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ENVELOPING SEMI-GROUP FOR MINIMAL ROTATIONS ON

CUT UP TORI

JEAN-BAPTISTE AUJOGUE

Abstract. In this paper we give an explicit computation of the Ellis enveloping
semigroup associated to particular dynamical systems, which we call rotations
on cut up tori. The considered systems are almost one-to-one extensions over
rotations on tori, and as a byproduct we prove that a rotation on a cut up torus
is a tame system. Our setting covers the case of the discrete dynamical system of
an almost canonical cut & project pattern, and is illustrated with the treatement
of the octagonal tiling discrete dynamical system.

Outline

The motivation of this work comes from the study of aperiodic point sets, or pat-
terns, of Rd. The intensive study done so far permits to describe important properties
of a considered point set in terms of its associated dynamical system. In particular,
a striking result in this direction is that the locations of the Bragg peaks in the
diffraction spectrum of a physical material modeled by the point set generates the
group of eigenvalues of the dynamical system given by the hull with Rd-action. The
eigenvalues are in general hard to identify, but the special class of topological eigen-
values (the ones associated with a continuous eigenfunction) is conveniently obtained
as the character group of a factor of the system, called the maximal equicontinuous
factor. Roughly speaking, having plaint of continuous eigenvalues is equivalent to
have the system close to its equicontinuous factor. The enveloping semigroup (or
Ellis semigroup after its inventor) associated to the dynamical system is a quite sen-
sitive tool regarding this connection. In particular, it has been proven that if the
dynamical system is tame, a property involving its Ellis semigroup, then (among
other consequencies) the system is measure conjugated with its maximal equicon-
tinuous factor, and this latter fact implies pure point diffractivity of the point set.
However in general the Ellis semigroup is hard to compute and the tame property
for the system not so easily detectable. Thus we concentrate our point of view on a
particular class of point sets, called almost canonical cut & project pattern, for which
we show that the Ellis semigroup is computable. It appears that for this class of
point sets the system is tame (implying thus pure point diffraction spectra for these
sets, although it was a well known fact already).

A detailed exposition on almost canonical cut & project patterns can be found in
the literature (see for instance [3], [7]). The class of such point sets is defined by the
method to construct them: as projections of the points of a rank N Bravais lattice
lying in a certain neighborhood of an irrationally placed d-dimensionnal subspace
E. The neighborhood is determined by a window W (the atomic surface) which is
a polyhedron in the n := N − d dimensional subspace E⊥ perpendicular to E. The
cut & project pattern is the point set obtained by projecting the lattice points lying
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2 JEAN-BAPTISTE AUJOGUE

in E + W onto E along E⊥. The parameters are chosen such that the projection
of the Bravais lattice onto E⊥ along E gives rise to a dense subgroup Γ of rank
N in Rn = E⊥, and that the set of points ∂W + Γ coincides with the set of points
⋃

i∈I Ai+Γ, where the Ai are the affine hyperspaces of Rn containing the faces of W .

When splitting Γ = Zn⊕Zd such that the first summand Zn is co-compact in Rn we
obtain by moding it out a n-torus, together with dense set of points (

⋃

i∈I Ai+Γ)/Zn

at which we will cut the torus open to totally disconnect it. This is the cut up torus
of our dynamical system. The remaining summand Zd acts on it by rotation.

We point out a strong link between our analysis and the work of Pikula [8] on the
Ellis semigroup of Sturmian-like systems. Here we obtain these results as examples
of minimal rotations on cut up circles. The most simple case of the coding of an
irrationnal rotation on the cirle was already given by Glasner and Megrelishvili in
the last section of [6]. We discuss these at the end of section 4.4.
After having completed this work we became aware of the recent preprint by Pikula
[9], in which he considers the enveloping semigroup of almost 1-to-1 extensions of
certain minimal group rotations. In the case where the acting group is Z the two
works can be compared. Our results are much more concrete, whereas he considers
a more general situation.

1. Overview on the results

The dynamical system. We consider the data (Rn,Γ, {Ai}i∈I) to be an Euclidean
space of dimension n together with a dense subgroup Γ and a finite family of affine
hyperspaces {Ai}i∈I . For each i ∈ I there are ai ∈ Rn and a codimension 1 linear

subspace H0
i with Ai = H0

i +ai. We require
⋂

i∈I H
0
i = {0}. We choose a normal for

each H0
i and define H+

i , H−
i to be the open half spaces in the direction of the normal

or against it, respectively. We also set H∞
i = A∞

i = Rn. We consider the group Γ
to be finitely generated, that is, Γ = Zn ⊕ Zd with the Zn summand a co-compact
subgroup of Rn, and keep this decomposition fixed throughout.
We consider the countable family of all hyperspaces obtained as the translation of
some Ai by some n ∈ Γ. The cut type Iz of a point z ∈ Rn is the (possibly empty)
subset of indices

Iz := {i ∈ I | z ∈ Ai + Γ}

According to its cut type, each z ∈ Rn admits a finite collection of hyperspaces
passing through it. The complementary set of these hyperspaces is a disjoint union
of convex open sets, which are affine cones pointed at z. Each cone is determined
according to its orientation with respect to the cuts along z. Hence we define a
point type to be a map p : I −→ {−,+,∞} such that the associated open cone

Cp :=
⋂

i∈I H
p(i)
i is non-empty. It follows that each affine cone corresponds to at

least a point type, and once the domain of a point type p, defined to be dom(p) :=
{i ∈ I | p(i) 6= ∞}, is considered, an affine cone pointed at z can be written as Cp+z
for a unique point type p with domain dom(p) = Iz. We denote the finite collection
of point types by P. By construction Iz+n = Iz for each n ∈ Γ, so the cut type is
also defined for the points of the torus Tn = Rn/Zn.
The dynamical system, which we call rotation on a cut up torus, can now be described
as (Tn

c ,Z
d) with

Tn
c = {(z, p) ∈ Tn ×P | dom(p) = Iz}
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and Zd-action given by (z, p).n = (z.n, p). The map

πT : Tn
c ։ Tn

forgetting the point type of any element is an onto continuous Zd-equivariant map.
We may describe the topology of Tn

c as follows. Let

NS = {z ∈ Tn | Iz = ∅}

This is a dense set of Tn. We identify it with the subset of Tn
c of points (z,∞) (∞

being the constant point type equal to∞). This latter set is precisely the set of points
where πT is one-to-one. The topology of Tn

c can now be described by saying that
NS is dense in Tn

c , and a sequence (zn)n∈N ⊂ NS converges to a point (z, p) ∈ Tn
c

if and only if zn −→ z in the Euclidean topology and eventually zn − z ∈ Cp. The
latter statement should be understood in the following way: if zn −→ z then we can
eventually lift zn−z into a sequence converging to 0 in Rn, the space which contains
the cone Cp.

The Ellis semigroup. To any compact space with group action by homeomor-
phisms is associated its Ellis semigroup, consisting of tranformations of the space,
obtained as pointwise limits of homeomorphisms given by the group action.
In order to describe the Ellis semigroup of (Tn

c ,Z
d), we define a transformation type

to be a map t : I −→ {−,+, 0} such that its associated cone Ct :=
⋂

i∈I H
t(i)
i is

non-empty. We denote the set of transformation types by T. The cones of the trans-
formation types are the constituents of a stratification of Rn by cones of dimension
between 0 and n.
Any cone Ct associated with a transformation type t generates a subspace < Ct >,
which possesses a unique maximal summand Wt, with the property that Wt ∩ Γ is
dense in Wt. We then say that a transformation type is non-trivial if the intersection
C ′
t := Ct ∩Wt is non-empty, and denote by T0 the collection of non-trivial transfor-

mation types.
The Ellis semigroup is isomorphic to the disjoint union of groups

E(Tn
c ,Z

d) ≃
⊔

t∈T0

[Wt + Γ]/Zn × {t}

with semigroup stucture given by (z, t).(z′, t′) = (z+z′, t.t′), where the semigroup

law on T0 writes:

t.t′(i) :=

{

t′(i) if t′(i) 6= 0

t(i) if t′(i) = 0

We may describe the topology of E(Tn
c ,Z

d) as follows. The inclusion of Zd as a
dense subset of E(Tn

c ,Z
d) is given by n 7→ (n, 0) (0 being the constant transformation

type equals to 0). A sequence(nk)k∈N ⊂ Zd converges to a transformation (z, t) ∈
E(Tn

c ,Z
d) if and only if nk − z ∈ Tn lifts into a sequence of Rn converging to 0 and

eventually lying into Ct. A general sequence (zk, tk) converges to a transformation
(z, t) ∈ E(Tn

c ,Z
d) if and only if ∀ε > 0,∃δn > 0 such that C ′

tk
(zk, δk) ⊂ C ′

t(z, ε)for

large enough k. The Ellis semigroup for the system (Tn
c ,Z

d) has a first countable
topology, and is consequently tame in the sense of [5] (see theorem 6.3 there).
The previous algebraic description shows in particular that:
- Each [Wt + Γ]/Zn × {t} is a subgroup of E(Tn

c ,Z
d) with identity (0, t).
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- the semigroup T0 is isomorphic to the collection of idempotent transformations in
E(Tn

c ,Z
d), where each t ∈ T0 corresponds to (0, t).

- The general theory of Ellis semigroups endows the collection of idempotent trans-
formations with an pre-order. It is here an order, given on T0 by t 6 t′ if and only
the cone Ct′ is equal or a lower dimensional facet of the cone Ct.
- E(Tn

c ,Z
d) has a unique minimal ideal, given by Tn×Tmin where Tmin denotes the

subsemigroup of minimal idempotents.
We may write the Ellis action Tn

c × E(Tn
c ,Z

d) −→ Tn
c as

(z, p).(z′, t) = (z + z′, p′)

where

p′(i) :=

{

p.t(i) if i ∈ Iz+z′

∞ else
p.t(i) :=

{

t(i) if t(i) 6= 0

p(i) if t(i) = 0

The richness of the Ellis semigroup is related to the dimension of the set of points
of Rn which can be approximated by elements of Γ inside an intersection ∩i∈I′Hi,
I ′ ⊂ I. Generically, the orientation of the hyperplanesHi is such that any hyperplane
contains only one point of Γ, and so we are in the extreme case where T0 = Tmin∪{0},
that is, the Ellis semigroup consists only of the original group Γ together with its
minimal ideal. In this case the constituents of the Ellis semigroup depends on the
hyperplanes Hi, but not on the position of these hyperplanes with respect to Γ.
When dealing with point patterns this generic case corresponds to the case of largest
complexity function (see [7] for definition and results).
At the opposite end, in the case where the group Γ has dense intersection with any
finite intersection of hyperplans, then the Ellis semigroup is the biggest in the sense
that T = T0 (that is, there is no non-trivial transformation type). This latter case
has been proven to be equivalent with the condition of minimal complexity for the
cut & project pattern (see [7]). Hence smaller complexity seems to make the Ellis
semigroup richer.

2. Cut up torus

2.1. Cut up Euclidean spaces.
We explain in details the construction of the dynamical system defined by the data
(Rn,Γ, {Ai}i∈I). We wish to illustrate how we procceed, by considering the following
example:

Example 2.1. (Octagonal tiling case) Consider the example of the cut up data on
R2 given, in an orthonormal basis (e1, e2), by:

A1 = H1 :=< v1 >=< v2 − v4 > v1 := e1
A2 = H2 :=< v2 >=< v1 + v3 > with v2 :=

e1+e2√
2

A3 = H3 :=< v3 >=< v2 + v4 > v3 := e2
A4 = H4 :=< v4 >=< v1 − v3 > v4 :=

e2−e1√
2

H1

H2

H3

H4

+
-

+
-

+ -

+
-
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These four vectors are rationally independent so the sum
∑4

i=1 Zvi is the free Abelian

group Z4. We write Zn=2 := Zv1 + Zv3 and Zd=2 := Zv2 + Zv4.

