sets. However, our definition doesn’t
in fact fits exactly the one given in [16] (it can be shown that this one implies the one
of Julien), but as we don’t want to introduce another definition for something which
remains highly close to the one of [16] we allows ourselves to call it almost canonical.
As shown in [8], a canonical window always satisfies assumptions 1 and 2 and is thus
almost canonical in our sense.

A condition which makes assumptions 1 and 2 holding is the requirement that
any stabilizer StabΓ(Af ) is dense in the corresponding linear hyperplane Hf , for any
face f of the window W (or its reversed window M , which remains the same). A
lighten condition which also implies assumptions 1 and 2 is a slight strengthening of
assumption 1: If f̊ denotes the relative interior of any face f then

Assumption 1’. For each face f of M , the sum StabΓ(Af )
∗+f̊ covers Af .

5. Preparatory results on the Ellis semigroup of the

internal system

5.1. Internal system topology. The family of clopen set [A]Ξ where A is an ad-
missible half space may serve to form a basis for the topology of the internal system:

Proposition 5.1. The collection of sets [A]Ξ where A ∈ A forms a sub-basis for the
topology of the the internal system. Moreover, for any pair A,A′ in A the following
Boolean rules are true:

[A ∪A′]Ξ = [A]Ξ ∪ [A′]Ξ [A]cΞ = [Ac]Ξ [A ∩A′]Ξ = [A]Ξ ∩ [A′]Ξ

Proof. Whenever w is a non-singular element of NS ⊂ Rn one has for any γ ∈ Γ

P(W + w).γ := P(W + w)− γ = P(W + w + γ∗)

This is the argument which allows to write, for any γ ∈ Γ, the equalities

[A+
f ]Ξ.γ = [A+

f + γ∗]Ξ(6)
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This observation being made, let us start the proof by showing the Boolean equalities.
At first, the equality stated on the left is a simple consequence of closure operation.
In turns, the equalities at the middle are equivalent to have disjoint decompositions

[A+
f + γ∗]Ξ ⊔ [A−

f + γ∗]Ξ = ΞΓ(7)

which reduces, due to the equalities provided in (6), to show [A+
f ]Ξ⊔ [A−

f ]Ξ = ΞΓ. To

that end, note that any element of the internal system ΞΓ is the limit of a sequence of
non-singular elements, a sequence which can be taken after extraction into one of the
two open half spaces A+

f and A−
f . Therefore such element remains into either [A+

f ]Ξ

or [A−
f ]Ξ, showing that their union covers the internal system. On the other hand,

these subsets are by assumption clopen so must have a clopen intersection. Assume
for a contradiction that this is not the empty set: it must contains a non-singular
model set Λ, with image under Π a non-singular element wΛ ∈ NS ⊂ Rn. However
Λ is the limit of two sequences of non-singular model sets, with associated sequences
of non-singular elements in Rn taken in A+

f for the first sequence and in A−
f for the

second one. Taking limits one must have wΛ ∈ Af , and since wΛ has been taken
non-singular one has the desired contradiction.

Having proven the left and middle Boolean equalities, then one can directly deduce
the validity of the third one, as it is the case in full generality in Boolean algebras,
from the two others.

To show that the sets [A]Ξ where A ∈ A forms a sub-basis for the topology, observe

that the set M̊ = −W̊ is precisely the intersection of admissible half spaces A
sf
f , where

sf is the sign among − or + such that A
sf
f contains the interior of M . From this we

deduce

Ξ = [−W̊ ]Ξ = [M̊ ]Ξ =





⋂

f face of W

A
sf
f





Ξ

=
⋂

f face of W

[A
sf
f ]Ξ

Thus the set Ξ and its complementary set can be obtained as finite intersections of
sets of the statement. Since by proposition 3.2 ΞΓ admits a sub-basis formed by the
Γ-translates of Ξ and its complementary set, the proof is complete. �

5.2. Cones associated with model sets. We set the cut type of a vector w ∈ Rn

to be the family of linear hyperplanes for which some parallel singular hyperplane
passes through w,

Hw := {Hf ∈ HW | w ∈ Γ∗ +Af}(8)

To each w ∈ Rn is associated a family of cones (also called corners in [19]), which
are open cones with vertex 0 and boundaries formed by hyperplanes in Hw. We may
label each of these cones by a cone type c : HW −→ {−,+,∞}, so that the labeled
cone is obtained, according to the notations of section 4, as

C :=
⋂

H∈HW

Hc(H)

In the above intersection only hyperplanes where c has values not equal to ∞ are
consistent, and we may set the domain of a cone type c to be the subset dom(c) of
HW where it has value different from ∞. Moreover, a cone determined by say the
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cut type Hw has only one cone type whose domain is precisely Hw. Now given a cone
C in Rn and w to be some vector of Rn, we set

C(w, ε) := (C ∩B(0, ε)) + w(9)

to be the head of the cone C, translated at w and of length ε. One can easily verify
that a vector w ∈ Rn belongs to the non-singular vectors NS if and only if its cut
type Hw is empty. In this latter case the unique resulting cone C is the full Euclidean
space Rn, for which any set of the form (9) is an Euclidean ball.

Proposition 5.2. Given a model set Λ ∈ ΞΓ, there exists a cone CΛ, admitting a
cone type cΛ with domain HwΛ

, such that the following equivalence holds for each
admissible half space A ∈ A

Λ ∈ [A]Ξ ⇐⇒ CΛ(wΛ, ε) ⊂ A for some ε > 0

Proof. Let Λ ∈ ΞΓ be chosen. If H is a hyperplane of the cut type HwΛ
, that is, if

one has some γ ∈ Γ and some face f with wΛ ∈ γ∗ +Af , Af parallel to H, then the
hyperplane H +wΛ is equal to γ∗ +Af and the half spaces H± +wΛ are admissible.
Therefore [H+ +wΛ]Ξ and [H− +wΛ]Ξ are clopen complementary sets, and the one
containing Λ defines the sign cΛ(H). This provides cΛ uniquely. From the Boolean
rules stated in proposition 5.1 the model set Λ is so that

Λ ∈
⋂

H∈HwΛ

[

HcΛ(H) + wΛ

]

