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Abstract. In order to model thin conductive non-magnetic shells, an original surface integral formulation
is proposed. The method is based on a surface impedance condition which takes into account the field
variation through depth due to skin effect. It is general and enables the modeling of various problems
whatever their skin depth and avoiding the meshing of the air region. The formulation is compared with
another integral formulation recently proposed by authors and is validated thanks to an axisymmetric
finite-element method (FEM). Advantages and drawbacks of this new formulation are discussed.

1 Introduction

Thin conductive non-magnetic shells are frequently en-
countered in electromagnetic devices (such as planar con-
ductors and conductive shieldings) and the analysis of
their eddy-current distributions is an important problem
in engineering. The geometric specificity of a thin region is
characterized by a high ratio between the length and the
thickness, so using a volume mesh leads to a large number
of elements. Furthermore, when frequency is high, skin
depth can become much thinner than thickness e, lead-
ing to an increase of the size of the mesh if this effect
has to be properly modeled. Shell element formulations
have been developed to overcome such difficulties, e.g.,
with the boundary element method (BEM) [1], with the
finite-element method (2D formulation [2] and 3D formu-
lation [3–8]), and with an integral method recently, pro-
posed by the authors of this paper [9].

In [9], a general shell element formulation for modeling
thin conductive regions has been proposed (δ � e or δ ≈ e
or δ � e). Like in [1–8], this element takes into account the
field variation through depth due to skin effect. The shell
is modeled by an integral formulation avoiding the mesh
of air region. Based on a simple surface discretization of
the shell, the number of unknowns considerably reduces,
the depth of the shell being not meshed.

The present method is a natural reduction of the
method proposed in [9]. However, we will see that the

�

formulation proposed in this paper is less consuming in
terms of degrees of freedom than in [9] and the complex
computation of volume singular integrals is avoided. On
the other hand, the computation of eddy-current losses is
not possible so this new formulation is reliable for appli-
cations where only magnetic field computation in the air
region is focused.

In Section 2, the integral equation governing the thin
shell regions will be presented. In Section 3, this equa-
tion will be coupled with a surface integral formulation.
Finally, two numerical examples will be proposed in the
last part. Results obtained with our formulation will be
compared with those given in [9] and the finite-element
method (FEM).

2 Formulation

2.1 An equation for the thin region

We consider that a small skin depth δ is associated to the
non-magnetic shell with a thickness e (Fig. 1). The field
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Fig. 1. Thin conductive region.
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variation of the longitudinal component across thickness
of shell can be approximated by the analytical solution of
the problem for an infinite plane [1,3]:
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(1)
where a = (1 + j)/δ, H1s and H2s are the field tangen-
tial values on both sides of the shell. Applying Galerkin
method on the Maxwell-Faraday equations for side “1” of
the shell on a real 3D surface Γ1 of the shell, we get [3]:
∫

Γ1

gradsw ·(αH1s−βH2s)dΓ+jω

∫

Γ1

wB1 · n1dΓ = 0, (2)

where α = a
σth(ae) , β = a

σsh(ae) ; w is a set of nodal surface
weighting function; n1 is the normal vector corresponding
to the side “1” of the shell.

The other equation corresponding to the other side of
the shell is obtained when indices “1” and “2” are ex-
changed:
∫

Γ2

gradsw ·(αH2s−βH1s)dΓ+jω

∫

Γ2

wB2 · n2dΓ = 0, (3)

where n2 is the normal vector corresponding to the side
“2” of the shell.

Equations (2) and (3) represent the electromagnetic
behavior of the conductive shell itself. In order to take
into account the surrounding air region, it remains to cou-
ple both equations. In [2–8], the authors choose to use the
finite-element method (FEM), thus they need to mesh the
air region. In [1], a boundary element method (BEM) is
preferred but the authors have to manage the coupling on
both sides of the shell and have to determine if both sides
of the shell are interfaced with a single region or with two
different ones. This leads to the need of quite sophisticated
geometrical analysis tools if the method has to be applied
to general geometries. Moreover, four unknowns per node
are needed. In [9], we have developed an integral approach
based on the coupling of (2) and (3) with a volume integral
equation. The obtained formulation presents an interest-
ing compactness treating different air volumes as the sin-
gle physical region. With this method two unknowns per
node are needed but the computation of volume integrals
can become very complicated to accurately integrate the
exponential decreasing of the current across the thickness
especially when the contribution of an element on itself is
considered. This integration is quite hard to achieve and
is certainly the weak point of the method.

In this work, a new approach is proposed, based on
the coupling of (2) and (3) with a simpler surface integral
equation. This coupling only leads to one unknown per
node and is presented in the next section.