As we can see by comparing the following construction with the cut and project
scheme given in section 3.1 of [7], this corresponds to the octagonal tiling case.
The subgroup Γ = Zn+d of Rn has its elements usually denoted by n, and acts on
Rn by addition: v.n := v + n. We fix an algebraic basis {ei} of Zn+d with n + d

elements: this defines a norm on the group by |
∑n+d

i=1 niei| := max16i6n+d|ni|.
The cut up space is constructed as follows:

For a non-negative integer k, write Rn\
⋃

|n|6k

⋃

i∈I(Ai + n) =
⊔

j D
j
k as the disjoint

union of its finite collection of connected components Dj
k, and define the kth partial

cut up space to be the finite disjoint union

Rn
k :=

⊔

j

Dj
k

|.|

Every such Dj
k

|.|
forms then a clopen connected component of Rn

k . This definition
also holds for k = −1, and in this case Rn

−1 is the full Euclidian space Rn.
From now on the notation Dk stands for a generic open connected component in-
volved in the construction of Rn

k .
There is a tower of such partial cut up spaces:
by letting the number of cuts increase we reduce the size of each open component,
so for for l > k > −1 each Dl lies in some unique Dk, giving by completion a natural
continuous and surjective map πk,l : R

n
l ։ Rn

k .
Of special interest are the mappings π−1,k: These send the partial cut up spaces Rn

k
onto Rn, and the number of points in a fiber above a point x in Rn is the number of
connected components forming Rn

k and having x in their Euclidean closure.

b
z1 b

z2

b
z3

π−1,0

Figure 1. The map π−1,0 : Rn
0 ։ Rn collapses the components along the cuts. The

number of points in a fiber above z depends on the cuts through z: here above z1, z2
and z3 we have respectively 4, 2 and 1 point.

One can check the composition property πm,l ◦ πl,k = πm,k holding for any k >
l > m > −1. Then:

Definition 2.2. The cut up Euclidian space Rn
c is the inverse limit of the tower of

maps {πl,k : Rn
k ։ Rn

l }k>l>−1, that is the subspace {(xk)k>−1 |xl = πl,k(xk)} of the
product space

∏

k>−1R
n
k , equiped with product topology.
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Each Rn
l is then the quotient of Rn

c through a map πl,∞ defined by xl = πl,∞((xk)k),
and these maps satisfies the equalities πm,l ◦ πl,∞ = πm,∞ for all l > m > −1. Of
particular importance is the factor map

π := π−1,∞ : Rn
c −→ Rn

As a consequence of the very construction of Rn
c we have:

Proposition 2.3. The space Rn
c is locally compact, σ-compact and has a countable

basis for its topology. The map π : Rn
c −→ Rn is continuous, onto, and is a proper

map, that is the pre-image of any compact set is compact.

2.2. The topology of Rn
c . The Euclidean topology is generated by convex sets

obtained by intersecting a finite family of half spaces. This paragraph shows an
analog for the topology of the cut up space, expressing the topology of Rn

c through
a family of (cut up) half spaces.
Denote by D for the collection of all the generic open connected components Dk,
with k running in {−1, 0, 1, 2...}. Relatively compact elements of D are sometimes
called C-topes (see [3]).

Definition 2.4. We call the set

NS := Rn\
⋃

n∈Zn+d

⋃

i∈I
(Ai + n) = Rn\

⋃

D∈D
∂D

the set of non-singular points in Rn.

By the cut up construction the set of points z ∈ Rn above which the fiber in Rn
c

for the map π consists of a unique point is precisely the set of non-singular points.
From its very definition, NS is a dense residual subset of Rn. From now on we
identifie the embeddings of NS both in Rn

c and in Rn, the map π sending the first
onto the latter.

Lemma 2.5. The set NS is a dense subset of Rn
c .

Proof. Let π−1
k,∞(U) be an open set of Rn

c , with U an open set of a clopen set Dk.

Then U ∩Dk is a non-void open set so meets NS in at least one point by density,
and this point lies then in π−1

k,∞(U). Such open sets form a basis for the topology of

Rn
c , giving the density.

�

Define the family of admissible half spaces, as

A :=
{

A±
i + n | i ∈ I, n ∈ Zn+d

}

Definition 2.6. Let P be a subset of Rn. The cut up set Pc (or [P ]c) is the closure
of P ∩NS in Rn

c .

Of course Pc may be empty even if P does not. We are particularly interested in
the cut up half space Ac, the closure of A ∩NS in Rn

c , for each A ∈ A. Clearly we
have π(Ac) = A, the Euclidean closure of A. This new class of sets is made of clopen
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sets of Rn
c as we will see. For now we state a general tool, ensuring us to describe

clopen sets of Rn
c uniquely through the non-singular points they contain:

Lemma 2.7. Let X be topological space, and Y a dense subset. For any clopen set
V of X one has V = V ∩ Y . If two clopen sets coincide on Y , then they are equal.

Proof. Let V be clopen in X. We have the inclusion V ∩ Y ⊆ V since V is closed. If
x lies in V , Y being dense one can find a net of points in Y converging to x. Since
V contains x and is open, the net eventually lies in V , showing that x ∈ V ∩ Y .
If V andW are two clopen sets with V ∩Y = W∩Y , then V = V ∩ Y = W ∩ Y = W .

�

Proposition 2.8. The cut up space Rn
c is totally disconnected. The family

Ac := {Ac |A ∈ A}

of cut up half spaces is a pre-basis of clopen sets.
For any pair A,A′ in A the following Boolean rules are true:

[A ∪A′]c = Ac ∪A′
c (Ac)

c = [Ac]c [A ∩A′]c = Ac ∩A′
c

Proof. The space Rn
c has its topology formed by pre-images of open sets of the par-

tial cut up spaces. Let Dk be a clopen part of Rn
k . Then we have [Dk]c = π−1

k,∞(Dk):

Indeed π−1
k,∞(Dk) is clopen so by lemma 2.7 rewrites as π−1

k,∞(Dk) ∩NS, with closure

in Rn
c . The set π−1

k,∞(Dk) ∩ NS is equal to Dk ∩ NS in Rn
k (in fact under bijective

correspondence through πk,∞), in turns equal to Dk ∩NS as subset of Rn
k since the

boundary ∂Dk do not cross the set NS. The latter is equal to Dk ∩NS as a subset
of Rn, leading by taking the closure in Rn

c to the desired equality.
In particular we have shown the equality [D]c ∩NS = D ∩NS holding for any ele-
ment D of the family D. Then any pair D and D′ of such components satisfies the
Boolean rules of the statement:
For, first observe that [D ∪ D′]c = (D ∪D′) ∩NS = (D ∩NS) ∪ (D′ ∩NS) =
D ∩NS ∪ D′ ∩NS = Dc ∪ D′

c, where all closures are with respect to the topol-
ogy of Rn

c . Then having the equality Dc ∩ NS = D ∩ NS holding, we have

(Dc)
c ∩ NS = Dc ∩ NS which implies (Dc)

c = (Dc)c ∩NS = Dc ∩NS = [Dc]c.
The third equality follows from the two others.
It is easy to prove the equality

[A± + n]c =
⊔

D|n|⊂[A±+n]

[D|n|]c

holding for any affine space A and element n ∈ Zn+d, with disjoint and finite union.
This shows that any of the sets given in the statement is clopen, and any two of
them satisfies the Boolean rules.
It remains to show that it constitutes a pre-basis for the cut up topology (so far

we made use of neither the density of Zn+d nor the requirement
⋂l

i=1H
0
i = {0}:

their role is for this step). First we can recover the clopen components through the
equality

[Dk]c =
⋂

Dk⊂[A±+n], |n|6k

[

A± + n
]

c
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Choose an open set in some Rn
k : it is the finite disjoint union of open sets, each

entirely contained in some clopen component Dk, so without loss of generality we
can choose such open set as the intersection of Dk with some open Euclidian set
U . Pick a point x inside π−1

k,∞(Dk ∩ U), so that v := µk,∞(x) lies in Dk ∩ U . Due

to the requirement
⋂l

i=1 H
0
i = {0}, if we denote vi to be a normal to each H0

i ,
the linear forms < ., vi > with kernel H0

i linearly generates the dual space Rn∗, so
the open polytopes with boudary faces parallel to H0

i , hence parallel to the affine
spaces Ai, generates the Euclidean topology. Thus we may choose such an open
polytopal neighbourhood of v lying into U . Because Zn+d is dense in Rn, this choice
can be done such that any of the hyperplans determining the faces are of the form
Ai +n for some n ∈ Zn+d. Hence the polytopal neighbourhood is given by the finite
intersection of open half spaces of the form A±

i + n containing it. Taking the finite
intersection of the clopens [A±

i + n]c and again intersecting with [Dk]c leads to a
clopen neibourhood of x in Rn

c , which is the finite intersection of sets in Ac, and
itself contained into π−1

(k,∞)(Dk ∩ U). This ensure the pre-basis property. �

2.3. Neighborhood basis. We derive here from the previous paragraph a de-
scription of Rn

c by means of well chosen neighbourhoods for each point.

Proposition 2.9. Let π : X −→ Y be a continuous proper map between locally
compact spaces. Given a point x ∈ X, denote by Fx the fiber with respect to π
containing x. Then if Vx is a clopen neighborhood of x satisfying Vx ∩Fx = {x}, the
family

{Vx ∩ π−1(U) | U neighborhood of π(x)}

is a neighborhood basis for x.

Proof. Supose for a contradiction that the stated family is not a neighborhood basis
for x. Then there exists an open neighbourhood V of x such that Vx ∩ π−1(U)
intersect V c for any neighborhood U of π(x). Let Λ be the directed set of open
neighborhoods of π(x). We can select a net {xU}U∈Λ in the closed set V c with
xU ∈ Vx ∩ π−1(U) for all U . Hence by choosing U0 to be a compact neighbourhood
of π(x) we have a subnet {xU}U0⊃U∈Λ in the compact neighbourhood Vx ∩ π−1(U0)
of x. This subnet accumulate to at least one point x′ in V c, with x′ ∈ Fx. Since the
subnet also sits in Vx and this later is closed, we get x′ ∈ Vx ∩ Fx, giving x = x′, a
contradiction to the fact that x is in V and x′ does not. �

It remains to find such a Vx. To that end the key result is proposition 2.12,
which may be figured out as follows: each point of Rn

c above a fixed z ∈ Rn can
be approximated by non-singular points, that is, elements in Rn, so the difference
between two points lies into the way each is approximated. So it is necessary to,
roughly speaking, find the direction in Rn which lead to a given point x in Rn

c above
z. This direction will be a cone Cx pointed at 0, and the path of convergence to x
will be given by Cx + z. Any two different cones will lead to two differents points
above z. Finally, the objects separating any two cones will simply be an affine cut
passing through z.
Now, define for any z ∈ Rn the cut type of z to be the set of indices

Iz :=
{

i ∈ I | z ∈ Ai + Zn+d
}
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Observe that a position z ∈ Rn is non-singular precisely when Iz = ∅.

Definition 2.10. A point type is a map p : I −→ {−,+,∞} such that the associated

open cone Cp :=
⋂

i∈I H
p(i)
i is non-empty. Its domain is dom(p) := {i ∈ I | p(i) 6= ∞}.

We denote the finite collection of point types by P.

Observe that to obtain the cone associated to a point type p, only the indices in
the domain of p counts, as H∞

i is nothing but Rn. Also, different point types may
corresponds to a common cone, unless we put some conditions on the domain.

Definition 2.11. The position of x ∈ Rn
c is the image point π(x) ∈ Rn.