Ξ
=





⋂

H∈HwΛ

HcΛ(H) + wΛ





Ξ

= [CΛ +wΛ]Ξ(10)

with C
Λ

the unique cone with cone type cΛ, in particular non-empty. We now show
that a model set Λ has a neighborhood basis in the internal system obtained as

[CΛ + wΛ]Ξ ∩Π−1(B(wΛ, ε))(11)

From the inclusion of Λ stated in (10) it is clear that (11) is a family of open neigh-
borhoods of Λ in the internal system. We will make use of the following lemma:

Lemma 5.3. Let π : X −→ Y be a continuous and proper map between locally
compact spaces. Let Xx be the fiber of x with respect to π for each x ∈ X. If there is
a clopen neighborhood Vx of x satisfying Vx ∩Xx = {x}, then a neighborhood basis of
x is provided by Vx ∩ π−1(U) with U running among the neighborhoods of π(x).

Proof. Suppose for a contradiction that the stated family is not a neighborhood
basis of x. One may then select an open neighborhood V of x such that Vx ∩π−1(U)
meets V c for each neighborhood U of π(x). Let ∆ be the directed family of open
neighborhoods of π(x) falling into some compact neighborhood U0 of π(x). One may
select a net {xU}U∈∆ into V c and with each xU belonging to Vx ∩ π−1(U). This net
falls into the compact set Vx∩π−1(U0) and in V c as well. Taking some accumulation
point x′, necessarily lying into both Vx and Xx, and in the closed set V c as well, gives
the contradiction as we supposed Vx ∩Xx = {x} contained into V . �

We then show that a clopen neighborhood of Λ which fits the condition of the
above lemma is provided by [CΛ + wΛ]Ξ: For, suppose that Λ and Λ′ are such that
wΛ = wΛ′ =: w in Rn. From proposition 5.1 there is a face f of W as well as an
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element γ ∈ Γ such that (up to a permutation of signs + and −) Λ ∈ [A+
f + γ∗]Ξ

and Λ′ ∈ [A−
f + γ∗]Ξ. Then the vector w falls into both closed half planes A+0

f + γ∗

and A−0
f + γ∗, and thus into Af + γ∗. The latter hyperplane can consequently also

be writen Hf +w, and it follows that Λ ∈ [H+
f +w]Ξ whereas Λ′ ∈ [H−

f +w]Ξ. This

shows that Λ′ is outside [CΛ + wΛ]Ξ, as desired.

Now, it is clear that Λ ∈ [A]Ξ if and only if one has a subset of the form [CΛ +
wΛ]Ξ ∩ Π−1(B(wΛ, ε)) included into [A]Ξ for some ε > 0. Then intersecting with
NS gives that CΛ(wΛ, ε) ∩ NS falls into A ∩ NS, and by taking closure and next
interior in Rn one obtains the right-hand inclusion of the statement. Conversely
if the right-hand inclusion of the statement occurs for some Λ ∈ ΞΓ then we may
choose a sequence of non-singular model sets converging to it, in a manner that the
associated sequence of non-singular vectors falls into (11), and thus into CΛ(wΛ, ε).
The sequence of non-singular model sets lies then into [A]Ξ, and since this latter is
closed we obtain the result. �

5.3. Topology of the internal system Ellis semigroup. Recall that by con-
struction the Ellis semigroup for the internal system is a closure of the group Γ,
or rather the resulting group of homeomorphisms on the internal system. Thus for
any Euclidean subset A one may set a corresponding subset [A]E to be the closure
of {γ ∈ Γ | γ∗ ∈ A} in the Ellis semigroup of the internal system. We would in fact
consider a specific family of Euclidean subsets, namely

AEllis := {H t + w |H ∈ HW , t ∈ {−, 0,+}, w ∈ Rn}

Observe that the above family contains the family A of admissible half spaces, in a
strict sense however.

Proposition 5.4. Any set [A]E where A ∈ AEllis is clopen, and the collection of
these sets forms a sub-basis for the topology of the the internal system Ellis semigroup.
Moreover, for any pair A,A′ in AEllis the following Boolean rules are true:

[A ∪A′]E = [A]E ∪ [A′]E [A]cE = [Ac]E [A ∩A′]E = [A]E ∩ [A′]E

Proof. From proposition 5.1, the sets [A]Ξ where A is an admissible half space are
clopen subsets of the internal system ΞΓ, and form a sub-basis for its topology. It
thus follows that the sets

V (Λ, [A]Ξ) :=
{

g ∈ E(ΞΓ,Γ) | Λ.g ∈ [A]Ξ
}

where Λ is any model set in the internal system and A is any admissible half space,
are clopen subsets of the Ellis semigroup E(ΞΓ,Γ), and that they form a sub-basis
for its topology. Moreover, using the fact that [γ∗ +A±

f ]Ξ is equal to [A±
f ]Ξ.γ what-

ever the element γ ∈ Γ one can directly check that V (Λ, [γ∗ + A±
f ]Ξ) is equal to

V (Λ.(−γ), [A±
f ]Ξ). This shows that a sub-basis for the Ellis semigroup topology is

obtained as the collection
{

V
(

Λ, [A±
f ]Ξ

)

| Λ ∈ ΞΓ, f face of M
}

(12)

In order to rely these sets with the ones given in the statement we show here the
cornerstone lemma of this proposition:
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Lemma 5.5. Let Λ be chosen in the internal system. Then

V
(

Λ, [A+
f ]Ξ

)

=











[A+0
f − wΛ]E if cΛ(Hf ) = +

[A+
f − wΛ]E if cΛ(Hf ) = −

[A+0
f − wΛ]E = [A+

f − wΛ]E if cΛ(Hf ) = ∞

The same statement holds with all the + and − signs switched.

