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In this work, we use the theory of error bounds to study metric regularity of the sum of two multifunctions, as well as some important properties of variational systems. We use an approach based on the metric regularity of epigraphical multifunctions. Our results subsume some recent results by Durea and Strugariu.

approximation. Historical comments and modern interpretations and extensions of this theorem can be found in [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Dmitruk | Lyusternik's theorem and the theory of extrema[END_REF]. Particularly, it was observed in Dmitruk, Milyutin & Osmolovsky [START_REF] Dmitruk | Lyusternik's theorem and the theory of extrema[END_REF] that the original Lyusternik's proof in [START_REF] Lyusternik | On conditional extrema of functionals[END_REF] is applicable to a much more general setting: the sum of a covering at a rate mapping and a Lipschitz one with suitable constants is covering at the rate. Extensions to the case of the sum of a metrically regular set-valued mapping and a single-valued Lipschitz map with suitable constants appear in [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Dontchev | Implicit Functions and Solution Mappings, A View from Variational Analysis[END_REF][START_REF] Arutyunov | Stability of Coincidence Points and Properties of Covering Mappings[END_REF][START_REF] Arutyunov | Covering mappings in metric spaces and fixed points[END_REF][START_REF] Azé | A unified theory for metric regularity of multifunctions[END_REF][START_REF] Dontchev | The Graves theorem revisited[END_REF][START_REF] Dontchev | The radius of metric regularity[END_REF], (see the references therein for more details).

For the parametric case, it is well-known (see for instance, Dmitruk & Kruger [START_REF] Dmitruk | Metric regularity and systems of generalized equations[END_REF], Aragón Artacho, Dontchev, Gaydu, Geoffroy, and Veliov [START_REF] Aragón Artacho | Metric regularity of Newton's Iteration[END_REF]) that, if we perturb a metrically regular mapping F by a mapping g(•, •), Lipschitz with respect to x, uniformly in p, with a sufficiently small Lipschitz constant, then the perturbed mapping F (•)+g(•, p) is metrically regular for every p near p. More generally, Ioffe [START_REF] Ioffe | On perturbation stability of metric regularity[END_REF] extended this result to the case of the sum of a metrically regular multifunction and a Lipschitz one, and also to the more general case, when if a multifunction G is sufficiently close to the given metrically regular multifunction F in the sense given in [START_REF] Ioffe | On perturbation stability of metric regularity[END_REF], then G is necessarily metrically regular, with suitable constants (see also [START_REF] Ngai | Error bounds in metric spaces and application to the perturbation stability of metric regularity[END_REF]).

When we perturb a metrically regular multifunction by another set-valued mapping which is pseudo-Lipschitz, the perturbed mapping, i.e., the sum set-valued mapping fails in general to be metrically regular, (we refer to the example in the next section). However, if for example the so-called " sumstability" property (introduced below) holds, then the metric regularityf, as well as the pseudo-Lipschitz property of the variational system, remains. Recently, Durea & Strugariu [START_REF] Durea | Openness stability and implicit multifunction theorems: Applications to variational systems[END_REF] considered the sum of two set-valued mappings and obtained a result very similar to openness of the sum of two set-valued mappings. They also gave some applications to generalized variational systems.

Motivated by the ideas and results from [START_REF] Durea | Openness stability and implicit multifunction theorems: Applications to variational systems[END_REF], we attack these problems by using a different approach and with rather different assumptions. Indeed, using an approach based on the theory of error bounds, we study metric regularity of a special multifunction called the epigraphical multifunction associated to F and G. This intermediate result allows us to study metric regularity/ linear openness of the sum of two set-valued mappings, as well as metric regularity of the general variational system, avoiding the strong assumption of the closedness of the sum multifunction.

The paper is structured as follows. Section 2 is devoted to preliminaries where we introduce the problem of generalized parametric inclusions. We give some illustrations through examples and we present a small survey on different notion of regularity. In Section 3, we recall some recent results on error bounds of parametrized systems and give, sometimes with some modifications, characterizations of metric regularity of multifunctions given in [START_REF] Ngai | Error bounds in metric spaces and application to the perturbation stability of metric regularity[END_REF][START_REF] Ngai | Implicit multifunction theorems in complete metric spaces[END_REF]. In Section 4, in the context of Asplund spaces, we estimate the strong slope of the lower semicontinuous envelope of the distance function to the epigraphical mul-tifunction associated to two given multifunctions F and G. Then, we give sufficient conditions as well as a point-based condition for metric regularity of this epigraphical multifunction under a coderivative condition. In the last section, we study Robinson metric regularity and Aubin property of a generalized variational system.

Preliminaries

Generalized equations, i.e., inclusions of the type 0 ∈ F (x, p),

involving a multifunction F : X × P ⇉ Y where X, Y are metric spaces, and P is a topological space considered as the space of parameters, have been extensively used for modeling optimization and complementarity problems, as well as variational inequalities since the pioneering work of Robinson [START_REF] Robinson | Generalized equations and their solution, Part I: Basic theory[END_REF][START_REF] Robinson | Strongly regular generalized equations[END_REF]. The study of generalized equations constitute the core of the development of set-valued analysis [START_REF] Aubin | of Systems & Control: Foundations & Applications[END_REF] which is one of the main corner-stones of variational analysis, see, e.g., books [START_REF] Dontchev | Implicit Functions and Solution Mappings, A View from Variational Analysis[END_REF][START_REF] Borwein | Techniques of Variational Analysis[END_REF][START_REF] Burachik | Set-Valued Mappings and Enlargements of Monotone Operators[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF][START_REF] Penot | Calculus Without Derivatives[END_REF][START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen Wissenschaften[END_REF]. A typical example of [START_REF] Lyusternik | On conditional extrema of functionals[END_REF] is given by a parametrized system of inequalities/equalities. More precisely, let us consider the system (S), consisting of those points x for which

f i (x, p) ≤ 0, i ∈ {1, • • • , k}, f i (x, p) = 0, i ∈ {k + 1, • • • , k + d},
where x ∈ R m is the decision variable, p ∈ R n a parameter and for each i ∈ {1, k + d}, and the f ′ i s are functions from R m × R n to R. Setting f (x, p) = (f 1 (x, p), • • • , f k (x, p), f k+1 (x, p), • • • , f k+d (x, p)), and

F (x, p) := f (x, p) -R k -× {0} d ,
the system (S) can be reformulated in the form [START_REF] Lyusternik | On conditional extrema of functionals[END_REF]. Let us also note that (1) includes the important subcase of parametrized generalized inclusions:

0 ∈ H(x) + f (x, p), (2) 
where H : X ⇉ Y is a set-valued mapping and f : X × P → Y is a mapping.