The point type px of x ∈ Rn
c is the element of P uniquely defined through:

dom(px) = Iπ(x) x ∈ [H
px(i)
i + π(x)]c ∀i ∈ Iπ(x)

We simply write Cx for the cone Cpx previously defined.

At this point it is unclear that px is a point type, that is, according to definition
2.10 px possess a non-empty associated cone. This fact is checked it the first part of
the proof of proposition 2.12.
Observe that for any non-singular point x ∈ NS ⊂ Rn

c , as the cut type Iπ(x) is empty,
we have px = ∞ on I and Cx = Rn. This means that a non-singular point is well
approximated without regards on the direction we follow.

Proposition 2.12. Any point x ∈ Rn
c has an open neighbourhood basis of the form

{

U(x, ε) := [Cx + π(x)]c ∩ π−1(B(π(x), ε))
}

ε>0

Proof. Fix x ∈ Rn
c . By construction of px we have x ∈ [H

px(i)
i + π(x)]c for all i ∈ I.

Moreover [H
px(i)
i + π(x)]c is a clopen set of the family Ac: for, if i /∈ Iπ(x) then

px(i) = ∞ so it is nothing but Rn
c , and in case i ∈ Iπ(x), as therefore π(x) ∈ Ai + ni

for some ni ∈ Zn+d, it writes as [A
px(i)
i + ni]c ∈ Ac.

It follows that the Boolean rules of proposition 2.8 applies to [H
px(i)
i + π(x)]c, i ∈ I,

giving x ∈
⋂

i∈I [H
px(i)
i + π(x)]c = [

⋂

i∈I H
px(i)
i + π(x)]c = [Cx+π(x)]c. This ensure

in particular that Cx is non-empty, as (Cx+π(x)) ∩NS = [Cx+π(x)]c ∩NS is non-
empty.
From proposition 2.8, if y is another point there exists an index i and n with (up to
a switch of + and - signs) x ∈ [A+

i +n]c and y ∈ [A−
i +n]c. If moreover π(x) = π(y),

it is then easy to check that we must have π(x) = π(y) ∈ Ai+n. In this latter case it
is direct, using A±

i ±H0
i = A±

i , to show the equality [A±
i +n]c = [H±

i +π(x)]c. Thus

for any given y with π(y) = π(x) there is an index i0 with x ∈ [H+
i0

+ π(x)]c and

y ∈ [H−
i0
+π(x)]c (up to a swich of signs). Consequently the hyperplan H0

i separates
Cx and Cy, so these cones are disjoints in Rn. Now [Cx+π(x)]c and [Cy+π(x)]c
are also disjoints, which in turns implies that x is the only point among its fiber
contained into the clopen set [Cx+π(x)]c. By proposition 2.9, we deduce that the
stated family is a neighbourhood basis for x in Rn

c . �
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Introduce here the following notation: for a position z ∈ Rn and a cone C associ-
ated to a point type in P, denote by C(z, ε) the set z + (C ∩ B(0, ε)). This is the
head of the cone C of length ε pointed at position z, and is always an open part of
the Euclidean ball B(z, ε). Observe that z /∈ C(z, ε) unless the cone C is all Rn (in

which case we have C(z, ε) equals to B(z, ε)), although we always have z ∈ C(z, ε)
in Rn.
Proposition 2.12 enable us to present the cut up space Rn

c in a more elegant way, as

it is done in the following theorem 2.14, as well as its topology since we will describe
converging sequences only by means of Euclidean sets.

Lemma 2.13. For any x ∈ Rn
c and 0 < ε1 < ε2 we have

U(x, ε1) ⊂ [Cx(π(x), ε1)]c ⊂ U(x, ε2)

Proof. Let y ∈ U(x, ε1) = [Cx+π(x)]c∩π
−1(B(π(x), ε1)). Since y ∈ [Cx+π(x)]c there

is a sequence in NS∩(Cx+π(x)) converging to y. Since y ∈ π−1(B(π(x), ε1)) we also
have π(y) ∈ B(π(x), ε1), so the sequence lies into NS ∩ (Cx + π(x)) ∩B(π(x), ε1) =
NS ∩ Cx(π(x), ε1) eventually. It follows that y ∈ [Cx(π(x), ε1)]c.
Now if y ∈ [Cx(π(x), ε1)]c, by definition there is a sequence in NS ∩ Cx(π(x), ε1)
converging to y in Rn

c . Hence this sequence lies into both NS ∩ (Cx +π(x)) = NS ∩
[Cx + π(x)]c and into B(π(x), ε1) ⊂ B(π(x), ε1) ⊂ B(π(x), ε2), where B(π(x), ε1)
is the closed Euclidean ball. It follows by taking limit that y ∈ [Cx + π(x)]c ∩
π−1(B(π(x), ε2)) = U(x, ε2), as desired. �

Theorem 2.14. The map

Rn
c ∋ x 7−→ (π(x), px) ∈ {(z, p) ∈ Rn ×P | dom(p) = Iz}

associating to each point its position and point type is a homeomorphism, with right
term equiped with the following topology of convergence: (zn, pn) −→ (z, p) if and
only if

∀ε > 0,∃δn > 0 such that Cpn(zn, δn) ⊂ Cp(z, ε) for large enough n

Proof. The fact that dom(px) = Iπ(x) holds for any point x comes from the very
construction of px, so the stated map is well-defined.
From proposition 2.12, each point x ∈ Rn

c is the unique limit point of the filterbase
{[Cx+π(x)]c∩π

−1(B(π(x), ε))}ε>0, with Cx = Cpx . Since this filterbase only depends
upon the pair (π(x), px), the stated map is 1-to-1. The map is also onto: to each
pair (z, p) we shall consider the family {[Cp + z]c ∩ π−1(B(z, ε))}ε>0. It will form
a filterbase in Rn

c provided none of these sets is empty. This follows from the fact
that for each ε > 0 we have NS ∩ [Cp + z]c ∩ π−1(B(z, ε)) = NS ∩ Cp(z, ε), which
is non-empty since Cp(z, ε) is open and NS is dense. Let ε0 > 0 be chosen. for

any ε < ε0 we have [Cp + z]c ∩ π−1(B(z, ε)) ⊂ π−1(B(z, ε0)), this latter set being

compact since B(z, ε0) is compact and π is proper. This means that for great enough
ε the filterbase is contained into a fixed compact set of Rn

c . It then possess an
accumulation point x, which has to satisfies π(x) = z and Cx = Cp. The fact that
Cx = Cp ensure that px and p coincide on Iπ(x) = Iz. But by assumption we also have
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dom(p) = Iz = Iπ(x) = dom(px), so in fact px = p on I. Hence (z, p) = (π(x), px),
and the map is onto.
We next show that convergence of sequences in Rn

c is given by the criteria of the
statement. Let then xn ↔ (zn, pn) and x ↔ (z, p). By proposition 2.12, xn −→ x if
and only if

∀ε, xn ∈ U(x, ε) for large enough n

or equivalently,

∀ε, ∃ δn > 0 with U(xn, δn) ⊂ U(x, ε) for large enough n

Now using lemma 2.13 we can easily show that it is equivalent to

∀ε, ∃ δn > 0 with [Cpn(zn, δn)]c ⊂ [Cp(z, ε)]c for large enough n(1)

It is in turn equivalent to the criteria of the statement. For, if (1) holds then by

applying π we get Cpn(zn, δn) ⊂ Cp(z, ε). Since the open sets Cpn(zn, δn) and Cp(z, ε)
are regular (meaning that they both are the interior of their closure), we obtain the
criteria holding. Conversely if the criteria of the statement holds then intersecting
with NS and taking closure in Rn

c ensure that (1) holds.
�

Note that through this picture of the cut up space, NS corresponds to the set
{(z,∞) | Iz = ∅}. Moreover, a sequence (zn, pn) will converges to a non-singular
point (z,∞) if and only if, as C∞(z, ε) is the Euclidean ball B(z, ε), zn converges
to z in Rn. At the opposite end, a non-singular sequence (zn,∞) will converges to
(z, p) if and only if zn converges to z in Rn and zn − z lies into Cp for great enough
n.

2.4. Dynamics and the cut up torus. Here we deal with dynamical features:
as the next proposition states, the translation action of Zn+d on Rn has an extension
to an action by homeomorphisms on Rn

c . In fact, so far we could have worked with
any countable dense subgroup of Rn instead of Zn+d.

Proposition 2.15. There is a unique Zn+d-action on Rn
c by homeomorphisms such

that π becomes equivariant. This action satisfies for each A ∈ A

A±
c .n = [A± + n]c

Proof. Restrict the Zn+d-action of Rn on the set NS: this can be done by the
very construction of the non-singular points. Choosing a n ∈ Zn+d, it defines a
bijection of NS. For any integer k, it extends to a surjective and continuous map
T
n
k : Rn

k+|n| ։ Rn
k : on the Euclidian closure of any connected component this map

is well defined and uniformly continuous. Taking inverse limit over k one obtains a
continuous map T n. Then this map coincides with regular translation by n on NS,
so we get the equivariance rule π(T n(x)) = π(x)+n for any x ∈ Rn

c . To see that it is
an action, observe that T 0 is the identity map and that T n ◦ Tm and T n+m coincide
on NS, so are equal everywhere.
Finally, since NS is stable under this action the sets T n(A±

c ) and [A± +n]c coincide
on NS, so are equal by lemma 2.7. Unicity of this action is clear from the density
of NS. �
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From now on we write x.n for a translated image T n(x).
Thanks to this action, we can define a cut up version of the n-dimensionnal torus
together with an action as:

Definition 2.16. The cut up n-torus Tn
c is the quotient Rn

c /Z
n, a space on which

Zd acts by homeomorphisms. Identifying Rn/Zn with the n-torus Tn, there is an
induced continuous, onto and Zd-equivariant map

πT : Tn
c ։ Tn

We call the image point πT(x) the position of x ∈ Tn
c .

We denote by ρZn : Rn
c ։ Tn

c the quotient map. For any point x ∈ Rn
c and any

element n ∈ Zn+d, from the previous proposition we derive the equality of point
types px.n = px. Thus we can without misunderstanding associate a point type px
and a cone Cx for any x ∈ Tn

c , to be the ones associated to any lift of x in Rn
c .

Theorem 2.17. The space Tn
c is a Cantor space, endowed with a minimal Zd-action.

The diagramm of continuous, onto and equivariant maps

Rn
c Rn

Tn
c Tn

π

ρZn [.]Zn

πT

is commutative, with vertical arrows being covering maps. Moreover, πT is one-to-
one exactly on NS/Zn.
The map

Tn
c ∋ x 7−→ (πT(x), px) ∈ {(z, p) ∈ Tn ×P | dom(p) = Iz}

associating to each point its position and point type is a homeomorphism, with topol-
ogy on the right term determined by the convergence rule: (zn, pn) −→ (z, p) if and
only if there are lifts zn and z in Rn of zn and z such that

∀ε > 0,∃δn > 0 such that Cpn(zn, δn) ⊂ Cp(z, ε) eventually on n

It is the dynamical system (Tn
c ,Z

d) we are interrested in, but it is more conveniant
to work on Rn

c , as we can deal with geometrical objects like cut up half spaces and
cones. For that reason, most of the remaining work will be focused on (Rn

c ,Z
n+d).

Nicely, we will recover all the results for (Tn
c ,Z

d) by simply moding out Zn in an
appropriate way.