Proof. Recall from lemma 3.4 that a clopen set of E(ΞΓ,Γ) is the closure of its subset
of Γ-elements. Now given V (Λ, [A+

f ]Ξ), an element γ ∈ Γ lies inside if and only if

Λ.γ ∈ [A+
f ]Ξ, which happens from proposition 8.1 if and only if CΛ.γ(wΛ.γ , ε) embeds

into A+
f for some ε > 0. As the cones of Λ and its γ-translate are the same, and

because the factor map Π is Γ-equivariant, the previous condition is equivalent to
have

CΛ(γ
∗, ε) ⊂ A+

f − wΛ(13)

for some ε > 0. It is then obvious that:

- whenever γ∗ ∈ A+
f − wΛ this condition is satisfied,

- whenever γ∗ ∈ A−
f − wΛ this condition is not satisfied.

Now suppose that cΛ(Hf ) = ∞, so that Hf doesn’t belong to the cut type of
wΛ: Then no elements of Γ has its image under the ∗-map enterring Af − wΛ, and
thus by taking closure in the Ellis semigroup one has the desired equality in the case
cΛ(Hf ) = ∞.

Suppose by contrast that cΛ(Hf ) 6= ∞, so that there exists elements of Γ whose
image under the ∗-map falls into Af −wΛ. Then for each such γ ∈ Γ the hyperplane

Af − wΛ may also be written Hf + γ∗, giving A+
f −wΛ = H+

f + γ∗. Hence such a γ

satisfies (13) if and only if the cone CΛ lies into H+
f , which rewrites as cΛ(Hf ) = +.

Again by taking closure in the Ellis semigroup, one has the desired equalities in the
case cΛ(Hf ) 6= ∞.

The argument remains valid when interchanging the + and − signs everywhere,
completing the proof. �

Lemma 5.6. For each hyperplane H and vector w ∈ Rn one has a partition of the
Ellis semigroup by clopen sets

E(ΞΓ,Γ) =
[

H− + w
]

E
⊔ [H + w]E ⊔

[

H+ + w
]

E
(14)

Proof. First observe that by construction the group Γ is dense in the Ellis semigroup,
and consequently the union of the three right-hand sets stated in the equality must
covers the Ellis semigroup. Now select a face f with H = Hf and let w′ ∈ Rn be
so that H t + w restates as At

f − w′ for each sign t ∈ {−, 0,+} (this can always be

achieved as H and Af are parallel). This choice of vector w′ will be kept along this
proof. It is quite clear that the middle-term [Hf + w]E is non-empty if and only if
one has elements γ ∈ Γ such that γ∗ ∈ Hf + w, or equivalently into Af − w′, which
in turns exactly means that H is a hyperplane of the cut type Hw′ . Thus we will
consider two cases:
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Suppose that H ∈ Hw′ : we may select two cones, both determined by the cut type
Hw′ , living into opposite sides with respect to H. Let us pick two model sets Λ and
Λ′ with common associated vector w′ in Rn and associated with these cones, so that
cΛ(H) = + and cΛ′(H) = − up to a switch of signs (the existence of such model sets
is shown in theorem 8.1 appearing further, whose proof is independent of the present
statement). Then by the previous lemma the set [H−

f + w]E is the clopen subset

V (Λ, [A−
f ]Ξ), and is disjoint from the two others since they are both included into

V (Λ, [A+
f ]Ξ). In the same way the set [H+

f + w]E is the clopen subset V (Λ′, [A+
f ]Ξ),

and is disjoint from the two others since they are both included into V (Λ′, [A−
f ]Ξ).

As the left-hand term and the right-hand term are clopen and disjoints from the
respective two others sets then the stated union must disjoint, and the middle term
is clopen as well.

If H /∈ Hw′ then things are even easier: the middle-term becomes empty, and in
pretty much the same way as it was done just before, by picking only one model set
with associated vector w′ one can show that the two sets of the union are clopen and
disjoint. �

Now the proof of the statement almost immediately follows: from lemma 5.6 the
sets of the statement are clopen sets, and form a sub-basis since any subset of the
family (12) writes as one of them by lemma 5.5. It remains to show the Boolean
rules: the left-hand rule is a direct consequence of the closure operation, whereas the
middle-hand rule follows from the family of partitions given by lemma 5.6. The third
rule naturally follows from the two others. �

6. Main result on the internal system Ellis semigroup

6.1. The face semigroup of a convex polytope. Assuming we are given a real
cut & project scheme (Rn,Σ,Rd) with an almost canonical window W in the internal
space, we shall define what is called the face semigroup of W ([6], [29]).

Let HW be the family of linear hyperplanes parallel to the faces of W . Then it
defines a stratification of Rn by cones of dimension between 0 and n (those cones are
called faces in [29]), that is, by non empty sets of the form

⋂

H∈HW

H t(H)(15)

where t(H) is a symbol among {−, 0,+} for each H ∈ HW . Then each such cone C
is determined through a unique map tC : HW −→ {−, 0,+}, which we call here its
cone type. A special class of cones is that of chambers, that is, the cones of maximal
dimension n, which are open in Rn and are precisely those with a nowhere-vanishing
cone type. On the other extreme is the unique cone of dimension 0, namely the
singleton {0}, whose type is entirely vanishing and which we denote by o.

Let us denote by TW the above set of cones, and define on this set a semigroup
law of the following form: if C,C ′ ∈ TW are given, then the product C.C ′ is the face
whose type is given by

tC.C′(H) = tC .tC′(H) :=

{

tC′(H) if tC(H) = 0

tC(H) else
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The reading direction is from right to left, as for actions: first looking at the value
of tC′(H), we keep it when tC(H) = 0 and replace it by tC(H) else, which in this
case makes us forgetting the existence of tC′ . It may easily checked that this product
law is well defined on TW , that is, the product of two (non empty) cones is again a
(non empty) cone, and is associative.

Definition 6.1. The face semigroup associated with the polytope W in Rn is the set
TW equiped with the above product law.

It is clear from the formula that o is an identity for TW . Moreover, any cone C
satisfies the equality C.C = C, that is, is idempotent in TW . There moreover exists a
natural partial order on the face semigroup which let C 6 C ′ when and only when C ′

is a lower dimensional facet of C, or equivalently when the inclusion C ′ ⊆ C occurs.
This may be rephrased by means of the semigroup law on TW , as we have

C 6 C ′ ⇐⇒ tC = tC′ .tC

With respect to this order, the chambers are the minimal cones whereas o is the
(unique) maximal cone in the face semigroup. Some authors use the reverse order
instead, but it appears more convenient for later needs to set the order in the above
way.