Let us consider the perturbed optimization problem (P)

min x∈C [g(x) -p, x ],
where g : R n → R is a Fréchet differentiable function, and p ∈ R n is a given parameter. The first order optimality condition of problem (P) is given by p -∇g(x) ∈ N C (x).

(3)

Here N C stands for the normal cone mapping defined by 

N C (x) = {v ∈ R n : v, y -x ≤ 0 ∀y ∈ C} if x ∈ C,
Hence, the first order optimality condition satisfies the generalized variational inequality (4) and appears as a special case of equation [START_REF] Graves | Some mapping theorems[END_REF].

The study of variational properties and stability of the solutions of equation ( 1) has attracted a large interest from a large number of authors, and we refer the reader to the monographs [START_REF] Dontchev | Implicit Functions and Solution Mappings, A View from Variational Analysis[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF][START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen Wissenschaften[END_REF] and the references therein.

Let us first provide definitions and properties of some essential notions from set-valued analysis that Since various types of multifunctions arise in a considerable number of models ranging from mathematical programs, through game theory and to control and design problems, they represent probably the most developed class of objects in variational analysis. A number of useful regularity properties have been introduced and investigated (see [START_REF] Dontchev | Implicit Functions and Solution Mappings, A View from Variational Analysis[END_REF][START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen Wissenschaften[END_REF] and the references therein). Among them, the most popular is that of metric regularity ( [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Dontchev | Implicit Functions and Solution Mappings, A View from Variational Analysis[END_REF][START_REF] Dmitruk | Metric regularity and systems of generalized equations[END_REF][START_REF] Ioffe | On perturbation stability of metric regularity[END_REF][START_REF] Ngai | Error bounds in metric spaces and application to the perturbation stability of metric regularity[END_REF][START_REF] Aubin | of Systems & Control: Foundations & Applications[END_REF][START_REF] Borwein | Techniques of Variational Analysis[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF][START_REF] Penot | Calculus Without Derivatives[END_REF][START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Schirotzek | Nonsmooth Analysis[END_REF][START_REF] Borwein | Verifiable necessary and sufficient conditions for openness and regularity of set-valued maps[END_REF][START_REF] Penot | Metric regularity, openness and Lipschitz behavior multifunctions[END_REF][START_REF] Jourani | Approximate subdifferential and metric regularity : Finite dimensional case[END_REF][START_REF] Jourani | Approximations and metric regularity in mathematical programming in Banach spaces[END_REF][START_REF] Jourani | Metric regularity for strongly compactly Lipschitzian mappings[END_REF][START_REF] Jourani | Verifiable conditions for openness and metric regularity of multivalued mappings in Banach spaces[END_REF][START_REF] Jourani | Metric inequality and subdifferential calculus in Banach spaces[END_REF][START_REF] Jourani | Coderivatives of multivalued mappings, locally compact cones and metric regularity[END_REF][START_REF] Ng | Error bounds for lower semicontinuous functions in normed spaces[END_REF][START_REF] Klatte | Nonsmooth equations in Optimization[END_REF]), the root of which can be traced back to the classical Banach open mapping theorem and the subsequent fundamental results of Lyusternik and Graves ( [1,2]).

A multifunction F is said to be metrically regular around (x, ȳ) ∈ gph F with modulus τ > 0, whenever there exist neighborhoods U, V of x, ȳ, respectively, such that, for every (x, y) ∈ U × V,

d(x, F -1 (y)) ≤ τ d(y, F (x)). (5) 
A classical illustration of this concept concerns the case when F is a bounded linear continuous operator.

Then, metric regularity of F amounts to saying that F is surjective. In terms of the inverse mapping S := F -1 , property (5) can be rewritten equivalently as follows:

d(x, S(y)) ≤ κd(y, y ′ ) ∀y, y ′ ∈ V, ∀x ∈ S(y ′ ) ∩ U. (6) 
This gives rise to another well known concept called pseudo-Lipschitz property, also called Lipschitz-like property (see [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF]), or Aubin property (see [START_REF] Aubin | Lipschitz behavior of solutions to convex minimization problems[END_REF]) at (ȳ, x) ∈ gph S . The concept of openness or covering (at a linear rate) is also widely used: one says that S : X ⇉ Y is open at linear rate τ > 0 around (x, ȳ) ∈ gph S iff there exist neighborhoods U, V of x, ȳ, respectively and, a positive number ε > 0 such that, for every (x, y) ∈ gph S ∩ (U × V) and every ρ ∈]0, ε[, B(y, ρτ ) ⊂ S(B(x, ρ)).

We refer to [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Dmitruk | Lyusternik's theorem and the theory of extrema[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF][START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Schirotzek | Nonsmooth Analysis[END_REF][START_REF] Penot | Metric regularity, openness and Lipschitz behavior multifunctions[END_REF][START_REF] Aubin | Lipschitz behavior of solutions to convex minimization problems[END_REF][START_REF] Kruger | Covering theorem for set-valued mappings[END_REF] and the references therein for different developments of these notions.

The following relation is well established:

Metric regularity ⇐⇒ Covering ⇐⇒ Aubin property of the inverse.