3. The Ellis semigroup

The enveloping semigroup of a compact dynamical system has been introduced
by Robert Ellis as a way to study actions of a group T on a compact space X from
an algebraic point of view. Here a compact dynamical system, or flow, stands for
a compact (Hausdorff) space X together with an action of a group T by homeo-
morphisms. The simplest example of such a system is a Kronecker flow, that is a
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compact group G together with a subgroup T acting by right-translation. In this
case the group T forms an equicontinuous family of homeomorphisms on G, and in
this situation we call the system (G,T ) an equicontinuous flow. It turns out that
among the class of compact minimal flows with T being Abelian, the kronecker flows
are exactly the equicontinuous ones ([1] p.53, thm 6), and in this case G is Abelian.
A general result relates general flows with Kronecker flows:

Theorem 3.1. [1]. Let (X,T ) be a flow. There exist a closed T -invariant equivalence
relation ∼eq on X, such that the quotient space Xeq := X�∼eq with T -action is an
equicontinuous flow, which is maximal in the sense that any equicontinuous factor
of (X,T ) factors through Xeq.
In case (X,T ) is minimal and T is Abelian, (Xeq, T ) is an Abelian Kronecker flow.

The flow (Xeq, T ) is called the maximal equicontinuous factor of (X,T ).

Definition 3.2. A flow (X,T ) is an almost automorphic system if the factor map
π : X ։ Xeq possess a one-point fiber.

In case the flow is also metric minimal, one may equivalently require that the set
of one-point fibers forms a dense residual subset of X (see [11]), from now on denoted
by NS. In the case of a minimal rotation by Zd on a cut up torus Tn

c , it can easily

be checked that the maximal equicontinuous factor is the torus Tn, with factor map
πT. As πT is 1-to-1 on a non-empty set by theorem 2.17, the flow (Tn

c ,Z
d) is almost

automorphic.
Equicontinuity properties of a group action can be rephrazed in terms of the Ellis

enveloping semigroup of a flow. Denote by XX the space of maps from X into
itself with pointwise convergence topology, or equivalently the product space

∏

X X
endowed with the (compact Hausdorff) product topology. It naturally contains the
group of homeomorphisms of X coming from the T -action, and carries a semigroup
law given by composition of maps.

Definition 3.3. Let (X,T ) be a flow. Denote by T̃ the group of maps in XX induced

by the T -action. The associated Ellis semigroup E(X,T ) is the closure of T̃ in XX .

E(X,T ) is then a set of transformations on X, and we write x.g for the evaluation
of the map g at a point x. It is always a compact right-topological semigroup, that
is, if {hλ}λ is a net converging to h, then the net {g.hλ}λ converges to g.h for any
g, where g.h stands for the composition which at each point x reads (x.g).h.
The Ellis semigroup construction is functorial (covariant) in the sense that any onto

continuous T -equivariant map π : X ։ Y gives rise to an onto continuous semigroup
morphism π∗ : E(X,T ) ։ E(Y, T ), satisfying π(x.g) = π(x).π∗(g) for any x ∈ X
and any transformation g ∈ E(X,T ).
The philosophy about Ellis semigroup is that the algebraic and topological properties
of the Ellis semigroup of a flow are correlated with the nature of the dynamical
system. A standard result in this direction is the following:

Theorem 3.4. For a flow (X,T ), the following assertions are equivalents (see [1],
theorem 3 p.52)):
(1) the flow (X,T ) is equicontinuous.
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(2) The Ellis semigroup E(X,T ) is a compact group, acting by homeomorphisms on
X.
In addition, if (X,T ) is minimal with T Abelian, this is also equivalent to (see [1],
p.55):
(3) E(X,T ) has left-continuous product.
(4) E(X,T ) is Abelian.
(5) E(X,T ) is made of continuous transformations.

From the previous theorem we see that in the non-equicontinuous case the Ellis
semigroup is quite difficult to understand and to handle, since none of the criteria of
theorem 3.4 are satisfied. However, there exists a property on the transformations
of E(X,T ) one might expect to have. A transformation is Baire class 1 if it is the
pointwise limit of a sequence (by contrast to a net) of continuous transformations.

Definition 3.5. (see [5], [4]) A metric flow (X,T ) is tame if every element of
E(X,T ) is a Baire class 1 transformation.

In this later case any transformation of E(X,T ) is measurable, but still two dis-
tinct transformations can be equal almost everywhere. Observe that if the semigroup
E(X,T ) is first countable, that is, admits at any point a countable local neighbour-
hood basis, then the underlying system is tame.
Theorem 3.1 is related to the spectral analysis of (X,T ). Suppose here that (X,T ) is
a metric flow with T Abelian, and is endowed with a T -invariant probability measure
µ. There is a natural unitary representation of T on the Hilbert space L2(X,µ). De-

note by T̂ the Pontryagin dual of T . For a character ω ∈ T̂ , let Hω be the subspace
of L2-functions satisfying the equality Ut(f) = ω(t)f for all t ∈ T . Generically the
space Hω is trivial, and a character ω is said to be an eigenvalue for (X,T, µ) if the
subspace Hω is non-trivial. Hω is then called the eigenspace for ω, and any non zero
L2-function in Hω an eigenfunction for ω. Moreover an eigenvalue ω is said to be a
topological eigenvalue for (X,T, µ) if the subspace Hω is non-trivial and consist of
(L2-classes of) continuous functions. The collection Ev(X,T, µ) of all eigenvalues

of (X,T, µ) is always a (possibly empty) countable subgroup of T̂ , and contains the
collection Evtop(X,T, µ) of topological eigenvalues as a subgroup.

Definition 3.6. A metric flow with invariant measure (X,T, µ) is said to have pure
point dynamical spectrum if L2(X,µ) =

⊕

ω∈Ev(X,T,µ) Hω holds, and is said to have

topological pure point dynamical spectrum if L2(X,µ) =
⊕

ω∈Evtop(X,T,µ)Hω holds.

It is well known that Abelian Kronecker flows with Haar measure have topological
pure point dynamical spectrum. The following theorem enlarges the class of systems
where the same conclusion occurs, using the notions of definitions 3.2, 3.5 and 3.6:

Theorem 3.7. [4]. Let (X,T ) be a metric minimal flow with T Abelian. Then
(1)⇒(2)⇒(3):
(1) (X,T ) is a tame system.
(2) (X,T ) is an almost automorphic system, with unique ergodic probability measure
µ satisfying µ(NS) = 1.
(3) (X,T, µ) has topological pure point dynamical spectrum.
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3.1. Ellis semigroup for locally compact flows. Let X be a locally compact
space together with an action of a group T by homeomorphisms. The one-point
compactification X̂ of X is a compact space, endowed with a T -action by home-
omorphism so that the infinite point remains fixed through any homeomorphism

t ∈ T . Denote by FX the set of maps in X̂X̂ which send X into itself and keep the
point at infinity fixed. Then:

Definition 3.8. The Ellis semigroup of (X,T ) is defined to be

E(X,T ) := E(X̂, T ) ∩ FX

with topology induced from X̂X̂ .

Recall that the topology of XX is generated by sets as follows: For x ∈ X, U ⊂ X
let V (x,U) (or sometimes VX(x,U) when we want the space X to be specified) be
the subset

V (x,U) :=
{

g ∈ XX | g(x) ∈ U
}

It is open if U is open, closed if U is, and with x amongX and U among any pre-basis
for the topology of X, it forms a pre-basis for the topology.
Observe that E(X,T ) is, as in the compact flow case, a right-topological semigroup
containing T as a dense subgroup (it rather contains the group of transformations

T̃ , but keeping this in mind we make in the sequel an abuse of notation and identify
T̃ with T )). Although transformations of E(X,T ) are defined on X̂, they all fix the
point at infinity and so may be seen as transformations in XX (it is quite direct to

show that on E(X,T ) the topologies coming from X̂X̂ and XX coincide). Although
the Ellis semigroup is rich in the compact case it is far from clear how big it is
in the non-compact case: it might well only consist of T itself, since we assume
the transformations to send each point of X anywhere but at the point at infinity.
Thus we cannot pretend that this is the optimal way to define an Ellis enveloping
semigroup for locally compact flows. However, in our context this construction will
be of great use in the description of E(Tn

c ,Z
d). The following is a general fact, whose

proof in the context of compact flows case can be found in [1]:

Proposition 3.9. Let π : X ։ Y be a continuous, proper, onto, and T -equivariant
map between locally compact spaces. Then there exist a continuous, proper, and onto
morphism π∗ : E(X,T ) ։ E(Y, T ) satisfying the equivariance condition: π(x.g) =
π(x).π∗(g) for any x ∈ X and g ∈ E(X,T ).

Proof. Denote by ⋆X and ⋆Y the respective points at infinity in the compactified
spaces. Since π is continuous and proper, it extends to a continuous and onto
map π̂ : X̂ ։ Ŷ , such that π̂−1(⋆Y ) = {⋆X}. Obviously π̂ is T -equivariant with
respect to the extended T -actions. There exist then a continuous and onto morphism
π̂∗ : E(X̂, T ) ։ E(Ŷ , T ), satisfying the equivariance equality for any x ∈ X̂ and

g ∈ E(X̂, T ): π̂(x.g) = π̂(x).π̂∗(g). The later equivariance condition implies that a

transformation g of E(X̂, T ) lies into FX if and only if π̂∗(g) lies in FY : it follows
that E(X,T ) = (π̂∗)−1(E(Y, T )). Restricting the morphism on E(X,T ) gives the
map, together with the onto property. Finally a compact set of E(Y, T ) has to be

compact in E(Ŷ , T ) as it is easy to check, so have a compact pre-image in E(X̂, T )
under π̂∗. This latter is entirely included in E(X,T ), so is compact for the relative
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topology on E(X,T ). This gives the properness.
�

Observe that π∗(t) = t holds for any t ∈ T . If the group T is Abelian, then any
element of T commutes with any element of the enveloping semigroup E(X,T ), for
any locally compact space X (for X compact see [1], the locally compact case being
a direct consequence).

Proposition 3.10. If T is a dense subgroup of a locally compact Abelian group G,
T acting by translation, then E(G,T ) is a topological group topologicaly isomorphic
with G, and through this identification E(G,T ) acts by translation.

Proof. First observe that the Ellis semigroup E(G,G) is well defined, and by con-
struction contains G and E(G,T ). It is easy to see that on G, the group topology and
the pointwise convergence topology inherited from E(G,G) coincides, since an open
set V (x,U) in G rewrites as x−1.U . Now T being dense in G, we get G ⊂ E(G,T )
and thus E(G,G) = E(G,T ). As G is Abelian, any transformation g of E(G,G)
commutes with any element of G, and thus is uniquely determined through its value
at 0, so coincide with the translation function by g(0) on G. �

As a consequence of this, we may identify E(Rn,Zn+d) with Rn and E(Tn,Zd)
with Tn.
Propositions 3.9 and 3.10 infer the existence of the onto continuous morphisms

π∗ : E(Rn
c ,Z

n+d) Rn π∗
T : E(Tn

c ,Z
d) Tn

with the composition properties: π(x.g) = π(x) + π∗(g) for any x ∈ Rn
c and

g ∈ E(Rn
c ,Z

n+d), and πT(x.g) = πT(x) + π∗
T(g) for any x ∈ Tn

c and g ∈ E(Tn
c ,Z

d).

Moreover, as the arrow π∗ is proper, Rn is locally compact implies that E(Rn
c ,Z

n+d)
is also locally compact.

3.2. Relation between E(Rn
c ,Z

n+d) and E(Tn
c ,Z

d). Now we relate the Ellis semi-
group E(Rn

c ,Z
n+d) with E(Tn

c ,Z
d) by constructing a morphism ρ∗Zn from the first

onto the latter. Observe that, although we have an onto continuous and Zn+d-
equivariant map ρZn : Rn

c ։ Tn
c (where on Tn

c the summand Zn acts trivially), since
ρZn is not proper (as Tn

c is compact and Rn
c is not) proposition 3.9 do not infer the

existence of ρ∗Zn .
We construct ρ∗Zn as follows. Write [x]Zn for the Zn-orbit in Rn

c of x.