6.2. Taking Γ into account. Here we introduce a modified version of the face
semigroup obtained from an almost canonical window W of the internal space Rn of
some real cut & project scheme.

Let us call a cone C of the face semigroup non-trivial whenever the origin in Rn

is an accumulation point of elements of C ∩ Γ∗. We moreover denote the family of
non-trivial cones of the face semigroup by TW,Γ, and refer it as the non-trivial face
semigroup. It is at this point not clear whether TW,Γ is a sub-semigroup of TW .
However to convince ourselves that it is the case, we may observe that the product
C.C ′ of two cones of the face semigroup is the only cone containing a small head of
the cone C ′ when this latter is shifted by a small vector of C, and that this preserves
the subset TW,Γ in the face semigroup.

Now given a non-trivial cone C, as C ∩ Γ∗ accumulates at 0 then the vector space
〈C〉 spanned by C admits a subgroup 〈C〉 ∩ Γ∗ which cannot be uniformly discrete,
and thus is ”dense along some subspace”. More precisely we set in our setting a
theorem of [31]:

Theorem 6.2. The vector space 〈C〉 uniquely writes as a direct sum V ⊕D, where
V ∩ Γ∗ is dense in V , D ∩ Γ∗ is uniformly discrete in D, and 〈C〉 ∩ Γ∗ = (V ∩ Γ∗)⊕
(D ∩ Γ∗).

Now given a non-trivial cone C of the face semigroup with decomposition 〈C〉 =
V ⊕ D provided by the previous theorem, the summand V is non-trivial and thus
one may attach to it another smaller cone

C := C ∩ V

We call C the plain cone associated to C. From its very construction the cone C is
open in the space V and span this latter, and C ∩ Γ∗ is a dense subset of the plain
cone C. It is moreover easy to observe that C = C when and only when the set C∩Γ∗
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is dense in the cone C. For any non trivial cone type t ∈ TW,Γ we may denote Ct to
be the plain cone associated with Ct.

6.3. The main theorem for internal system Ellis semigroup. Let us consider
an Ellis transformation g ∈ E(ΞΓ,Γ) with associated translation vector wg in Rn.
Given a hyperplane H ∈ HW , it has been shown in lemma 5.6 that the mapping
g falls into one and only one clopen subset of the form [H t + wg]E , whose sign for
any hyperplane H ∈ HW determines a face type tg uniquely. To see that tg is a
face type in the above sense, that is, is associated with a non-empty cone Cg of the
stratification obtained from HW , observe that from the Boolean rules of proposition
5.4 one has

g ∈
⋂

H∈HW

[

H tg(H) + wg

]

E
=





⋂

H∈HW

H tg(H) + wg





E

= [Cg + wg]E(16)

which ensure that Cg must be non-empty. Having related the internal system Ellis
semigroup with the face semigroup just defined, we are now able to set our main
theorem concerning the internal system Ellis semigroup:

Theorem 6.3. The mapping associating to any transformation g the couple (wg, tg)
establish an isomorphism between the Ellis semigroup E(ΞΓ,Γ) and the sub-semigroup
of the direct product Rn × TW,Γ given by

⊔

t∈TW,Γ

[〈Ct〉+ Γ∗]× {t}

Moreover, this isomorphism becomes a homeomorphism when the above union is
equipped with the following convergence class: (wλ, tλ) −→ (w, t) iff

∀ε > 0,∃ δλ > 0 such that Ctλ(wλ, δλ) ⊂ Ct(w, ε) for large enough λ

Finally, the Ellis semigroup E(ΞΓ,Γ) has a first countable topology.

The convergence class of the statement is to be more precise the full family of nets
and limit points which obeys the above condition. This family completely charac-
terizes the Ellis semigroup topology since, being derived from the topology of the
internal system Ellis semigroup, it satisfies a correct set of axioms which permit to
recover the closure operator on the Ellis semigroup, and thus its topology (see [18]).

The remaining part of this section is turned on the proof of the above theorem. To
this end we decompose the proof into basically three parts: the first one states the
existence of a semigroup isomorphism between the internal system Ellis semigroup
and a sub-semigroup of the direct product Rn × TW , and the second step sets the
proof that the isomorphic image stands into Rn × TW,Γ and is of the form stated
above. In a third part we then show the topological part of the statement.

6.3.1. Step 1: Existence of the semigroup isomorphism.

Proposition 6.4. The mapping E(ΞΓ,Γ) −→ TW associating to each transformation
g its face type tg is a semigroup morphism.



ELLIS ENVELOPING SEMIGROUP FOR ALMOST CANONICAL MODEL SETS 25

Proof. We have to show that given two transformations g and h the face types
tg.h and tg.th are equal. By (16) the transformation g.h lies into the clopen sub-
set [Cg.h +wg.h]E. Since by construction Γ is dense in the Ellis semigroup, and since
the composition law on this latter is right-continuous, one can find a γ ∈ Γ sufficiently
close to h in the sense that

(i) γ ∈ [Ch + wh]E (ii) g.γ ∈ [Cg.h + wg.h]E

Now from lemma 5.6 together with the Boolean rules of proposition 5.4, one can
deduce from (i) that γ∗ ∈ Ch + wh, or equivalently (γ∗ − wh) ∈ Ch in the internal
space. Moreover, as the transformation g.γ lies both into the clopen subset [Cg.γ +
wg.γ ]E and the open subset (Π∗)−1(B(wg.γ , ε)), again from the density of Γ in the
Ellis semigroup together with point (ii) one can find an element γε ∈ Γ sufficiently
close to g.γ so that

γ∗ε ∈ (Cg.h + wg.h) ∩ (Cg.γ + wg.γ) ∩B(wg.γ, ε)

Since the cone associated with g.γ is equal to the one associated with g, the previous
fact implies that

Cg(γ
∗ −wh, ε) ∩ Cg.h 6= ∅ ∀ε > 0 with γ∗ − wh ∈ Ch

Let us now consider three cases about a hyperplane H ∈ HW :
- th(H) = +: in that case the vector γ∗ −wh ∈ Ch falls into the open half space H+,
and thus one may find a ε0 with Cg(γ

∗ −wh, ε0) included into H+, so that H+ must
intersects the cone Cg.h. This force Cg.h ⊂ H+, or equivalently tg.h(H) = +.
- th(H) = −: by the same type of argument one can show that tg.h(H) = −.