2.2 Surface integral formulation

Equations (2) and (3) are written on the averaged surface
Γ of the thin region. Subtracting equations (3) and (2)

leads to:

(α + β)
∫

Γ

gradsw · (H2s − H1s)dΓ

+jω

∫

Γ

w(2 · B · n)dΓ = 0, (4)

where B ·n = 1
2 (B2 ·n2 −B1 ·n1) is the averaged normal

induction on the surfaces Γ1 and Γ2.
Let us now assume that the shell is placed in an in-

ductor field Ho. The total magnetic field H is the sum of
Ho and Hr, the reaction field of the eddy current in thin
shell:

H = Ho + Hr. (5)

A reduced magnetic scalar potential is introduced for each
side of the shell. Since there is a jump of the tangential
component of the magnetic field through the element, a
double layer node surface element is needed [9]. Expres-
sions of tangential magnetic fields on both sides and out-
side the shell are:

H1s = Hos − gradsφ1 H2s = Hos − gradsφ2, (6)

where Hos is the tangential source field and φ1 and φ2

represent the magnetic reduced scalar potential on each
side of the shell.

Using (4) and (6), we get:

(α + β)
∫

Γ

gradsw · gradsδφ dΓ + 2jω
∫

Γ

w · B · ndΓ = 0,

(7)
where δφ = φ1 −φ2 is the discontinuity of scalar magnetic
potential.

The equivalent surface shell current K can be expressed
as in [1]:

K =
∫

e

J(z)dz = n × gradsδφ. (8)

Thanks to Biot and Savart law, we can write:

Hr =
1
4π

∫

Γ

∫

e

J × r
r3

dzdΓ ≈ 1
4π

∫

Γ

K × r
r3

dΓ. (9)

Using (6), (8) and (9), equation (7) becomes:

(α + β)
∫

Γ

gradsw · gradδφ dΓ +

2jωμo

4π

∫

Γ

w ·
∫

Γ

n × gradδφ × r
r3

dΓ · ndΓ

= −2jωμ0

∫

Γ

w · Ho · ndΓ. (10)

This equation has now to be discretized. The easiest way
is to mesh the average surface Γ, situated halfway be-
tween boundaries of the shells (Fig. 1), into n triangular



elements associated to a uniform tangential component of
the eddy current (meaning first-order shape functions for
the potential). The algebraic linear system obtained has
2p unknowns (one complex magnetic scalar potential per
node; the mesh being composed of p nodes). Let us notice
that shape functions with higher orders can be used.

The discontinuity of scalar magnetic potential is ex-
pressed as follows:

δφ =
p∑

k=1

wk(x, y, z)δφk. (11)

The obtained matrix system is the following one:

[A] · [δΦ] − [Bs] · [δΦ] = [h0n], (12)

where

A(i, k) = (α + β)
∫

Γ

gradwi · gradwk dΓ, (13)

Bs(i, k) =
2jωμo

4π

∫

Γ

wi

⎛
⎝

∫

Γk

n × gradwk × r
r3

dΓ

⎞
⎠ · ni dΓ,

(14)

h0n(i) = −2jωμ0

∫

Γ

wiH0 · ni dΓ. (15)

It must be pointed out that this formulation looks like a
hybridization between finite-element method and an inte-
gral one. In (12), the first term leads to a sparse matrix A
(similar to the one given by a FEM standard integration
process) but the second term Bs is associated to an inte-
gral method. The obtained matrix system is so fully pop-
ulated and compression algorithms must be used if prob-
lems with large numbers of elements are addressed. For
instance, the use of the well-known fast multipole method
(FMM) [10,11] to compress Biot and Savart law is very
efficient in such configuration [12].

Moreover, it must be pointed out that the integral (9)
is computed only thanks to a surface integration of the
averaged current distribution. This is an important differ-
ence with [9] where an accurate volume integration across
the thickness is provided. This assumption can seem quite
inaccurate especially for the computation of the element
on itself when integration points and points where the
field is expressed are closed. However, we will see with
results obtained in the next section that the approach is
not so inaccurate. On the other hand, we cannot compute
the eddy-current losses. Indeed, this new method indicates
only the field discontinuity through the shell, whereas the
field on both sides is required for such a calculation.

3 Numerical example

Our new formulation has been implemented for 3D geome-
tries and has been validated with two different academic

examples. These examples are modeled by three different
methods. The first one is the axisymmetric FEM using
FLUX software [13]. The second one is the volume integral
formulation proposed in [9]. The last one is the considered
surface integral method.