We know that because the group Zn+d is Abelian and dense in E(Rn
c ,Z

n+d), any
transformation g of E(Rn

c ,Z
n+d) commutes with any n ∈ Zn+d so [x]Zn .g = [x.g]Zn

for any x and any g. Hence any g passes through the quotient map ρZn , defining so an
element ρ∗Zn(g) in the compact space (Tn

c )
Tn
c . The map ρ∗Zn : E(Rn

c ,Z
n+d) −→ (Tn

c )
Tn
c

is obviously a semigroup morphism, and is continuous with respect to the pointwise
convergence topologies: For, we have the equality

(ρ∗Zn)−1(VTn
c
(x,U)) = VRn

c
(x̃, ρ−1

Zn (U))
⋂

E(Rn
c ,Z

n+d)

holding for any x and U , where x̃ is any lift of x. Then by continuity of ρZn and
because Zn+d is dense in E(Rn

c ,Z
n+d), we get a continuous morphism

ρ∗Zn : E(Rn
c ,Z

n+d) E(Tn
c ,Z

d)
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which, from its very construction, satisfies the equivariance condition ρZn(x.g) =
ρZn(x).ρ∗Zn(g) for any x ∈ Rn

c and g ∈ E(Rn
c ,Z

n+d).
It is direct to check that the diagramm

E(Rn
c ,Z

n+d) Rn

E(Tn
c ,Z

d) Tn

π∗

[.]Zn

π∗
T

ρ∗Zn

is commutative.

Lemma 3.11. The morphism ρ∗Zn is onto.

Proof. Because the map ρZn : Rn
c ։ Tn

c is a covering map and Tn
c is compact,

there exist a compact subset K ′ of Rn
c such that ρZn(K ′) = Tn

c , that is we have
Rn
c =

⋃

n∈Zn K ′.n. Take any point x in Rn
c : The set K := V (x,K ′) is closed and Zn-

generating, as it is easy to see thanks to the equality V (x,K ′).n = V (x,K ′.(−n)).
To show that K is compact, observe that π∗(K) ⊂ π(K ′)−π(x), which is a compact
Euclidean set. Then K ⊂ (π∗)−1(π(K ′) − π(x)), in turn compact since accord-
ing to proposition 3.9 π∗ is proper. K being closed, it is then compact. Finally,
ρ∗Zn(E(Rn

c ,Z
n+d)) contains Zn and is equal to ρ∗Zn(K) which is compact, so is the

full semigroup E(Tn
c ,Z

d). �

Lemma 3.12. Ker(ρ∗Zn) = Zn.

Proof. Obviously the kernel of ρ∗Zn contains Zn. Conversely, If g and h are transfor-

mations in E(Rn
c ,Z

n+d) with same image in E(Tn
c ,Z

d), then π∗(g) and π∗(h) have
same image on the torus, so differ by an element n ∈ Zn, say π∗(h) + n = π∗(g).
Then h.n and g have same images under π∗ and ρ∗Zn . If x is a point in Rn

c ,
ρZn(x.h.n) = ρZn(x.g) so there is an m ∈ Zn with x.h.(n + m) = x.g. It follows
that π(x.h.n) + m = π(x.g) = π(x) + π∗(g) = π(x) + π∗(h.n) = π(x.h.n), giving
m = 0. This shows that h.n and g coincides at every point of Rn

c , ans thus are
equal. �

In addition to these facts, we prove here that ρ∗Zn is a covering map, so that any

converging net of E(Tn
c ,Z

d) can be lifted into a converging net of E(Rn
c ,Z

n+d).

Proposition 3.13. ρ∗Zn is a covering map.

Proof. Given g ∈ E(Tn
c ,Z

d), take U to be an open neighbourhood of π∗(g) which
is trivializing for [.]Zn and select an open set V of Rn with [.]Zn : V ≈ U . Hence

[.]−1
Zn (U) = V.Zn ≈ U × Zn. Then U ′ := (π∗

T)
−1(U) is an open neighbourhood of

g such that V ′ := (π∗)−1(V ) and U ′, as it is quite direct to show using commuta-
tivity of the diagramm, onto properties of the maps and the equalities Ker(ρ∗Zn) =
Ker([.]Zn) = Zn, are homeomorphic through ρ∗Zn . Consequently (ρ∗Zn)−1(U ′) =
V ′.Zn ≈ U ′ × Zn. �
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3.3. The topology of E(Rn
c ,Z

n+d). In this paragraph we show that E(Rn
c ,Z

n+d)
has its topology generated by a family of what may be seen as half spaces, an
uncountable family though. Remarkably, the Ellis semigroup ony depends on the
relative position of the group Zn+d with respect to the collection of linear hyperspaces
H0

i , i ∈ I, so we could moove freely the affine spaces Ai along their orthogonal
direction without altering the resulting Ellis semigroup.
By proposition 2.8, the pointwise convergence topology on E(Rn

c ,Z
n+d) has a pre-

basis of clopen sets given by the

{V (x,Ac) |x ∈ Rn
c , A ∈ A}

Consider the family

H := {Ht
i + z | i ∈ I, t ∈ {−, 0,+}, z ∈ Rn}

This family if made up open half spaces and affine hyperspaces parallel to the Hi’s.

Definition 3.14. Let P be a subset of Rn. The set PE (or [P ]E) stands for the
closure of P ∩ Zn+d in E(Rn

c ,Z
n+d).

Proposition 3.15. The space E(Rn
c ,Z

n+d) is totally disconnected, and the family

HE := {HE |H ∈ H}

is a pre-basis of clopen sets for the topology of E(Rn
c ,Z

n+d). Moreover, any H ∈ H

satisfies Zn+d ∩ [H]E = Zn+d ∩H, and for any pair H,H ′ of sets in H, the following
Boolean rules are true:

[H ∪H ′]E = HE ∪H ′
E (HE)

c = [Hc]E [H ∩H ′]E = HE ∩H ′
E

Observe that the equality [H ∪H ′]E = HE ∪H ′
E is a straightforward property of

the closing operation.
The following lemma is a cornerstone for the sequel since it will gives us a dichotomy
for what a set V (x,Ac) looks like: it corresponds to an open half space in Rn or a
closed one, only depending in some sense on the point x. For convenience we denote
A+0

i (resp. A−0
i ) to be the closed half space A+

i ∪Ai (resp. A
−
i ∪Ai) for each i ∈ I.

Lemma 3.16. Consider the clopen set V (x, [A+
i ]c). Then

V (x, [A+
i ]c) =











[A+0
i − π(x)]E if px(i) = +

[A+
i − π(x)]E if px(i) = −

[A+0
i − π(x)]E = [A+

i − π(x)]E if px(i) = ∞

The same holds with the + and − signs switched.

Proof. Recall from lemma 2.7 that two clopen sets are equal in E(Rn
c ,Z

n+d) if and
only if they coincide on the dense subset Zn+d. Given V (x, [A+

i ]c), an element

m ∈ Zn+d lies inside if and only if x.m ∈ [A+
i ]c. Because [A+

i ]c is open, using
proposition 2.12 and lemma 2.13 we have that x.m ∈ [A+

i ]c if and only if

[Cx(π(x) +m, ε0)]c ⊂ [A+
i ]c(2)

for some ε0. This is in turn equivalent to

Cx(π(x) +m, ε0) ⊂ A+
i(3)
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For, if (2) holds then applying π we get Cx(π(x) +m, ε0) ⊂ A+
i , so taking interiors

gives (3). Conversely if (3) holds then intersecting with NS and next taking closure
in Rn

c gives (2).
Now we can deal with the more comfortable condition (3), as its statement only
involves Euclidean sets. A rearrangement of (3) gives the equivalent condition

Cx(m, ε0) ⊂ A+
i − π(x)(4)

for some ε0, that is, the head of length ǫ0 of the cone Cx pointed at position m has
to be included into the open half space A+

i − π(x).

For m ∈ A+
i − π(x) the inclusion (4) is automatically satisfied;

For m ∈ A−
i − π(x) the inclusion (4) is never satisfied;

If i ∈ Iπ(x), so that px(i) = ±, we have Zn+d∩(Ai−π(x)) non-void, so for m selected

inside we have Ai − π(x) = H0
i + m, giving A+

i − π(x) = H+
i + m. In turns, the

inclusion (4) is satisfied if and only if Cx ⊂ H+
i (this latter property depending only

on x rather than on the chosen m), that is px(i) = +. Taking closure in E(Rn
c ,Z

n+d)
leads to the stated dichotomy.
If i /∈ Iπ(x), so that px(i) = ∞, the intersection Zn+d ∩ (Ai − π(x)) is void and the
three sets become equal.
The same argument hold when switching the + and − signs, giving the statement.

�

Lemma 3.17. The family HE is made of clopen sets of E(Rn
c ,Z

n+d), and each
H ∈ H satisfy the equality

Zn+d ∩ [H]E = Zn+d ∩H

Moreover the Boolean rules of proposition 3.15 hold.

Proof. Any set of the form [H+
i + z]E , with i ∈ I, is clopen in E(Rn

c ,Z
n+d). For,

using the previous lemma [H+
i + z]E is equal to V (x, [A+

i ]c) if we choose x in the
fiber above ai − z, for any fixed ai ∈ Ai, and with extra condition px(i) = − in
case i ∈ Iai−z. In addition we have Zn+d ∩ [H+

i + z]E = Zn+d ∩ V (x, [A+
i ]c) =

Zn+d ∩ (A+
i − π(x)) = Zn+d ∩ (H+

i + z).

Similarly [H−
i + z]E is clopen and satisfy Zn+d ∩ [H−

i + z]E = Zn+d ∩ (H−
i + z).

Moreover the clopen sets [H−
i + z]E and [H+

i + z]E are disjoint by lemma 2.7, since

their intersection is clopen and contains no point of Zn+d.
It remains the case of [H0

i +z]E . As Z
n+d is dense in E(Rn

c ,Z
n+d) we have E(Rn

c ,Z
n+d)

equal to [H−
i +z]E ∪ [H0

i +z]E ∪ [H+
i +z]E , so ([H0

i +z]E)
c ⊆ [H−

i +z]E ∪ [H+
i +z]E .

This inclusion is in fact an equality. For, if we can find g ∈ [H0
i + z]E ∩ ([H−

i +

z]E ∪ [H+
i + z]E), then there is a net in Zn+d ∩ (H0

i + z) converging to g, which, as

([H−
i + z]E ∪ [H+

i + z]E) is clopen, has to eventually lie into Zn+d ∩ ([H−
i + z]E ∪

[H+
i +z]E) = Zn+d∩(H−

i ∪H+
i +z), giving a contradiction. It follows that [H0

i +z]E
has a clopen complementary set, so is clopen. Moreover we have found

E(Rn
c ,Z

n+d) = [H−
i + z]E ⊔ [H0

i + z]E ⊔ [H+
i + z]E(5)

(⊔ means disjoint union). Intersecting (5) with Zn+d gives Zn+d ∩ [H0
i + z]E =

Zn+d ∩ (H0
i + z).

Finally, each H ∈ H is either H−
i + z, H0

i + z or H+
i + z. From (5) it follows that
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(HE)
c = [Hc]E holds in each case. As the first and second Boolean rules hold, the

third holds as well. �

Lemma 3.18. The family HE is a pre-basis for the topology of E(Rn
c ,Z

n+d).

Proof. As noted, a pre-basis is obtained by V (x,Ac) for x running over Rn
c and A

running over A. A writes as A±
i + n, so Ac = [A±

i ]c.n, and consequently V (x,Ac) =

V (x.(−n), [A±
i ]c). By lemma 3.16 this is either [H+

i −π(x)+ai+n]E or [H+
i −π(x)+

ai+n]E ⊔ [H0
i −π(x)+ai +n]E where ai is any vector of Ai. Consequently V (x,Ac)

is either an element of HE or a finite union of elements of HE . This implies that HE

is a pre-basis for the topology of E(Rn
c ,Z

n+d). �

3.4. Neighborhood basis for E(Rn
c ,Z

n+d) and transformation types.