- th(H) = 0: in this latter case one has γ∗−wh ∈ H and thus Cg(γ
∗−wh, ε) ⊂ H tg(H)

whatever the symbol tg(H). It thus follows that H tg(H) ∩ Cg.h is non-empty, which

necessary gives Cg.h ⊂ H tg(H), or equivalently tg.h(H) = tg(H).
The above three cases show that the cone type tg.h is equal to the composition tg.th,
as desired. �

Combining the previous proposition together with the existence of the onto mor-
phism of proposition 3.5, we see that the mapping associating to each transformation
g in E(ΞΓ,Γ) the couple (wg, tg) in the product semigroup Rn×TW is a semigroup
morphism. Thus in order to settle step 1 what we only need to show is injectivity:

Suppose for that purpose that two transformations g and h satisfy wg = wh =: w
in the internal space. Then by using the sub-basis of proposition 5.4 one can find
a vector w0 as well as a hyperplane H ∈ HW such that g and h falls into different
clopen subsets among the partition

E(ΞΓ,Γ) =
[

H− + w0

]

E
⊔ [H + w0]E ⊔

[

H+ + w0

]

E

Thus one must have that w and w0 are equal up to a vector of the hyperplane H, and
it implies that the signs tg(H) and th(H) must be different. This exactly means that
the associated cone types tg and th are different, and the proof of step 1 is complete.

6.3.2. Step 2: Determination of the isomorphic image.

The question now is to identify the sub-semigroup of Rn × T isomorphic with the
internal system Ellis semigroup via the previous mapping. To that end, one may set
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this sub-semigroup as a disjoint union
⊔

t∈TW

Rn
t × {t}

for some Euclidean subsets Rn
t , the allowed translations of a cone type t, which we

thus need to identify. A first point about this is the following lemma.

Lemma 6.5. For any cone type t ∈ TW with associated cone Ct one has

Rn
t = {w ∈ Rn | (Ct + w) ∩ Γ∗ accumulates at w}

Proof. Given some t ∈ TW with associated cone Ct, its set of allowed translations Rn
t

is by construction Rn
t =

{

wg | g ∈ E(ΞΓ,Γ) and tg = t
}

.

Let us show ” ⊇ ”: If w is such that (Ct + w) ∩ Γ∗ accumulates at w then the
intersection (Ct +w) ∩B(w, ε) ∩ Γ∗ is non-empty for any ε > 0, and thus the family
{

[Ct + w]E ∩ (Π∗)−1(B(w, ε))
}

ε>0
forms a filterbase in the space E(ΞΓ,Γ). In turns,

the morphism Π∗ is by proposition 2.7 a proper map so this filterbase, for 0 < ε < ε0,
lies into the fixed compact subset (Π∗)−1

(

B(w, ε0)
)

and thus possess an accumulation
point g. This Ellis transformation necessarily satisfies wg = w, and because the set
[Ct + w]E = [Ct + wg]E is closed, containing the above filtebase, it thus contains g.
We deduce that Cg = Ct, or equivalently tg = t, giving that w = wg ∈ Rn

t .

Conversely we show ” ⊆ ”: Given some cone type t and some Ellis transformation
g with t = tg, then as g lies into [Cg + wg]E one can select a net of elements of
(Cg+wg)∩Γ∗ = (Ct+wg)∩Γ∗ converging to g in the internal system Ellis semigroup.
Thus applying Π∗ we obtain a net of (Ct+wg)∩Γ∗ converging to wg in the Euclidean
space Rn, so that (Ct + wg) ∩ Γ∗ accumulates at wg. �

Let now TW,0 be the homomorphic image of the internal system Ellis semigroup
into the face semigroup TW through the morphism of proposition 6.4. Then it pre-
cisely consists of those cone types which have a non-empty associated subset Rn

t of
allowed translations. From the very definition of the plain face semigroup TW,Γ, a
face type t is non-trivial when and only when 0 lies into Rn

t , which shows in particular
that TW,0 contains the plain face semigroup TW,Γ.

We will now set any Euclidean subset Rn
t in a more suitable form. Obviously it is

sufficient to consider cone types of the homomorphic image TW,0. Observe that for
any such cone type their associated Euclidean subset of allowed translations is stable
under Γ∗-translation.

Proposition 6.6. Let t ∈ TW,0, with 〈Ct〉 = Vt⊕Dt its associated direct sum decom-
position of theorem 6.2. Then one has

Rn
t = Vt + Γ∗

Proof. For t ∈ TW,0 and 〈Ct〉 = Vt ⊕ Dt its associated direct sum decomposition,
denote by P V (resp. PD) the skew projection of 〈Ct〉 with range Vt and kernel Dt

(resp. the skew projection with range Dt and kernel Vt). Then from the particular
form of the decomposition one has P V (〈Ct〉 ∩ Γ∗) = Vt ∩ Γ∗ and PD(〈Ct〉 ∩ Γ∗) =
Dt ∩ Γ∗.
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Let us show first that Rn
t lies into 〈Ct〉+ Γ∗: Any vector w ∈ Rn

t admits some γ∗

into (Ct +w)∩ Γ∗, so that γ∗ −w lies into Ct and thus into 〈Ct〉. So does the vector
w − γ∗, giving that w lies into 〈Ct〉+ Γ∗.

Now we show that Rn
t lies into Vt +Γ: Given w ∈ Rn

t , one may write w = w′ + γ∗

with w′ ∈ 〈Ct〉 and γ ∈ Γ∗, w′ itself being into Rn
t as this latter is stable under Γ∗-

translation. It thus suffices to prove that w′ lies into Vt+Γ to get the point. From the
previous lemma w′ is the limit point of a sequence (γ∗k) of elements in (Ct+w′)∩Γ∗,
in turns included into 〈Ct〉 ∩ Γ∗. Thus PD(γ∗k) converges to PD(w′) and P V (γ∗k)
converges to P V (w′). But has the sequence (PD(γ∗k)) lies into the uniformly discrete

subset Dt ∩ Γ∗ of Dt it must be eventually constant, equal to PD(w′) for great
enough k. Hence PD(w′) lies into Γ∗, which gives w′ = PW (w′) +PD(w′) ∈ Vt +Γ∗,
as desired.