3.1 Hollow sphere

In the first example, a conductive hollow sphere (R =
0.1 m, e = 2 mm, σ = 6E7 S/m) placed in a uniform axial
magnetic field H0 = [0 0 1] (A/m) (Fig. 2) is considered.
We focus on the computed magnetic field in the air region
close to the device (calculated along the path AB in Fig. 2)
with both methods for both cases:

– Case 1: f = 50 Hz, skin depth δ greater than the thick-
ness e (δ = 9.2 mm, δ > e).

– Case 2: f = 4000 Hz, skin depth δ smaller than the
thickness e (δ = 1 mm, δ < e).

Results of the surface integral method are similar to
those obtained with both axisymmetric FEM and integral
methods with volume integration (Fig. 3). Because the
external source field is the same on both sides (Γ1 and
Γ2) and on the average surface Γ, both integral methods
give almost the same results. We can see small differences
between computed values with our formulation and the
reference (axisymmetric FEM) (Fig. 4). These differences
can be explained by the infinite plane assumption and
certainly by the use of a first-order triangular coarse mesh.
As already mentioned, a disadvantage of this new integral
formulation in comparison with existing ones is that it
cannot be used to calculate eddy current loss.

3.2 Thin conductive disk

The second test case is a thin conductive disk (R = 1 m,
e = 20 mm, σ = 6E7 S/m) placed in a magnetic field H0

created by a current loop (I = 1 A, h = R/4) (Fig. 5). We
have computed the magnetic field in the air region close to
the device (calculated along the path CD in Fig. 5) with
both methods for two cases:
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Fig. 2. Hollow sphere, notations and path where the external
magnetic field is computed.
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Fig. 3. Magnetic field along the path AB calculated by three
methods in the fisrt example.
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Fig. 4. Difference in % with the axisymmetric FEM so-
lution for the magnetic field computation along line AB
(f = 4000 Hz).
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Fig. 5. Thin conductive disk, exciting coil and notations
(C (0.25, 0, 0.1), D (0.25, 0, 0.25)).
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Fig. 6. Magnetic field along the path CD calculated by 3 meth-
ods in the second example.
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Fig. 7. Difference in % with the axisymmetric FEM solution
for the magnetic field computation along line CD (f = 50 Hz).

– Case 1: f = 1 Hz, skin depth δ greater than the thick-
ness e (δ = 65 mm, δ > e) (Fig. 6).

– Case 2: f = 50 Hz, skin depth δ smaller than the
thickness e (δ = 9.2 mm, δ < e) (Fig. 6).

If we consider the axisymmetric FEM method as our
reference, the integral method proposed in [9] leads to a
maximal error of 0.1% at f = 1 Hz and 0.2% at f = 50 Hz
(Fig. 7). The new integral method proposed in this paper
presents a quite similar accuracy. In comparison with the
finite-element method, the maximum differences are 0.6%
at f = 1 Hz and 2% at f = 50 Hz (Fig. 7). In this case,
let us notice that the formulation leads to less accurate
results than in [9]. Moreover, Figure 7 shows that closer to
the shell the post-processing point is, less the accuracy of
the surface formulation is. These results can be explained
by the integration of Biot and Savart law in equation (9)
which is certainly less accurate while [9] takes properly
into account the current density exponential decreasing



Table 1. Memory space and CPU time (computer Intel CPU
5160 @ 3 GHz; 16 GB RAM).

Method CPU time Memory space
(s) (MB)

Surface integral method
(3000 surface elements) 170 144

Volume integral method [9]
(3000 surface elements) 1900 288

law across the thickness. Moreover, the exact computation
of the external source field on each side of the plate as
in [9] can lead to more accurate result, in particular when
source coils are close of the thin region.

Let us notice that the CPU time of surface integral
method is reduced up to a factor of 10 in comparison
with [9] (see Tab. 1) and the memory space is also re-
duced. This is due to a less important number of degrees
of freedom and a simpler integration process. These last
results demonstrate the advantage of the method.

4 Conclusion

In this paper, we have presented a new integral formula-
tion using shell elements in order to model thin conduc-
tive non-magnetic regions. The formulation is general and
various skin effects across thickness (δ > e or δ ≈ e or
δ < e) are taken into account. Moreover, it is very simple
to implement in comparison with [9]. Even, if obtained
results are a little bit less accurate close to the shell and
losses cannot be computed, the formulation remains quite
efficient if problems where only magnetic field in the air
region is needed. The coupling of this formulation with

compression algorithm seems to be promising in order to
model real shielding applications. In further work, simi-
lar formulations enabling the modeling of thin conductive
and magnetic shells will be developed.
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