Let us also add that in Banach spaces, similarly to the classical calculus, one can formulate sufficient (sub)differential characterizations of properties ( 5) and ( 6) (see, e.g., [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF][START_REF] Kruger | Covering theorem for set-valued mappings[END_REF]). In Asplund spaces (see [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF][START_REF] Phelps | Convex Functions, Monotone Operators and Differentiability[END_REF] for definitions and characterizations of Asplund spaces), the corresponding characterizations in terms of Fréchet subdifferentials ( [START_REF] Kruger | Strict (ε, δ)-semidifferentials and the extremality of sets and functions[END_REF][START_REF] Kruger | On Fréchet subdifferentials[END_REF]) or their limiting counterparts ( [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF][START_REF] Kruger | Properties of generalized differentials[END_REF][START_REF] Kruger | Extremal points and the Euler equation in nonsmooth optimization problems[END_REF][START_REF] Mordukhovich | Approximation Methods in Problems of Optimization and Control[END_REF]) and the corresponding coderivatives become necessary and sufficient.

From the point of view of applications to optimization (sensitivity analysis, convergence analysis of algorithms, and penalty functions methods), one of the most important regularity properties seems to be that of error bounds, providing an estimate for the distance of a point from the solution set. This theory was initiated by the pioneering work by Hoffman [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF] 1 . A general classification scheme of necessary and sufficient criteria for the error bound property is presented in [START_REF] Fabian | Error bounds: necessary and sufficient conditions[END_REF][START_REF] Fabian | About error bounds in metric spaces[END_REF]. Applications of the theory of error bounds to the investigation of metric regularity of multifunctions have been recently studied and developed by many authors, including for instance [START_REF] Azé | A unified theory for metric regularity of multifunctions[END_REF][START_REF] Ngai | Error bounds in metric spaces and application to the perturbation stability of metric regularity[END_REF][START_REF] Ngai | Implicit multifunction theorems in complete metric spaces[END_REF][START_REF] Azé | On implicit multifunction theorems[END_REF][START_REF] Ngai | Error bounds and implicit multifunctions in smooth Banach spaces and applications to optimization[END_REF][START_REF] Ngai | Error bounds for systems of lower semicontinuous in Asplund spaces[END_REF][START_REF] Durea | Metric regularity of epigraphical multivalued mappings and applications to vector optimization[END_REF].

Metric Regularity of Epigraphical Multifunctions via Error Bounds

Let us remind some basic notions used in the paper. Let f : X → R ∪ {+∞} be a given extended-realvalued function. As usual, Dom f := {x ∈ X : f (x) < +∞} denotes the domain of f . We recall the concept of error bounds that is one of the most important regularity properties. We set

S := {x ∈ X : f (x) ≤ 0}, (8) 
and we use the symbol [f (x)] + to denote max{f (x), 0}. We say that f satisfies the an error bound property iff there exists a real c > 0 such that

d(x, S) ≤ c f (x)] + for all x ∈ X. (9) 
For x 0 ∈ S, f has a local error bound at x 0 , when there exist reals c > 0 and ε > 0 such that ( 9) is satisfied for all x around x 0 , i.e., in an open ball B(x 0 , ε).

Given a multifunction F : X ⇉ Y , we make use of the lower semicontinuous envelope (x, y) → ϕ F (x, y)

of the function (x, y) → d(y, F (x)), i.e., for (x, y) ∈ X × Y, ϕ F (x, y) := lim inf (u,v)→(x,y) d(v, F (u)) = lim inf u→x d(y, F (u)). ( 10 
)
Recall from De Giorgi, Marino & Tosques [START_REF] De Giorgi | Problemi di evoluzione in spazi metrici e curve di massima pendenza (Evolution problems in metric spaces and curves of maximal slope)[END_REF], that the strong slope |∇f |(x) of a lower semicontinuous

function f at x ∈ Dom f is the quantity defined by |∇f |(x) = 0 if x is a local minimum of f, and f |∇f |(x) = lim sup y→x,y =x f (x) -f (y) d(x, y) , otherwise. For x / ∈ Dom f, we set |∇f |(x) = +∞.
We now consider a parametrized inequality system, that is, the problem of finding x ∈ X such that

f (x, p) ≤ 0, (11) 
where f : X × P → R ∪ {+∞} is an extended-real-valued function, X is a complete metric space and P is a topological space. We denote by S(p) the set of solutions of system [START_REF] Dmitruk | Metric regularity and systems of generalized equations[END_REF]:

S(p) := {x ∈ X : f (x, p) ≤ 0}.
The following theorem ( [16, Theorem 2]) gives necessary and sufficient conditions for the existence of a local uniform error bound for the parametric system [START_REF] Dmitruk | Metric regularity and systems of generalized equations[END_REF].

Theorem 3.1 Let X be a complete metric space and P be a topological space. Suppose that the mapping f : X × P → R ∪ {+∞} satisfies the following conditions for some (x, p) ∈ X × P :

(a) x ∈ S(p);

(b) the mapping p → f (x, p) is upper semicontinuous at p;

(c) for any p near p, the mapping x → f (x, p) is lower semicontinuous near x.

Let τ > 0 be given. The the following two statements are equivalent:

(i) There exists a neighborhood V × W ⊆ X × P of (x, p) such that for any p ∈ W, we have V ∩ S(p) = ∅ and

d(x, S(p)) ≤ τ [f (x, p)] + for all (x, p) ∈ V × W. ( 12 
)
(ii) There exist a neighborhood V ×W ⊆ X ×P of (x, p) and a real γ > 0 such that for each (x, p) ∈ V ×W with f (x, p) ∈ (0, γ) and for any ε > 0, we can find z ∈ X such that

0 < d(x, z) < (τ + ε)(f (x, p) -[f (z, p)] + ). ( 13 
)
Given metric spaces X, Y and a topological space P , we next consider the implicit multifunction : X ×P ⇉ Y defined by S(y, p) := {x ∈ X : y ∈ F (x, p)}.