We wish to observe that the sequence eventually satisfies P V (γ∗k) = γ∗k−PD(w′) ∈
(Ct +w′)∩Γ∗ −PD(w′), with PD(w′) ∈ Γ∗, and thus P V (γ∗k) ∈ (Ct +P V (w′))∩ Γ∗.
Hence P V (γ∗k) − P V (w′) = P V (γ∗k − w′) lies into both Vt and Ct eventually, which
ensure that the intersection Ct := Ct ∩ Vt is non-empty.

Now we show that Rn
t contains Vt +Γ: to that end it suffice from Γ∗-invariance to

show that it contains Vt. First it is clear that the subset Ct is a (non-empty) open
cone of the space Vt, since is the intersection of Ct which is open in its own spanned
space 〈Ct〉 with the subspace Vt. Let now w ∈ Vt be given. Then Ct is open in Wt and
is a cone pointed at 0, so that Ct + w is an open cone of Vt pointed at w. But from
the density of Vt ∩Γ∗ in Vt one can obtain w as an accumulation point of Ct+w∩Γ∗

and thus of (Ct + w) ∩ Γ∗, showing that w ∈ Rn
t , as desired. �

From the previous proposition one gets that any cone type t of TW,0 has the
origin 0 as allowed translation, and thus is an element of TW,Γ. This shows that
the internal system Ellis semigroup is isomorphic with a sub-semigroup of the direct
product Rn×TW,Γ, and that its isomorphic image is of the form stated in theorem 6.3,
reminding that Vt is spanned by the pain cone Ct for any t ∈ TW,Γ. This completes
step 2.

6.3.3. Step 3: The topology of convergence.

Let us first show the first countability property of the internal system Ellis semi-
group: From the injectivity of the mapping associating to any transformation g the
couple (wg, tg), one can deduce that g is the only transformation in its fiber with
respect to Π∗ falling into the clopen subset [Cg + wg]E of the Ellis semigroup. It
follows by lemma 5.3 that a neighborhood basis of g is provided by the intersections

[Cg + wg]E ∩ (Π∗)−1(B(wg, ε))(17)

It is then clear that one can extract a countable sub-basis of this family, completing
the argument. Now we wish to show the bi-continuity of the stated isomorphism, and
to that end we let (gλ) be a net of the Ellis semigroup with associated net (wλ, tλ)
in the direct product Rn×TW,Γ, and g be some Ellis transformation with associated
couple (w, t). Let us first set a useful lemma:
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Lemma 6.7. There exists an ε0 > 0 such that, for any t ∈ TW,Γ and w ∈ Rn
t =

Vt + Γ∗, we have

Ct(w, ε) ∩ Γ∗ = Ct(w, ε) ∩ Γ∗ ∀ 0 < ε 6 ε0

Proof. Clearly the cone Ct(w, ε) contains Ct(w, ε) for all ε > 0. Conversely let t ∈
TW,Γ be chosen, with associated cone Ct in Rn and the direct sum decomposition
〈Ct〉 = Vt⊕Dt provided by theorem 6.2. As Dt ∩Γ∗ is uniformly discrete in Dt, with
εt > 0 some radius of discreteness, we must have

〈Ct〉 ∩B(w, εt) ∩ Γ∗ = (Vt + w) ∩B(w, εt) ∩ Γ∗

for any w ∈ Vt + Γ∗. Hence by intersecting with Ct + w we obtain

Ct(w, εt) ∩ Γ∗ = (Ct +w) ∩ (Vt + w) ∩B(w, εt) ∩ Γ∗ = Ct(w, εt) ∩ Γ∗

Finally, taking ε0 to be the minimum over εt, t ∈ TW,Γ, gives the statement. �

Then gλ converges to g if and only if for any ε > 0, which can be chosen less than
the constant ε0 of lemma 6.7, there is some net of positive real numbers (δλ), which
can be chosen less than the constant ε0 as well, such that one has for great enough λ

[Ctλ + wλ]E ∩ (Π∗)−1(B(wλ, δλ)) ⊂ [Ct + w]E ∩ (Π∗)−1(B(w, ε))

By lemma 6.7, intersecting with Γ∗ leads for great enough λ

Ctλ(wλ, δλ) ∩ Γ∗ ⊂ Ct(w, ε) ∩ Γ∗

Now the affine space generated by Ctλ(wλ, δλ) is precisely Vtλ + wλ, which contains,
since wλ is an allowed translation for tλ, a dense subset of elements of Γ∗. The same
occurs about w with respect to t, and thus we get for great enough λ the inclusions

Vtλ + wλ ⊂ Vt + w

As Ct(w, ε) is a topologically regular open subset of Vt + w, its intersection with
Vtλ+wλ forms an open topologically regular subset of this latter affine space, contain-
ing Ctλ(wλ, δλ)∩Γ∗. As Ctλ(wλ, δλ) is a topologically regular open subset of Vtλ +wλ

as well, taking closure an next interior in Vtλ + wλ provides for great enough λ

Ctλ(wλ, δλ) ⊂ Ct(w, ε)

thus giving the ” ⇒ ” part of the statement.

Conversely, let us suppose that for any ε > 0, which can be chosen less than the
constant ε0 of lemma 6.7, there is some net of positive real numbers (δλ), which can
be chosen less than the constant ε0 as well, such that one has Ctλ(wλ, δλ) ⊂ Ct(w, ε) ⊂
Ct + w for great enough λ. Now the first point is that the net (wλ) converges to w
in Rn, and so gλ falls into the inverse image of any ball B(w, ε) for great enough λ.
Secondly, any gλ has a neighborhood of the form [Ctλ + wλ]E ∩ (Π∗)−1(B(wλ, δλ)),
which is contained into the subset [Ctλ(wλ, δλ)]E = [Ctλ(wλ, δλ)]E and thus into
[Ct + w]E for great enough λ. Combining these two arguments we deduce from the
neighborhood basis formula (17) that gλ converges to g in the internal system Ellis
semigroup.