Here we want to exibit a neighborhood basis for any transformation g ∈ E(Rn
c ,Z

n+d).
By proposition 2.9 it suffice to find a clopen neighborhood of g isolating it among
its fiber with respect to π∗.

Definition 3.19. A transformation type is a map t : I −→ {−, 0,+} such that its

associated cone Ct :=
⋂

i∈I H
t(i)
i is non-empty. We denote the set of transformation

types by T.

We point out that t and Ct uniquely determine each other, and that the family
of cones associated to each element of T partition Rn into cones pointed at 0, of
dimension between 0 and n.

Example 3.20.
In the octagonal tiling case the family T partition R2

into 17 different cones: one being {0}, eight open half
lines {L1, ..., L8}, pointed at 0, with labels such that Li,
Li+4 ⊂ H0

i for all 1 6 i 6 4, and eight open 1/8th spaces
{C1, ..., C8} pointed at 0. With respect to the orientation
endowed on each hyperplan in 2.1 we see for instance that
tL1

(1) = 0, tL1
(2) = −, tL1

(3) = − and tL1
(4) = −. In the

same way each cone determine each transformation type in
T uniquely.

b

L3

L2

L1

L4

L5

L6

L7

L8

C1

C2C3
C4

C5
C6 C7

C8

Recall that we have the decomposition (5)

E(Rn
c ,Z

n+d) = [H−
i + z]E ⊔ [H0

i + z]E ⊔ [H+
i + z]E

into three disjoint clopen sets, which holds for each index i ∈ I and any z ∈ Rn.

Definition 3.21. The translation part of g ∈ E(Rn
c ,Z

n+d) is the image point π∗(g) ∈
Rn.
The transformation type tg of g is the element of T uniquely defined through the

inclusion g ∈ [H
tg(i)
i + π∗(g)]E for all i ∈ I. We denote Cg := Ctg .

The fact that the cones Cg previously associated are non-empty is shown in the
proof of the next proposition.
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Proposition 3.22. Any transformation g ∈ Ec has an open neighbourhood basis of
the form

{U(g, ε) := [Cg + π∗(g)]E ∩ (π∗)−1(B(π∗(g), ε))}ε>0

Proof. Fix g ∈ E(Rn
c ,Z

n+d). From the very definition of tg we have g ∈ [H
tg(i)
i +

π∗(g)]E for each i ∈ I. On the other hand the Boolean rules of proposition 3.15 yield
⋂

i∈I [H
tg(i)
i + π∗(g)]E = [

⋂

i∈I H
tg(i)
i + π∗(g)]E = [Cg + π∗(g)]E , so we deduce that

g ∈ [Cg + π∗(g)]E , ensuring also that Cg is non-empty.
If h 6= g is such that π∗(h) = π∗(g) then by proposition 3.15 there exists z ∈ Rn and
i0 ∈ I such that g and h lie into different clopen sets in the disjoint decomposition

E(Rn
c ,Z

n+d) = [H−
i0
+ z]E ⊔ [H0

i0 + z]E ⊔ [H+
i0
+ z]E

This already implies that z is equal to π∗(g) = π∗(h) up to a vector of H0
i0
, and it

follows that tg(i0) 6= th(i0), so the cones Cg and Ch are disjoint in Rn. Consequently
[Cg + π∗(g)]E and [Ch + π∗(h)]E are disjoint, and this implies that g is the unique
transformation, among its fiber with respect to π∗, contained into [Cg +π∗(g)]E . As
this latter is clopen in E(Rn

c ,Z
n+d), we can conclude by proposition 2.9 that the

stated family is a neighbourhood basis for g in E(Rn
c ,Z

n+d). �

Corollary 3.23. The spaces E(Rn
c ,Z

n+d) and E(Tn
c ,Z

d) are first countable, and the
flow (Tn

c ,Z
d) is tame.

We may introduce a notation: for a point z ∈ Rn and a cone C associated to
a transformation type in T, denote by C(z, ε) the set z + C ∩ B(0, ε). This is
geometrically the head of the cone C of length ε pointed at position z, and is a part
of the ball B(z, ε). Observe that z /∈ C(z, ε) unless the cone C is the singleton {0}

(in which case C(z, ε) = {z} for all ε), and that we always have z ∈ C(z, ε) in Rn.

Remark 3.24. Using proposition 3.15 we have

U(g, ε) ∩ Zn+d = Cg(π
∗(g), ε) ∩ Zn+d

holding for each transformation g ∈ E(Rn
c ,Z

n+d). Thus a sequence of elements of
Zn+d converges to g in E(Rn

c ,Z
n+d) if and only if it converges to π∗(g) in Rn and

eventually lies into π∗(g) + Cg.

4. The structure of E(Tn
c ,Z

d)

In this last section we make use of the onto morphism π∗ together with the
the collection of transformation types to derive a picture of the Ellis semigroup
E(Rn

c ,Z
n+d). We describe the topology as well as the algebraic structure only by

means of thanslation parts and transformation types associated to each transforma-
tion g ∈ E(Rn

c ,Z
n+d). Moreover, using the picture of Rn

c stated in theorem 2.14
we refine the action of the Ellis semigroup onto the cut up space. These results are
finally applied to give a complete description of E(Tn

c ,Z
d), as well as its action on

the cut up torus Tn
c .
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4.1. The main structure theorem.

Proposition 4.1. The map

E(Rn
c ,Z

n+d) ∋ g 7−→ (π∗(g), tg) ∈
{

(z, t) ∈ Rn × T | z ∈ (Ct + z) ∩ Zn+d
}

associating to each transformation its translation and transformation type is well-
defined and bijective.

Proof. We first check that the stated map is well-defined: From proposition 3.22
each transformation g ∈ E(Rn

c ,Z
n+d) is the limit point of a sequence in Zn+d, which

from remark 3.24, converges to π∗(g) in the Euclidean topology and has to lie into
Zn+d∩U(g, ε) = Zn+d∩Cg(π

∗(g), ε) eventually. We thus obtain in particular π∗(g) ∈

(Cg + π∗(g)) ∩ Zn+d, and the map is well-defined.
The neighborhood basis associated to each transformation g in proposition 3.22 only
depends upon the pair (π∗(g), tg), so the stated map is 1-to-1.

The map is also onto: to each pair (z, t) with condition z ∈ (Ct + z) ∩ Zn+d, we
have a non-empty intersection Ct(z, ε) ∩ Zn+d for each ε > 0, and thus the family
{[Ct(z, ε)]E}ε>0 forms a filterbase in E(Rn

c ,Z
n+d). Let ε0 > 0 be chosen. for any

ε < ε0 we have [Ct(z, ε)]E ⊂ (π∗)−1(Ct(z, ε0)), this latter set being compact since

Ct(z, ε0) is compact and π∗ is proper. This means that eventually on ε the filterbase
is contained into a fixed compact set of E(Rn

c ,Z
n+d). It then possess an accumulation

point g, which has to satisfy π∗(g) = z and Cg = Ct. Thus the map is onto. �

Definition 4.2. We call the Euclidean subset Rn
t :=

{

z ∈ Rn | z ∈ (Ct + z) ∩ Zn+d
}

the set of allowed translations for t.
We call a transformation type t trivial if the set of allowed translations Rn

t is empty.
We denote by T0 the family of non-trivial transformation types.

From proposition 4.1 the transformation type of any g ∈ E(Rn
c ,Z

n+d) is always
non-trivial (as π∗(g) ∈ Rn

tg
), so in the sequel we only consider non-trivial transfor-

mation types.
Observe that any set Rn

t is stable under translation by Zn+d.

Proposition 4.3. For each non-trivial transformation type t ∈ T0 there is a unique
Euclidean subspace Wt ⊂ Rn with

Rn
t = Wt + Zn+d

Moreover Wt ∩ Zn+d is dense in Wt for each t.

Proof. Consider for any transformation type t the vector subspace < Ct > of Rn.
From theorem 2.3 of [10], It splits as the direct sum decomposition

< Ct >= Wt +Dt

into vector subspaces such that Zn+d ∩ Wt is dense in Wt, Z
n+d ∩ Dt is uniformly

discrete in Dt, and Zn+d =
(

Zn+d ∩Wt

)

+
(

Zn+d ∩Dt

)

.

Write PW (resp. PD) to be the linear skew projection onto Wt along Dt (resp. the
linear skew projection onto Dt along Wt). Note that PW (Zn+d) = Zn+d ∩ Wt and
PD(Zn+d) = Zn+d ∩Dt.
We show that Rn

t is contained intoWt+Zn+d: Let z ∈ Rn
t , this latter being non-empty
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from the requirement t ∈ T0. Hence there exist a sequence (nk)k∈N ⊂ Zn+d∩(Ct+z)
converging to z in Rn, so that PD(nk) −→ PD(z) and PW (nk) −→ PW (z). The
sequence (PD(nk))k∈N lies into Zn+d ∩Dt which is uniformly discrete in Dt, so since
it converges we get PD(z) = PD(nk) ∈ Zn+d for great enough k. It follows that
z = PW (z) + PD(z) ∈ Wt + Zn+d.
We point out that we eventually have PW (nk) = nk − PD(z) ∈ Zn+d ∩ (Ct + z) −
PD(z), with PD(z) ∈ Zn+d, so eventually PW (nk) ∈ Zn+d ∩ (Ct + PW (z)). Then
PW (nk) − PW (z) = PW (nk − z) eventually lies into both Wt and Ct, which ensure
the intersection Ct ∩Wt to be non-empty.
Conversely we show that Rn

t contains Wt + Zn+d: here it obviously suffice to show
that Rn

t contains Wt.
First observe that Ct ∩Wt is a non-empty open cone of Wt: for, Ct is an open cone
of < Ct >, as the space < Ct > is nothing but

⋂

i∈I,t(i)=0 H
0
i (which is the whole

space Rn in case t is never 0), and Ct writes as the intersection of this space with

the open cone
⋂

i∈I,t(i)6=0 H
t(i)
i (in case t is always 0 this gives Ct =< Ct >= {0}).

Let then z be into Wt. Because Ct ∩Wt is a non-empty open cone of Wt, containing
0 in its closure, (Ct+ z)∩Wt = (Ct∩Wt)+ z is an open set of Wt, containing z in its
closure. As Zn+d∩Wt is dense in Wt, we may select a sequence in Zn+d∩(Ct+z)∩Wt

converging to z. This ensure that z ∈ Rn
t . �

From proposition 4.1 and 4.3 we have obtained an identification of the transfor-
mation semigroup E(Rn

c ,Z
n+d) with the disjoint union of Euclidean subsets

⊔

t∈T0

[

Wt + Zn+d
]

× {t}

by identifying any transformation with its pair of translation part and transformation
type. Our next goal will be to endow this union with the corresponding topology
and semigroup law.
Let us introduce the following notation:
for t a non-trivial transformation type, write

C ′
t := Ct ∩Wt

As it is pointed out in the proof of proposition 4.3 this set is always non-empty
(provided that t is non-trivial), and is a cone pointed at 0 in Rn. For each z ∈ Rn

and each ε > 0 we denote C ′
t(z, ε) to be (B(0, ε)∩C ′

t)+ z, the head of the cone C ′
t of

length ε pointed at position z. Obviously C ′
t(z, ε) ⊂ B(z, ε) whatever the t, z and ε.