Similarly to [START_REF] Dontchev | The radius of metric regularity[END_REF], we use the lower semicontinuous envelope (x, y) → ϕ p (x, y) of the function (x, y) → d(y, F (x, p)) for each p ∈ P, i.e., for (x, y) ∈ X × Y,

ϕ p (x, y) := lim inf (u,v)→(x,y) d(v, F (u, p)) = lim inf u→x d(y, F (u, p)). (15) 
From now on, we will also use the notation F p for F (•, p) and ϕ p for ϕ Fp and the metric defined on the cartesian product X × Y is given by:

d((x, y), (u, v)) = max{d(x, u), d(y, v)}, (x, y), (u, v) ∈ X × Y.
The next lemma is useful.

Lemma 3.1 We suppose that the set-valued mapping x ⇉ F (x, p) is a closed multifunction (i.e., its graph is closed) for any p near p. Then, for each y ∈ Y, and each p near p, S(y, p) = {x ∈ X : ϕ p (x, y) = 0}.

Theorem 3.2 Let X be a complete metric space and Y be a metric space. Let P be a topological space and suppose that the set-valued mapping F : X × P ⇉ Y satisfies the following conditions for some (x, ȳ, p) ∈ X × Y × P :

(a) x ∈ S(ȳ, p);

(b) the multifunction p ⇉ F (x, p) is lower semicontinuous at p;

(c) for any p near p, the set-valued mapping x ⇉ F (x, p) is a closed multifunction (i.e., its graph is closed).

Let τ ∈ (0, +∞), be fixed. Then one has the following implications:

(i) ⇔ (ii) ⇔ (iii) ⇐ (iv).
Moreover, all the assertions are equivalent provided that Y is a normed space.

(i) There exists a neighborhhood U × V × W ⊆ X × P × Y of (x, ȳ, p) such that V ∩ S(y, p) = ∅ for any (y, p) ∈ V × W and d(x, S(y, p)) ≤ τ d(y, F (x, p)) for all (x, y, p) ∈ U × V × W;

(ii) There exists a neighborhhood U × V × W ⊆ X × P × Y of (x, ȳ, p) such that V ∩ S(y, p) = ∅ for any (y, p) ∈ V × W and d(x, S(y, p)) ≤ τ ϕ p (x, y) for all (x, y, p) ∈ U × V × W;

(iii) There exist a neighborhood U × V × W ⊆ X × Y × P of (x, ȳ, p) and a real γ ∈ (0, +∞) such that for any (x, y, p) ∈ U × V × W with y / ∈ F (x, p) and any ε > 0, and any sequence {x n } n∈N ⊆ X converging to

x with

lim n→∞ d(y, F (x n , p)) = lim inf u→x d(y, F (u, p)) = ϕ p (x, p),
there exists a sequence {u n } n∈N ⊆ X with lim inf n→∞ d(u n , x) > 0 such that

lim sup n→∞ d(y, F (x n , p)) -d(y, F (u n , p)) d(x n , u n ) > 1 τ + ε ; ( 16 
)
(iv) There exist a neighborhood U × V × W ⊆ X × P × Y of (x, p, ȳ) and a real γ > 0 such that

|∇ϕ p (•, y)|(x) ≥ 1 τ for all (x, y, p) ∈ U × V × W with ϕ p (x, y) ∈ (0, γ). ( 17 
)
Proof. The implications (ii) ⇒ (i) and (iv) ⇒ (iii) are obvious. For (i) ⇒ (iii), let U × V × W be an open neighborhood of (x, ȳ, p) such that gph F (•, p) is closed for p ∈ W and Pick δ ∈ (0, lim inf n→∞ d(u n , x)). Then, take an index n 1 ≥ n 0 such that for all n ≥ n 1 , we have

d(x, S(y, p)) ≤ τ d(y, F (x, p)) ∀(x, y, p) ∈ U × V × W. Let (x, y, p) ∈ U × V × W, y / ∈ F (
d(x n , u n ) ≥ δ; d(x n , x) < εδ; d(y, F (x n , p) < ϕ p (x, y) + ε τ + ε d(x n , u n ) and d(x n , u n ) < (τ + ε)(d(y, F (x n , p)) -d(y, F (u n , p))).
Hence,

d(x n , u n ) < (1 -ε) -1 (τ + ε)(ϕ p (x, y) -ϕ p (u n , y)).
It follows that for all n ≥ n 1 ,

d(x, u n ) ≤ (1 + ε)d(x n , u n ) < (1 -ε) -1 (τ + ε)(1 + ε)(ϕ p (x, y) -ϕ p (u n , y)) < (τ + ε)(ϕ p (x, y) -ϕ p (u n , y))
and statement (ii) of Theorem 3.1 follows directly. So, the implication (iii) ⇒ (ii) is now proved.

When Y is normed space, (i) ⇒ (iv) follows from the converse part of [START_REF] Ngai | Implicit multifunction theorems in complete metric spaces[END_REF]Theorem 5]) by noting that S(y, p) = F -1 p (y). So, we have that all assertions are equivalent when Y to be normed space.

The proof is complete. △ Given two multifunctions F, G : X ⇉ Y , (Y is a normed linear space) we define a new multifunction

E (F,G) : X × Y ⇉ Y by setting E (F,G) (x, k) =      F (x) + k, if k ∈ G(x), ∅, otherwise.
When one of the multifunctions is a cone, E (F,G) was called epigraphical by Durea and Strugariu [START_REF] Durea | Openness stability and implicit multifunction theorems: Applications to variational systems[END_REF].