This completes the proof of theorem 6.3.

�
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7. Results on the hull Ellis semigroup and additional

algebraic features

In this section we arrive at our main result, namely, the algebraic and topological
description of the Ellis semigroup for a hull X of almost canonical model sets together
with its Rd-action.

7.1. The main result. From theorem 3.6, any transformation g in the semigroup
E(X,Rd) may be written as g̃ − s where g is a transformation in E(ΞΓ,Γ) and s a
vector of Rd, and with g uniquely defined up to an element of Γ. Thus we may asso-
ciate to any transformation g = g̃−s the cone type of any underlying transformation
g ∈ E(ΞΓ,Γ), which we write tg, thus providing a semigroup morphism from the hull

Ellis semigroup E(X,Rd) into the non-trivial face semigroup TW,Γ. We are now able
to formulate the main result of this work, which is completely deduced from theorems
3.6 and 6.3:

Theorem 7.1. The mapping associating to any transformation g the couple (zg, tg)

establish an isomorphism between the Ellis semigroup E(X,Rd) and the sub-semigroup
of the direct product

[

Rn+d
]

Σ
× TW,Γ given by
⊔

t∈TW,Γ

[

〈Ct〉×Rd
]

Σ
× {t}

Moreover, this isomorphism becomes a homeomorphism when the above union is
equipped with the following convergence class: (zλ, tλ) −→ (z, t) if and only if one
can write zλ = [wλ, sλ]Σ and z = [w, s]Σ such that

(i) sλ −→ s in Rd

(ii) ∀ε > 0,∃ δλ > 0 such that Ctλ(wλ, δλ) ⊂ Ct(w, ε) for large enough λ in Rn

Finally, the Ellis semigroup E(X,Rd) has a first countable topology, and the dy-
namical system (X,Rd) is tame.

7.2. Additional algebraic features.

7.2.1. Invertible Ellis transformations. One can naturally ask whether there are in-
vertible transformations in the hull Ellis semigroup which are invertible, though not
being a homeomorphism provided by the Rd-action. It turns out that the answer
is no. For, it has been seen that any cone type t ∈ TW,Γ is idempotent, and thus
an invertible transformation must corresponds to a couple of the form (z, o) where
o is the identity cone type in t ∈ TW,Γ. Since the cone with cone type o is precisely
the trivial cone {0}, its associated plain cone Co is nothing but {0} and theorem 7.1
ensures that z must be an element of the form [0, s]Σ in

[

{0}×Rd
]

Σ
. It follows that

the underlying transformation is the homeomorphism arising from the translation by
the vector s ∈ Rd.

7.2.2. Range of Ellis transformations. It is natural to set on the Ellis semigroup
E(X,Rd) a pre-order by letting g 6 g′ whenever the range of the mapping g is
contained into that of g′. By range we mean here the subset r(g) := X.g of the hull
X. When one considers idempotent transformations q and q′ then it is direct to show
that q 6 q′ when and only when one has q = q.q′, thus turning this pre-order into



30 JEAN-BAPTISTE AUJOGUE

algebraic terms in this particular setting. In the case of an almost canonical hull Ellis
semigroup we are able to describe this pre-order in a quite elegant manner:

Proposition 7.2. For any transformations of E(X,Rd) we have the equivalence

g 6 g′ ⇐⇒ Cg 6 Cg′

The proposition above asserts that the range of g is contained into the range of g′

if and only if the cone Cg′ is equal or a lower dimensional facet of the cone Cg.

Proof. Let g and g′ be chosen. Each are element of a sub-group respectively given

by
[

〈Ctg〉×Rd
]

Σ
× {tg} and

[

〈Ctg′
〉×Rd

]

Σ
×
{

tg′
}

, and thus one can see that r(g) =

r([0]Σ×{tg}) and that r(g′) = r([0]Σ×
{

tg′
}

). From what have been just said it
becomes clear that g 6 g′ if and only if tg = tg.tg′ , which exactly means that the cone
Cg′ is equal or a lower dimensional facet of the cone Cg, or equivalently Cg 6 Cg′ . �

7.2.3. Ideals. The general theory of Ellis semigroups allows a great importance to
the ideal theory of any Ellis semigroup. In the case of a almost canonical hull Ellis
semigroup it is easy to prove the proposition stated below, showing that the ideal
theory of the hull Ellis semigroup reduces to the ideal theory of the semigroup TW,Γ:

Proposition 7.3. Each right ideal M of the non-trivial face semigroup TW,Γ defines
a right ideal of the hull Ellis semigroup by

⊔

t∈M

[

〈Ct〉×Rd
]

Σ
× {t}

and conversely each right ideal of E(X,Rd) arises in this manner.

We can in particular easily identify the unique minimal ideal of E(X,Rd): This
latter is isomorphic with the direct product

[

Rn+d
]

Σ
×M ch where M ch is the family of

cone types associated with the chambers of the stratification defined by the collection
of hyperplanes used to construct the face semigroup TW .

7.3. An explicit computation. We consider the hull Xoct associated with the real
cut & project scheme and octagonal window presented in 1.4. The associated family
of linear hyperplanes parallel to faces of the window (or its reversed set) is provided,
in the orthonormal basis (e∗1, e

∗
2) of the internal space R2

int, by

H1 := 〈v1〉 = 〈v2 − v4〉 v1 := e∗1
H2 := 〈v2〉 = 〈v1 + v3〉 where v2 :=

e∗1+e∗2√
2

H3 := 〈v3〉 = 〈v2 + v4〉 v3 := e∗2
H4 := 〈v4〉 = 〈v1 − v3〉 v4 :=

e∗2−e∗1√
2

H1

H2

H3

H4

+
-

+
-

+ -

+
-

The stratification obtained from these hyperplanes is of the following form:
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The internal space R2
int is partitionned into 17 dif-

ferent cones: the singleton {0}, eight half-lines
{L1, ..., L8} pointed at 0 though not containing it
which we label Li, Li+4 ⊂ Hi for 1 6 i 6 4,
and eight chambers {C1, ..., C8}, each consisting of
an 1/8th part of the space and being open cones
pointed at 0.

b

L3

L2

L1

L4

L5

L6

L7

L8

C1

C2C3
C4

C5
C6 C7

C8

Now the stabilizers StabΓ(Hi) are dense in Hi for each index 1 6 i 6 4, and we de-
duce that each cone of this stratification is non-trivial, and moreover equal to its
associated plain cone. Thus 〈Co〉 = {0} as usual, whereas 〈CtLi

〉 = 〈CtLi+4
〉 = Hi for

each value 1 6 i 6 4, and 〈CtCi
〉 = R2 for each index 1 6 i 6 8.