Here we state our main result:

Theorem 4.4. Let T0 be the collection of non-trivial transformation types, and let
Wt be the Euclidean space associated with t ∈ T0 of proposition 4.3. The map

E(Rn
c ,Z

n+d) ∋ g 7−→ (π∗(g), tg) ∈
⊔

t∈T0

[

Wt + Zn+d
]

× {t}

associating to each transformation its translation and transformation type is a topo-
logical isomorphism of semigroups, with right term equiped with:
- the semigroup law given by (z, t).(z′, t′) = (z + z′, t.t′), where the semigroup law on
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T0 writes:

t.t′(i) :=

{

t′(i) if t′(i) 6= 0

t(i) if t′(i) = 0

- the topology of convergence: (zn, tn) −→ (z, t) iff

∀ε > 0,∃δn > 0 such that C ′
tn
(zn, δn) ⊂ C ′

t(z, ε) for large enough n

We consider first the algebraic part of the statement. Let us endow T0 with the
composition law stated in theorem 4.4.
Observe that T is made up idempotent elements, that is t.t = t for any transformation
type t.

Proposition 4.5. Any g and h in E(Rn
c ,Z

n+d) satisfy the equality tg.h = tg.th.

Proof. Because g.h ∈ [Cg.h+π∗(g.h)]E and the product law on E(Rn
c ,Z

n+d) is right-

continuous, we can choose n ∈ Zn+d sufficiently close to h in the sense that

(i) g.n ∈ [Cg.h + π∗(g.h)]E (ii) n ∈ Ch + π∗(h)

From (i) we have U(g.n, ε0) ⊂ [Cg.h+π∗(g.h)]E for some ε0 > 0, so intersecting with

Zn+d we get that Cg(π
∗(g)+n, ε) intersect Cg.h+π∗(g.h) for any ε 6 ε0. This means

that
Cg(n − π∗(h), ε0) ∩ Cg.h 6= ∅ ∀ε 6 ε0 with (n− π∗(h)) ∈ Ch

Now divide the situation into three cases:
(1) th(i) = +: then (n − π∗(h)) ∈ Ch ⊂ H+

i , so there is an ε1 > 0, which can be

chosen 6 ε0, with B(n − π∗(h), ε1) ⊂ H+
i . As a result, Cg(n − π∗(h), ε1) ⊂ B(n −

π∗(h), ε1) ⊂ H+
i so H+

i has non-empty intersection with Cg.h, giving Cg.h ⊂ H+
i ,

that is tg.h(i) = +.
(2) th(i) = −: this case rules out as the previous case, giving tg.h(i) = −.

(3) th(i) = 0: then (n− π∗(h)) ∈ H0
i so Cg(n− π∗(h), ε0) ⊂ H

tg(i)
i whatever tg(i) is.

We deduce that Cg(n − π∗(h), ε0) ∩ H
tg(i)
i ∩ Cg.h is non-empty, thus giving Cg.h ⊂

H
tg(i)
i , that is tg.h(i) = tg(i).

Considering these three cases we have tg.h = tg.th holding. �

Corollary 4.6. The law on T0 is a semigroup product. Each pair of transformations
g and h satisfy

(π∗(g.h), tg.h) = (π∗(g) + π∗(h), tg .th)

Moreover, T0 is isomorphic with the subsemigroup I of idempotent transformations
of E(Rn

c ,Z
n+d).

Proof. The equality for any pair g and h follows from the very construction of π∗

and proposition 4.5. In particular we have, as 0 lies into Rn
t for any non-trivial

transformation type,

(0, t.t′) = (0, t).(0, t′) ∈ E(Rn
c ,Z

n+d)

And thus t.t′ ∈ T0, that is, T0 is a (associative) semigroup. Now the collec-
tion I of idempotent transformations has to be contained into {(0, t) | t ∈ T0}, iso-
morphic with T0. As this latter is made up idempotent elements, it follows that
I = {(0, t) | t ∈ T0} ≃ T0. �
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Remark 4.7. For any transformation type t the set
[

Wt + Zn+d
]

×{t} is a subgroup

of E(Rn
c ,Z

n+d), with identity (0, t), isomorphic through π∗ with a subgroup of Rn.

Next we show the topological part of theorem 4.4.

Lemma 4.8. There exists an ε0 > 0 such that, for any t ∈ T0 and z ∈ Rn
t =

Wt + Zn+d, we have

Ct(z, ε) ∩ Zn+d = C ′
t(z, ε) ∩ Zn+d ∀0 < ε 6 ε0

Proof. Obviously Ct(z, ε) contains C
′
t(z, ε) whatever the ε > 0. Conversely, consider

t ∈ T0 with associated cone Ct in Rn. We have the direct sum decomposition

< Ct >= Wt +Dt

into vector subspaces such that Zn+d ∩ Wt is dense in Wt, Z
n+d ∩ Dt is uniformly

discrete in Dt, and Zn+d =
(

Zn+d ∩Wt

)

+
(

Zn+d ∩Dt

)

.

If εt > 0 denotes the radius of discreteness of
(

Zn+d ∩Dt

)

we obtain

< Ct > ∩B(z, εt) ∩ Zn+d = (Wt + z) ∩B(z, εt) ∩ Zn+d

for any z ∈ Wt+Zn+d. Hence by intersecting with Ct+z we obtain, as by construction
Ct ⊂< Ct >,

Ct(z, εt) ∩ Zn+d = (Wt + z) ∩ (Ct + z) ∩B(z, εt) ∩ Zn+d = C ′
t(z, εt) ∩ Zn+d

Taking ε0 to be the minimum over εt, t ∈ T0, gives the statement. �

Lemma 4.9. Any transformation g ∈ E(Rn
c ,Z

n+d) and ε1 < ε2 satisfies

U(g, ε1) ⊂ [Cg(π
∗(g), ε1)]E ⊂ U(g, ε2)

Proof. We start with the left hand inclusion. As U(g, ε1) is open in E(Rn
c ,Z

n+d) and
Zn+d is dense, using remark 3.24 we have Cg(π

∗(g), ε)∩Zn+d = U(g, ε1)∩Zn+d dense

in U(g, ε1). It follows that U(g, ε1) ⊂ Cg(π∗(g), ε1), with closure in E(Rn
c ,Z

n+d),
which is nothing but [Cg(π

∗(g), ε1)]E .
For the right hand inclusion, consider h ∈ [Cg(π

∗(g), ε1)]E . By definition there

is a net in Zn+d ∩ Cg(π
∗(g), ε1) converging to h in E(Rn

c ,Z
n+d). Hence this net

lies into both Zn+d ∩ (Cg + π∗(g)) = Zn+d ∩ [Cg + π∗(g)]c and into B(π∗(g), ε1) ⊂
B(π∗(g), ε1) ⊂ B(π∗(g), ε2), where B denote the closed Euclidean ball. It follows by
taking limit that h ∈ [Cg+π∗(g)]E ∩ (π∗)−1(B(π∗(g), ε2)) = U(g, ε2), as desired. �

Proposition 4.10. For gn ↔ (zn, tn) and g ↔ (z, t), we have gn −→ g if and only
if

∀ε > 0,∃δn > 0 such that C ′
tn
(zn, δn) ⊂ C ′

t(z, ε) for large enough n

Proof. Let then gn ↔ (zn, tn) and g ↔ (z, t). By proposition 3.22, gn −→ g if and
only if

∀0 < ε 6 ε0, gn ∈ U(g, ε) for great enough n

for any fixed ε0, chosen here to be the constant of lemma 4.8. It is equivalent to

∀ 0 < ε 6 ε0, ∃ δn > 0 such that U(gn, δn) ⊂ U(g, ε) for great enough n
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Taking δn 6 ε0 and intersecting with Zn+d leads by remark 3.24 and the previous
lemma to the existence for all 0 < ε 6 ε0 of some 0 < δn 6 ε0 such that

C ′
tn(zn, δn) ∩ Zn+d ⊂ C ′

t(z, ε) ∩ Zn+d for great enough n

This implies that zn ∈ C ′
tn
(zn, δn) ⊂ C ′

t(z, ε). Now as z lies into Wt + Zn+d there

exists a m ∈ Zn+d such that z ∈ Wt +m. It follows that zn ∈ C ′
tn
(zn, δn) ⊂ Wt +m,

so that zn − m ∈ C ′
tn
(zn −m, δn) ⊂ Wt. In turns, the affine space generated by

C ′
tn
(zn−m, δn) is contained into Wt, and as it is nothing but Wtn +zn−m we obtain

Wtn + zn ⊂ Wt +m = Wt + z

Now C ′
t(z, ε) is open in Wt + z, so (Wtn + zn) ∩ C ′

t(z, ε) is open in Wtn + zn, and
non-empty since there is the inclusion of non-empty sets

C ′
tn(zn, δn) ∩ Zn+d ⊂ (Wtn + zn) ∩ C ′

t(z, ε) ∩ Zn+d

We may easily show that C ′
tn
(zn, δn) and (Wtn + zn) ∩C ′

t(z, ε) are regular open sets

of Wtn + zn, and since (Wtn + zn) ∩ Zn+d is dense in Wtn + zn we can conclude, by
taking closure an next interior in Wtn + zn, that

∀ 0 < ε 6 ε0, ∃ 0 < δn 6 ε0 such that C ′
tn(zn, δn) ⊂ C ′

t(z, ε) for great enough n

Thus we have the ” ⇒ ” part of the statement.
Conversely if we suppose that

∀ε > 0,∃δn > 0 such that C ′
tn(zn, δn) ⊂ C ′

t(z, ε) for large enough n

then intersecting with Zn+d and taking closure in E(Rn
c ,Z

n+d) gives

∀ε > 0,∃δn > 0 such that [C ′
tn
(zn, δn)]E ⊂ [C ′

t(z, ε)]E for large enough n

Now by lemma 4.9 we deduce that

∀ε > 0,∃δ′n > 0 such that gn ∈ U(gn, δ
′
n) ⊂ U(g, ε) for large enough n

so that gn −→ g. �

Remark 4.11. We proved along the preceeding lines that if (zn, tn) −→ (z, t) then
for great enough n we have

Wtn + zn ⊂ Wt + z

In particular, for any fixed non-trivial transformation type t0 the disjoint union
⊔

t:Wt0
⊂Wt

[

Wt + Zn+d
]

× {t}

is closed with respect to the topology of theorem 4.4.

Example 4.12. In the octagonal example, as Cj is open for all 1 6 j 6 8, the gen-
erated space < Cj > if all R2. As Z4 is dense we have WtCj

= R2, and consequently

R2
tCj

= R2 for all 1 6 j 6 8. Moreover, < Li >=< Li+4 >= Hi for all 1 6 i 6 4,

and the group Hi ∩ Z4 is dense in Hi (being not monogen), so WtLi
= WtLi+4

= Hi
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for all 1 6 i 6 4. It yields Rn
tLi

= Rn
tLi+4

= Hi + Z4 for all 1 6 i 6 4. Finally we

have Rn
{0} = Z4 so we get a semigroup isomorphism and homeomorphism

E(R2
oct,Z

4) ≃

(

8
⊔

i=1

R2 × {tCi
}

)

⊔





4
⊔

j=1

[Hi + Z4]× {tLi
, tLi+4

}





⊔

Z4

with topology and semigroup law given by theorem 4.4.

We can for instance compute the product tC4
.tL1

: tL1
(1) =

0 and tL1
(i) = − for i = 2, 3, 4 so tC4

.tL1
(1) = tC4

(1) = +
and tC4

.tL1
(i) = tL1

(i) = − for i = 2, 3, 4. Hence tC4
.tL1

=
tC1

.

b

L3

L2

L1

L4

L5

L6

L7

L8

C1

C2C3
C4

C5
C6 C7

C8

4.2. Action formula. Set for any p ∈ P and t ∈ T0 a map p.t : I −→ {−,+,∞},
as

p.t(i) :=

{

t(i) if t(i) 6= 0

p(i) if t(i) = 0

Proposition 4.13. The Ellis action Rn
c × E(Rn

c ,Z
n+d) → Rn

c is recovered as

(z, p).(z′, t) = (z + z′, p′) where p′(i) :=

{

p.t(i) if i ∈ Iz+z′

∞ else

Proof. Let x and g be chosen, corresponding to the pairs (π(x), px) and (π∗(g), tg).
It suffice to show that px.tg = px.g on the domain Dom(px.g) = Iπ(x.g) = Iπ(x)+π∗(g).