For given y ∈ Y, we set

S E (F,G) (y) := {(x, k) ∈ X × Y : y ∈ E (F,G) (x, k)}. (18) 
The lower semicontinuous envelope ((x, k), y)

→ ϕ E ((x, k), y) of the distance function d(y, E (F,G) (x, k)) is defined for (x, k, y) ∈ X × Y × Y by ϕ E ((x, k), y) := lim inf (u,v,w)→(x,k,y) d(w, E (F,G) (u, v)).
Let us recall that a multifunction G : X ⇉ Y is lower semicontinuous at (x, y) ∈ gph G, if for any sequence

{x n } n∈N converging to x, we can provide a sequence {y n } n∈N converging to y, with y n ∈ G(x n ). Lemma 3.2 If G has closed graph then ϕ E ((x, k), y) =      lim inf gph G∋(u,v)→(x,k) d(y, F (u) + v), if k ∈ G(x) +∞, otherwise.
Moreover, if in addition, G is lower semicontinuous at (x, k) ∈ gph G, then the following representation holds:

ϕ E ((x, k), y) =      lim inf u→x d(y, F (u) + k), if k ∈ G(x) +∞, otherwise. Proof For the first equality, if k / ∈ G(x), since G has closed graph one has ϕ E ((x, k), y) = ∞. Otherwise, we have ϕ E ((x, k), y = lim inf (u,v,w)→(x,k,y) d(w, E (F,G) (u, v)) = lim inf gph G∋(u,v)→(x,k) d(y, F (u) + v).
Claim Let G : X ⇉ Y be lower semicontinuoous at (x, k) ∈ gph G. Then for each y ∈ Y we have lim inf

gph G∋(u,v)→(x,k) d(y, F (u) + v) = lim inf u→x d(y, F (u) + k).
For simplicity set

A := lim inf gph G∋(u,v)→(x,k) d(y, F (u) + v) and B := lim inf u→x d(y, F (u) + k). First let us prove that A ≥ B. Indeed, let {(u n , v n )} n∈N be a sequence in gph G such that (u n , v n ) → (x, k) as n → +∞ and lim n→+∞ d(y, F (u n ) + v n ) = A. Then, B ≤ lim inf n→+∞ d(y, F (u n ) + k) ≤ lim inf n→+∞ [d(y, F (u n ) + v n ) + v n -k ] = lim n→+∞ d(y, F (u n ) + v n ) = A.
On the other hand, to prove that A ≤ B, pick any sequence {u n } n∈N converging to x such that

lim n→+∞ d(y, F (u n ) + k) = B. As G is lower semicontinuous at (x, k), we find a sequence {v n } n∈N converging to k such that (u n , v n ) ∈ gph G for each n ∈ N. Hence, A ≤ lim inf n→+∞ d(y, F (u n ) + v n ) ≤ lim inf n→+∞ [d(y, F (u n ) + k + k -v n ] ≤ lim n→+∞ d(y, F (u n ) + k) = B.
The claim is proved. From the claim, the fact that ϕ E ((x, k), y) = lim inf u→x d(y, F (u) + k) follows immediately. △ Remark 3.1 (i) Since we suppose that G is both graph-closed and lower semicontinuous, it is continuous in finite dimension (see, [24, Theorem 5.7 page 158]).

(ii) The lower semicontinuity of G is necessary to obtain the last formula in Lemma 3.2 as shows the next example2 : take F, G : [0, 1] ⇉ R be defined by

F (0) = {0}, F (x) = 1 if x ∈ (0, 1] and G(0) = {0, 1}, G(x) = {0}, if x ∈ (0, 1].
Note that G has a closed graph but is not lower semicontinuous at (0, 1) ∈ gph G and remark that lim inf

u→0 d(3, F (u) + 1) = 1 while ϕ E ((0, 3), 1) = lim inf (u,v,w)→(0,1,3) d(w, E (F,G) (u, v)) = 2.
The next lemma is useful.

Lemma 3.3 Assume that F : X ⇉ Y and G : X ⇉ Y be closed multifunctions.
Then, the epigraphical multifunction E (F,G) has a closed graph, and for each y ∈ Y,

S E (F,G) (y) = {(x, k) ∈ X × Y : ϕ E ((x, k), y) = 0} = {(x, k) ∈ X × Y : k ∈ G(x), y ∈ F (x) + k}. ( 19 
) Proof Observe that, if F : X ⇉ Y and G : X ⇉ Y are closed multifunctions, then so is the epigraphical multifunction E (F,G) .
Let us prove [START_REF] Aubin | of Systems & Control: Foundations & Applications[END_REF]. Obviously, for each

y ∈ Y, if (x, k) ∈ S E (F,G) (y), then ϕ E ((x, k), y) = 0. Conversely, suppose that ϕ E ((x, k), y) = 0. Then, k ∈ G(x)
and there exists a sequence

{(x n , k n )} → (x, k), k n ∈ G(x n ) such that d(y, F (x n ) + k n ) → 0. Then, there exists z n ∈ F (x n ) such that z n + k n → y. It follows, z n → y -k. Since F is graph-closed, one has that y -k ∈ F (x), i.e., y ∈ F (x)+k. Hence, (x, k) ∈ S E (F,G) (y)
establishing the proof. △ By virtue of Lemma 3.3, we adapt Theorem 3.2 to the multifunction E (F,G) .

Lemma 3.4 Let X be a complete metric space, let Y be a Banach space and let F, G :

X ⇉ Y be closed multifunctions. Suppose that (x, k, ȳ) ∈ X × Y × Y such that ȳ ∈ F (x) + k, k ∈ G(x).
Let τ ∈]0, +∞[, be fixed. Then, the following statements are equivalent:

(i) There exists a neighborhood U × V × W ⊆ X × Y × Y of (x, k, ȳ) such that (U × V) ∩ S E (F,G) (y) = ∅
for any y ∈ W and

d((x, k), S E (F,G) (y)) ≤ τ ϕ E ((x, k), y) for all (x, k, y) ∈ U × V × W; (ii) There exist a neighborhood U × V × W ⊆ X × Y × Y of (x, k, ȳ) and a real γ ∈]0, +∞[ such that, for any (x, k, y) ∈ U × V × W with y / ∈ F (x) + k, k ∈ G(x)
and ϕ E ((x, k), y) < γ, any ε > 0, and any

sequences {x n } n∈N ⊆ X converging to x, {k n } n∈N ⊆ Y converging to k, k n ∈ G(x n ) with lim n→∞ d(y -k n , F (x n )) = lim inf gph G∋(u,v)→(x,k) d(y -v, F (u)), there exist sequences {u n } n∈N ⊆ X, {z n } n∈N ⊆ Y with (u n , z n ) ∈ gph G and lim inf n→∞ d((u n , z n ), (x, k)) > 0 such that lim sup n→∞ d(y -k n , F (x n )) -d(y -z n , F (u n )) d((x n , u n ), (k n , z n )) > 1 τ + ε ; ( 20 
)
(iii) there exist a neighborhood U × V × W of (x, k, ȳ) and a real γ > 0 such that

|∇ϕ E ((•, •), y)|(x, k) ≥ 1 τ for all (x, k, y) ∈ U × V × W with ϕ E ((x, k), y) ∈]0, γ[. Proposition 3.
1 Let X be a complete metric space, Y be a Banach space and let F, G :

X ⇉ Y be closed multifunctions. Suppose that (x, k, ȳ) ∈ X × Y × Y be such that ȳ ∈ F (x) + k, k ∈ G(x).
Consider the following statements:

(i) there exist a neighborhood U × V × W of (x, k, ȳ) and τ > 0 such that

d((x, k), S E (F,G) (y)) ≤ τ ϕ E ((x, k), y) for all (x, k, y) ∈ U × V × W;
(ii) there exist a neighborhood U × V × W of (x, k, ȳ) and τ > 0 such that

d(x, (F + G) -1 (y)) ≤ τ d(y, F (x) + G(x) ∩ V) for all (x, y) ∈ U × W; (21) 
(iii) there exist a neighborhood U × V × W of (x, k, ȳ -k) and ε, τ > 0 such that, for every (x, k, z) ∈ U × V × W, k ∈ G(x), z ∈ F (x), and ρ ∈]0, ε[, B(k + z, ρτ -1 ) ⊂ (F + G)(B(x, ρ)).
Then one has the following implications: (i) ⇒ (ii) ⇔ (iii).

Proof For (i) ⇒ (ii). By (i), there exist δ 1 , δ 2 , δ 3 > 0 such that, for every ε > 0 and for every (x, k, y) ∈

B(x, δ 1 ) × [B( k, δ 2 ) ∩ G(x)] × B(ȳ, δ 3 ), there is (u, z) ∈ X × Y with y ∈ F (u) + z, z ∈ G(u) such that d((x, k), (u, z)) < (1 + ε)τ ϕ E ((x, k), y).
Consequently,

d(x, u) ≤ max{d(x, u), k -z } < (1 + ε)τ d(y, F (x) + k). Noting that y ∈ F (u) + G(u), i.e., u ∈ (F + G) -1 (y), it follows that d(x, (F + G) -1 (y)) < (1 + ε)τ d(y, F (x) + k).
In conclusion, we have that

d(x, (F + G) -1 (y)) < (1 + ε)τ d(y, F (x) + G(x) ∩ B( k, δ 2 
)) for all (x, y) ∈ B(x, δ 1 ) × B(ȳ, δ 3 ).

Hence, taking the limit as ε > 0 goes to 0 yields the desired conclusion.

For (ii) ⇒ (iii). Suppose that (ii) holds for the neighborhood

B(x, δ 1 ) × B( k, δ 2 ) × B(ȳ, δ 3 ) with δ 1 , δ 2 , δ 3 > 0 and τ > 0. Choose ρ 1 = δ 1 , ρ 2 = 1/4 min{δ 2 , δ 3 }, ρ 3 = 1/4δ 3 , ε < τ δ 3 /2. Then, for (x, k, z) ∈ B(x, ρ 1 ) × B( k, ρ 2 ) × B(ȳ -k, ρ 3 ), k ∈ G(x), z ∈ F (x), we take y ∈ B(k + z, ρτ -1 ).
Consequently,

y -k -z < ρτ -1 ,
and

y -ȳ ≤ y -k -z + k -k + k -ȳ + z , < ρτ -1 + ρ 2 + ρ 3 , < ετ -1 + δ 3 /4 + δ 3 /4, < δ 3 /2 + δ 3 /2 = δ 3 .
Therefore, we have that

d(y, F (x) + G(x) ∩ B( k, δ 2 )) ≤ y -k -z < ρτ -1 .
Hence,

d(x, (F + G) -1 (y)) < τ ρτ -1 = ρ. Let γ > 0 with d(x, (F + G) -1 (y)) + γ < ρ. Find u ∈ (F + G) -1 (y), i.e., y ∈ (F + G)(u) such that d(x, u) < d(x, (F + G) -1 (y)) + γ.
Thus, d(x, u) < ρ. It follows that

y ∈ (F + G)(B(x, ρ)).
For (iii) ⇒ (ii). Suppose that (iii) holds for the neighborhood B(x, ρ 1 ) × B( k, ρ 2 ) × B(ȳ, ρ 3 ) with ρ 1 , ρ 2 , ρ 3 > 0 and τ > 0, ε > 0.

Take ρ 1 , ρ 3 smaller if neccesary and consider a positive real η sufficiently small so that the quantity

ρ := τ d(y, F (x) + G(x) ∩ B( k, ρ 2 
)) + η satisfies the conclusion of (iii) together with y ∈ B(k + z, ρτ -1 ).

Then, there is a u ∈ B(x, ρ) such that y

∈ (F + G)(u), that is, u ∈ (F + G) -1 (y).
Thus,

d(x, (F + G) -1 (y)) ≤ d(x, u) < ρ = τ d(y, F (x) + G(x) ∩ B( k, ρ 2 )) + η.
Since η > 0 is arbitrary, the proof is complete. △

The next result gives conditions for the sum of two metrically regular mappings F, G to remain metrically regular. Before stating this result, we need to recall the so-called "locally sum-stable" property introduced in [START_REF] Durea | Openness stability and implicit multifunction theorems: Applications to variational systems[END_REF].