Consequently, the hull Ellis semigroup E(Xoct,R
2) is in this case obtained as

(

8
⊔

i=1

[

R4
]

Z4 × {tCi
}

)

⊔

(

4
⊔

i=1

[

Hi × R2
]

Z4 × {tLi
, tLi+4

}

)

⊔

R2

8. The Ellis action on the hull

8.1. A further look on cones. We saw in section 5 that to any model set Λ of
the internal system can be associated a cone CΛ, that is, an open connected cones
pointed at 0 with boundary delimited by hyperplanes of a sub-family HwΛ

of HW .
Moreover each such cone admits a unique cone type cΛ with domain HwΛ

, and there
can be only finitely many such cone types, whose family is denoted C. Now if one
look at some model set Λ0 in the hull X then it always can be written Λ0 = Λ − t,
where Λ lies in the internal system and t is a vector of Rd. This presentation is
unique up to a translation of both the model set Λ and the vector t by some γ ∈ Γ.
Thus one may without misunderstanding define the cut type HzΛ0

and the cone type

cΛ0
with domain HzΛ0

to be the ones associated with Λ ∈ ΞΓ in the decomposition

Λ0 = Λ − t. We may then describe the hull, as it was already done by Le [19], as
follows:

Theorem 8.1. The mapping associating to any model set Λ the couple (zΛ, cΛ) es-
tablish a bijective correspondence between the hull X and

{

(z, c) ∈
[

Rn+d
]

Σ
×C | dom(c) = Hz

}

Proof. From what has been just said it is sufficient to prove that the mapping associ-
ating to any model set Λ in ΞΓ the couple (wΛ, cΛ) establish a bijective correspondence
between the internal system ΞΓ and

{(w, c) ∈ Rn×C | dom(c) = Hw}

First from the very construction of the cone type cΛ associated with any Λ ∈ ΞΓ

this association is well defined. By the arguments used in the proof of proposition
5.1 each model set Λ ∈ ΞΓ is the limit of a filterbase (11) which only depends on
the couple (wΛ, cΛ), and thus the association is 1-to-1. Moreover this association
is onto: If (w, c) is a couple with dom(c) equal to Hw, then consider the family of
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subsets [Cc+w]Ξ∩Π−1(B(w, ε)) of the internal system. Each such set contains some
non-singular model sets, and thus forms a filterbase in ΞΓ. As Π is a proper map this
filterbase is eventually contained into a compact subset of the form Π−1(B(w, ε)) and
thus admits an accumulation element Λ. This latter must satisfies Π(Λ) = wΛ = w
and CΛ = Cc on the other hand. But as the domains of c and cΛ are both equal to
the cut type of wΛ = w the couple (wΛ, cΛ) is nothing but (w, c), showing that the
association is onto. �

8.2. The Ellis action. We wish to use here the descriptions of the hull obtained in
the above paragraph and that of its Ellis semigroup preformed in theorem 7.1. To
this end we set an action of the non-trivial face semigroup TW,Γ onto the family C of
cone types introduced above:

For c ∈ C and t ∈ TW,Γ let us define a map HW −→ {−,+,∞} as

c.t(H) :=

{

c(H) if t(H) = 0

t(H) else

This definition is not properly an action of TW,Γ on C as the resulting map may not
be a cone issuing from any model set of the hull X. However it allows us to recover
the Ellis action as follows:

Proposition 8.2. The Ellis action X× E(X,Rd) −→ X obtains as

(z, c).(z′, t) = (z + z′, c′) where c′(H) :=

{

c.t(H) if H ∈ Hz+z′

∞ else

8.3. An illustration of the Ellis action. In order to illustrate the Ellis action
described as above, we focus here on the example of the hull Xoct associated with the
data given in paragraph 1.4. More precisely we won’t describe the action of any trans-
formation but rather the one of the idempotent transformations (as the other part
is only a shifting in the parametrization torus

[

R4
]

Z4). Moreover it can be checked
that the idempotent Ellis transformations are precisely those Ellis transformations
mapped onto 0 ∈

[

R4
]

Z4 under π∗, or equivalently, those which preserve fibers in
Xoct with respect to the parametrization map π. Here we won’t describe the Ellis
action of these idempotents at any model set, but rather on the single fiber above
0 ∈

[

R4
]

Z4 , any other fiber can be treated in the same manner.

First we need to know the cut type of 0: it is easily checked that H0 = HWoct =
{H1,H2,H3,H4}, so that the fiber above 0 in the hull consists of eight model sets
{ΛC1

, ..,ΛC8
}, each associated with some cone which is in this particular case a cham-

ber among {C1, .., C8}. Then we can compute the action of any of the 17 idempotent
transformations [0]Z4×{t} , t ∈ TWoct:

The identity map, given by [0]Z4×{o}, preserves any of the eight model sets,
whereas any idempotent map [0]Z4×{tCi

} associated with the chamber Ci maps all
of these model sets onto a single one, namely ΛCi

. For an idempotent map of the
form [0]Z4×{tLi

} with Li some half line contained into the hyperplane Hi, each model
set with associated cone belonging in the side ± of Hi is mapped onto the unique
model set whose cone belongs into the same side ± of Hi and has Li in its boundary.
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Therefore these transformations have two distinct model sets of this fiber in their
range, namely these which have Li in the boundary of their associated cone.
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