Since the evaluation map E(Rn
c ,Z

n+d) ։ Rn
c at point x is continuous we can find an

n ∈ Zn+d such that n is close to g and x.n is close to x.g, that is

x.n ∈ [Cx.g + π(x.g)]c n ∈ (Cg + π∗(g))

Applying π we obtain π(x) + n ∈ (Cx.g + π(x) + π∗(g)), giving that n is both

contained into Cx.g + π∗(g) and Cg + π∗(g). It follows that Cg and Cx.g have non-
empty intersection.
Select i in Dom(px.g) = Iπ(x)+π∗(g). There is three cases:

(1) tg(i) = +: then px.tg(i) = +. Moreover, as Cg ⊂ H+
i , Cx.g intersect the open set

H+
i so the intersection Cx.g ∩H+

i must be non-empty. This force Cx.g to be included

into H+
i , giving px.g(i) = +.

(2) tg(i) = −: this rules out as the previous case, giving px.tg(i) = px.g(i) = −.
(3) tg(i) = 0: Thus px.tg(i) = px(i). Let us show the equality px.g(i) = px(i): as

tg(i) = 0, by remark 3.24 we can choose a sequence of elements nk ∈ Zn+d, converging

to g, with nk ∈ Cg+π∗(g) ⊂ H0
i +π∗(g). Consequently x.nk ∈ ([H

px(i)
i +π(x)]c).nk =

[H
px(i)
i + π(x) + nk]c ⊂ [H

px(i)
i + π(x) + H0

i + π∗(g)]c = [H
px(i)
i + π(x.g)]c. Taking
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the limit on k we get x.g ∈ [H
px(i)
i + π(x.g)]c, giving px.g(i) = px(i).

Consequently, px.g(i) = px.tg(i) for any i ∈ Dom(px.g), giving the statement. �

The action may be rephrased in terms of cones as follows: if we are given two
couples (z, p) and (z′, t), the corresponding image point is the point above z + z′

with cone containing Cp.t (one may show that Cp.t is always non-empty).

4.3. Order, minimal idempotents and the minimal ideal.

Definition 4.14. The algebraic pre-order on T0 is defined by:

t 6 t′ if and only if t.t′ = t

We denote by Tmin to be the set of minimal transformation types in (T0,6).

Proposition 4.15. The algebraic pre-order is an order on T0, and t < t′ if and only
if the cone Ct′ is a lower dimensionnal facet of the cone Ct.

Proof. Suppose that t.t′ = t and t′.t = t′. For i ∈ I, t(i) = t.t′(i) so if t′(i) 6= t(i)
then t′(i) must be equal to 0. But we have in turns 0 = t′(i) = t′.t(i), which force
t(i) to be 0 as well. Hence t and t′ coincides on I so are equal. It follows that the
pre-order is an order on T0.
Now, observe that the cone Ct′ is a lower dimensionnal facet of the cone Ct if and
only if Ct′ ⊂ Ct \ Ct. Then suppose t < t′: we have t.t′(i) = t(i) for all i ∈ I,
and because t and t′ are different the subset J ⊂ I of indices with t′(j) 6= t(j) is
non-empty. This automatically implies that t′(j) = 0 and t(j) 6= 0. It follows that
for each index i ∈ I, either Ct and Ct′ are in the same relative position with H0

i , or
Ct′ lies in the boundary space H0

i whereas Ct lies into some open half part. From

this it easily follows that Ct′ ⊂ Ct \ Ct.
Conversely, if Ct′ ⊂ Ct \ Ct then for each index i ∈ I:
- t(i) = 0 means that Ct′ ⊂ Ct ⊂ H0

i , so t′(i) = 0.

- t(i) = + implies that Ct′ ⊂ Ct ⊂ H+0
i , that is, t′(i) = 0 or +.

- t(i) = − implies that Ct′ ⊂ Ct ⊂ H−0
i , that is, t′(i) = 0 or −.

Considering there three cases we obtain t.t′(i) = t(i) for each i, so that t 6 t′. Since
we supposed Ct′ different from Ct we thus obtain t < t′.

�

Example 4.16. In the octagonal example {Ct | t ∈ T0 = T} consist of 17 cones.
According to the order previously defined, all the cones C1, ..., C8 are minimal, and
each cone L1, ..., L8 have two inferior cones, namely their respective closest neigh-
bours among C1, ..., C8. The one point set {0} is maximal, that is, all the other cones
are inferior.

Definition 4.17. a subset I of E(Rn
c ,Z

n+d) is a (right) ideal if for any g ∈ I and
h ∈ E(Rn

c ,Z
n+d) the composition g.h lies into I. An ideal is said to be minimal if it

does not contain any proper ideal of E(Rn
c ,Z

n+d).
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Proposition 4.18. For each non-trivial transformation type t the following are
equivalent:

(i) t is minimal (ii) t(i) 6= 0 on I (iii) Wt = Rn

The set

M := Rn × Tmin

is closed, and is the unique minimal ideal of E(Rn
c ,Z

n+d). Moreover the product on
M writes as

(z, t).(z′, t′) = (z + z′, t′)

Proof. Suppose that t ∈ (T0,6) is minimal. If t(i0) = 0 for some i0 ∈ I, consider
any non-trivial transformation type t′ with t′(i0) 6= 0 (it suffice to take one with
associated cone not included in H0

i0
), and put t0 := t′.t. Then t0(i0) = t′.t(i0) =

t′(i0) 6= t(i0) so t0 and t are different transformation types, and nonetheless we have
t0.t = (t′.t).t = t′.t = t0, as any transformation type is idempotent. Thus t0 < t,
which contradict the fact that t was assumed to be minimal. Hence t(i) 6= 0 on I.
If t(i) 6= 0 on I, then Ct is open in Rn, so < Ct >= Rn in which Zn+d is dense, so
we get Wt = Rn.
If Wt = Rn then as C ′

t = Ct ∩ Wt = Ct is open in Wt = Rn we deduce t(i) 6= 0 for
each i ∈ I. It follows that t′.t(i) = t(i) on I for any other transformation type t′,
giving that t is minimal.
Consider next the stated set M := Rn × Tmin. It is closed by remark 4.11. By
theorem 4.4, M lies into the Ellis semigroup E(Rn

c ,Z
n+d).

Consider then any (z, t) ∈ M and any (z′, t′) ∈ E(Rn
c ,Z

n+d), with product (z, t).(z′, t′) =
(z + z′, t.t′). As t never vanishes on I, thanks to the product law on T0 the product
t.t′ will never vanishes on I whatever the value of t′ is, and so t.t′ is minimal. The
product pair is then into M, so M is a right ideal. Also the product law on M

directly derives from the product law on the transformation types.
we show that M is the unique minimal ideal:
SupposeM′ is another right ideal, containing some (z, t). Let (0, t0) ∈ M, so that the
product writes (z, t).(0, t0) = (z, t0) (as t0 is never 0) and lies into M′. Then as t0 is
minimal we have (−z, t0) ∈ E(Rn

c ,Z
n+d) and the product (z, t0).(−z, t0) = (0, t0) lies

into M′. Consequently M = (0, t0).M = (0, t0).E(Rn
c ,Z

n+d) ⊂ M′.E(Rn
c ,Z

n+d) =
M′. It follows that any right ideal contains M, thus this latter is a minimal ideal,
and is the unique one. �

4.4. Results for the cut up torus. The analysis made in the two previous
sections pass through the Zn-quotient map on the Ellis semigroup E(Tn

c ,Z
d), giving:

Theorem 4.19. Let T0 be the collection of non-trivial transformation types, and let
Wt be the Euclidean space associated with t ∈ T0 of proposition 4.3. The map

E(Tn
c ,Z

d) ∋ g 7−→ (π∗
T(g), tg) ∈

⊔

t∈T0

[

Wt + Zn+d
]

/Zn × {t}

associating to each transformation its translation and transformation type is a topo-
logical semigroup isomorphism, with right term equiped with:
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- the semigroup law given by (z, t).(z′, t′) = (z + z′, t.t′), where the semigroup law on
T0 writes:

t.t′(i) :=

{

t′(i) if t′(i) 6= 0

t(i) if t′(i) = 0

- the topology of convergence: (zn, tn) −→ (z, t) if and only if zn − z lifts into a
sequence zn − z of Rn such that

∀ε > 0,∃δn > 0 such that C ′
tn
(zn, δn) ⊂ C ′

t(z, ε) for large enough n

Moreover,
- the semigroup E(Tn

c ,Z
d) acts on Tn

c through (z, p).(z′ , t) = (z + z′, p′), where

p′(i) :=

{

p.t(i) if i ∈ Iz+z′

∞ else
p.t(i) :=

{

t(i) if t(i) 6= 0

p(i) if t(i) = 0

- Each [Wt + Γ]/Zn × {t} is a subgroup of E(Tn
c ,Z

d) with identity (0, t).

- the semigroup T0 is isomorphic with the collection of idempotent transformations
in E(Tn

c ,Z
d), each writing as (0, t) for some t ∈ T0.

- The general theory on Ellis semigroup endows the collection of idempotent trans-
formations with an pre-order. It is here an order, given on T0 by t 6 t′ if and only
the cone Ct′ is equal or a lower dimensionnal facet of the cone Ct.
- E(Tn

c ,Z
d) has a unique minimal ideal, given by Tn × Tmin if Tmin denotes the

subsemigroup of T0 of minimal idempotents regarding the order.

Example 4.20. In the octagonal example we have the semigroup isomorphism and
homeomorphism

E(T2
oct,Z

2) ≃

(

8
⊔

i=1

T2 × {tCi
}

)

⊔





4
⊔

j=1

[Hi + Z4]/Zn=2 × {tLi
, tLi+4

}





⊔

Zd=2

with topology and semigroup law given by theorem 4.19.

The example of a Sturmian system (Xα,β,Z) arising as the coding of a rotation by
α on the circle by block exchange [0, β) ⊔ [β, 1) is covered by the previous analysis
applied to a 1-dimensionnal Euclidean space, with ’affine hyperspaces’ the singletons
{0} and {β}, and dense subgroup Zn=1 + αZd=1, α being an irrational number. It
leads to the semigroup

E(Xα,β,Z) = T×
{

q−, q+
}

⊔

αZ

which in particular does not depend upon the value 0 < β < 1 (neither algebraicaly
nor topologicaly). The subspace T × {q−, q+} is the unique minimal right ideal of
the Ellis semigroup, a compact space which was already computed in [6] in the case
α = β, and called the ’two arrows space’ of Alexandroff and Urysohn (see also [2]

p.212). In the octagonal tiling case the subspace
⊔8

i=1 T
2×{tCi

} is, in the same spirit,
the unique minimal right ideal of the Ellis semigroup and a compact subspace.
If we consider a spliting of the circle by [0, β1) ⊔ [β1, β2) ⊔ ... ⊔ [βn, 1) instead of
only two blocks for the coding of an irrationnal rotation by α, then the resulting
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compact dynamical system (Xα,β1,β2,...,βn
,Z) is the rotation on the cut up circle ob-

tained from the one-dimensionnal Euclidean space with dense subgroup Zn=1+αZd=1

and {0} , {β1} , {β2} , ..., {βn} as the collection of ’hyperplanes’. The associated Ellis
semigroup thus writes also as

E(Xα,β1,β2,...,βn
,Z) = T×

{

q−, q+
}

⊔

αZ

This is the same as the result of Pikula [8], who considers the case of a N-action
of this system.
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