Definition 3.1 Let F, G : X ⇉ Y be two multifunctions and (x, ȳ, z) ∈ X × Y × Y such that ȳ ∈ F (x), z ∈ G(x).
We say that the pair (F, G) is locally sum-stable around (x, ȳ, z) iff for every ε > 0, there exists δ > 0 such that, for every x ∈ B(x, δ) and every w ∈ (F + G)(x) ∩ B(ȳ + z, δ), there are

y ∈ F (x) ∩ B(ȳ, ε) and z ∈ G(x) ∩ B(z, ε) such that w = y + z.
A simple case which ensures the local sum-stability of (F, G) is as follows.

Proposition 3.2 Let F : X ⇉ Y, G : X ⇉ Y be two multifunctions and (x, ȳ, z) ∈ X × Y × Y such that ȳ ∈ F (x), z ∈ G(x). If G(x)
= {z} and G is upper semicontinuous at x, then the pair (F, G) is locally sum-stable around (x, ȳ, z).

Proof Since G is upper semicontinuous at x, for every ε > 0 there exists δ > 0 such that

G(x) ⊂ G(x) + B(0, ε/2) = z + B(0, ε/2) = B(z, ε/2), for all x ∈ B(x, δ).
Set

η := min{δ, ε/2}
and take x ∈ B(x, η) and w ∈ (F + G)(x) ∩ B(ȳ + z, η). Then, there are y ∈ F (x), z ∈ G(x) such that w = y + z and w ∈ B(ȳ + z, η).

Clearly, z ∈ B(z, ε/2) ⊂ B(z, ε).
Moreover,

y -ȳ = w -z -ȳ ≤ w -ȳ -z + z -z < η + ε/2 ≤ ε/2 + ε/2 = ε.
Consequently,

w = y + z, y ∈ F (x) ∩ B(ȳ, ε), z ∈ G(x) ∩ B(z, ε).
Hence we have established that (F, G) is locally sum-stable around (x, ȳ, z). △ Proposition 3.3 Let X be a complete metric space, Y be a Banach space and let F, G :

X ⇉ Y be closed multifunctions. Suppose that (x, k, ȳ) ∈ X × Y × Y is such that ȳ ∈ F (x) + k, k ∈ G(x).
If the pair (F, G) is locally sum-stable around (x, ȳ -k, k) and there exist a neighborhood U × V of (x, ȳ) and τ, θ > 0 such that

d(x, (F + G) -1 (y)) ≤ τ d(y, F (x) + G(x) ∩ B( k, θ)) for all (x, y) ∈ U × V, (22) 
then F + G is metrically regular around (x, ȳ) with modulus τ.

As a result, if G is upper semicontinuous at x and G(x) = { k}, then F + G is metrically regular around (x, ȳ) with modulus τ.

Proof Suppose that ( 22) holds for every (x, y) ∈ B(x, δ 1 ) × B(ȳ, δ 2 ) for some δ 1 , δ 2 > 0. Since (F, G)

is locally sum-stable around (x, ȳ -k, k), there exists δ > 0 such that, for every x ∈ B(x, δ) and every

w ∈ (F + G)(x) ∩ B(ȳ, δ), there are y ∈ F (x) ∩ B(ȳ -k, θ) and z ∈ G(x) ∩ B( k, θ) such that w = y + z.
Taking δ smaller if necessary, we can assume that δ < δ 1 . Fix (x, y) ∈ B(x, δ/2) × B(ȳ, δ/2). We consider two following cases:

Case 1. d(y, F (x) + G(x)) < δ/2. Fix γ > 0 , small enough in order to have

d(y, F (x) + G(x)) + γ < δ/2,
and take t ∈ F (x) + G(x) such that yt < d(y, F (x) + G(x)) + γ. Hence we have yt < δ/2, and since we also have yȳ < δ/2, this yields

t -ȳ ≤ y -t + y -ȳ < δ/2 + δ/2 = δ. It follows that t ∈ [F (x) + G(x)] ∩ B(ȳ, δ).
Since (F, G) is locally sum-stable around (x, ȳ-k, k), there are y ∈ F (x)∩B(ȳ-k, θ) and z ∈ G(x)∩B( k, θ)

such that t = y + z.
Consequently,

t ∈ F (x) ∩ B(ȳ -k, θ) + G(x) ∩ B( k, θ) ⊂ F (x) + G(x) ∩ B( k, θ).
Therefore,

d(y, F (x) + G(x) ∩ B( k, θ)) ≤ y -t ,
from which we derive

d(y, F (x) + G(x) ∩ B( k, θ)) ≤ d(y, F (x) + G(x)) + γ,
and therefore, as γ is arbitrarily small, we obtain that

d(y, F (x) + G(x) ∩ B( k, θ)) ≤ d(y, F (x) + G(x)).
By [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF], one gets that

d(x, (F + G) -1 (y)) ≤ τ d(y, F (x) + G(x)).
Since (x, y) is arbitrary in B(x, δ/2) × B(ȳ, δ/2), this yields

d(x, (F + G) -1 (y)) ≤ τ d(y, F (x) + G(x)),
for all (x, y) ∈ B(x, δ/2) × B(ȳ, δ/2).

Case 2. If d(y, F (x) + G(x)) ≥ δ/2. Choose δ sufficiently small so that τ δ/4 < δ 1 . For every (x, y) ∈ B(x, τ δ/4) × B(ȳ, δ/4) and any ε > 0, by [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF], there exists u ∈ (F + G) -1 (y) such that

d(x, u) < (1 + ε)τ d(y, F (x) + G(x)) ≤ (1 + ε)τ y -ȳ < (1 + ε)τ δ/2 ≤ (1 + ε)τ /2d(y, F (x) + G(x)). So, d(x, u) ≤ d(x, x) + d(x, u) < τ δ/4 + (1 + ε)τ /2d(y, F (x) + G(x)) < τ /2d(y, F (x) + G(x)) + (1 + ε)τ /2d(y, F (x) + G(x)).
Taking the limit as ε > 0 goes to 0, it follows that

d(x, (F + G) -1 (y)) ≤ τ d(y, F (x) + G(x)).
So,

d(x, (F + G) -1 (y)) ≤ τ d(y, F (x) + G(x)),
for all (x, y) ∈ B(x, τ δ/4) × B(ȳ, δ/4). The proof is complete. △

The following example shows that the sum of a metrically regular set-valued mapping and a pseudo-Lipschitz one is not generally metrically regular without the sum-stability (see [START_REF] Durea | Openness stability and implicit multifunction theorems: Applications to variational systems[END_REF] for a similar example on the sum of two pseudo-Lipschitz set-valued mappings).

Example 3.1 Let F, G : R ⇉ R be given as

F (x) :=        [-x, +∞[, if x ∈ [0, +∞[ {-1}, otherwise and 
G(x) := {0, 1}, x ∈ R.
Then, obviously, F, G are closed multifunctions and, it is easy to see that F is metrically regular around (0, 0) and G is pseudo-Lipschitz around (0, 0). However, (F, G) is not sum-stable around (0, 0, 0) and F + G fails to be metrically regular around (0, 0).

Proof Indeed, we have that

(F + G)(x) =        [-x, +∞[, ifx ∈ [0, +∞[ +∞ otherwise.
and

(F + G) -1 (x) =                          ] -x, +∞[, if x ∈] -∞, 0[\{-1} R, if x = 0 ] -∞, 0]∪]1, +∞[, if x = -1 ]0, +∞[∪{1}, if x ∈]0, +∞[.
Suppose that F + G is metrically regular around (0, 0), then there exist τ > 0 and 0 < δ < min{1, τ -1 } such that, for every (x,

y) ∈] -δ, δ[×] -δ, δ[, one has d(x, (F + G) -1 (y)) ≤ τ d(y, (F + G)(x)). (23) 
Consider x := -δ/2 and y := -δ 2 /2. Then, x ∈] -∞, 0[, y ∈] -∞, 0[ and

(F + G)(x) = {-1, 0}, (F + G) -1 (y) =]δ 2 /2, +∞[. Thus, d(x, (F + G) -1 (y)) = d(-δ/2, ]δ 2 /2, +∞[) = | -δ/2 -(δ 2 /2)| = δ/2 + δ 2 /2,
and,

d(y, (F + G)(x)) = d(-δ 2 /2, {-1, 0}) = min{1 -δ 2 /2, δ 2 /2} = δ 2 /2.
Consequently, by [START_REF] Penot | Calculus Without Derivatives[END_REF], one obtains that δ/2

+ δ 2 /2 ≤ τ δ 2 /2. Since, 1 < 1 + δ ≤ τ δ, this yields δ > τ -1 ,
which contradits the choice of δ. Hence, F + G can not metrically regular around (0, 0).

Of course, (F, G) is not sum-stable around (0, 0, 0). Indeed, take 0 < ε < 1, then, for every δ > 0,

consider x δ := δ/2 ∈] -δ, δ[ and w δ := δ/2 ∈ (F + G)(x δ )∩] -δ, δ[=] -δ/2, δ[. By taking ε smaller if
necessary, we can assume that δ > 2ε. Then, for every y δ ∈ F (x δ ) ∩ (-ε, ε) =]ε, ε[ and, for every

z δ ∈ G(x δ )∩] -ε, ε[= {0}, one has w δ = δ/2 > ε + 0 > y δ + z δ . △
The following theorem establishes metric regularity of the multifunction E (F,G) as well as metric regularity of the sum mapping, of course, with the sum-stable assumption added.

Theorem 3.3 Let X be a complete metric space, let Y be a Banach space and let F, G :

X ⇉ Y be closed multifunctions. Suppose that (x, k, ȳ) ∈ X × Y × Y is such that ȳ ∈ F (x) + k, k ∈ G(x)
, F be metrically regular around (x, ȳ -k) with modulus τ > 0 and G is pseudo-Lipschitz around (x, k) with modulus λ > 0 with τ λ < 1. Suppose that the product space X × Y is endowed with the metric defined by

d((x, k), (u, z)) = max{d(x, u), z -k /λ}. Then E (F,G) is metrically regular around (x, k, ȳ) with modulus (τ -1 -λ) -1 .
If in addition we suppose that the pair (F, G) is locally sum-stable around (x, ȳ -k, k), then F + G is metrically regular around (x, ȳ) with modulus (τ -1λ) -1 .

Proof Since by assumption G is pseudo-Lipschitz around (x, k) with modulus λ > 0, there exist δ 1 , δ 2 > 0 such that

G(x 1 ) ∩ B( k, δ 1 ) ⊂ G(x 2 ) + λ x 1 -x 2 BY , for all x 1 , x 2 ∈ B(x, δ 2 ). ( 24 
)
Then, obviously, G is lower semicontinuous at all (x, k)

∈ (B(x, δ 2 ) × B( k, δ 1 )) ∩ gph G.. Therefore, ϕ E is
given by the second equality in Lemma 3.2. Furthermore, since F is metrically regular around (x, ȳ -k)

with modulus τ > 0, there exist δ 3 , δ 4 > 0 and a real γ > 0 such that

|∇ϕ F (•, y)|(x) ≥ 1 τ for all (x, y) ∈ B(x, δ 3 ) × B(ȳ -k, δ 4 ) with ϕ F (x, y) ∈]0, γ[. (25) 
So, for any ε > 0, there exists u ∈ B(x, δ 3 ), u = x such that

ϕ F (x, y) -ϕ F (u, y) d(x, u) > 1 τ + ε/2 .
Taking δ 1 , δ 3 smaller if neccesary, we can assume that δ 1 < δ 4 , and δ 3 < δ 2 . Then, for every (x, k, y) ∈

B(x, min{δ 2 , δ 3 }/2) × B( k, δ 1 ) × B(ȳ, δ 4 -δ 1 ) with y -k / ∈ F (x), k ∈ G(x)
, any ε > 0 and any sequence

{x n } n∈N ⊆ X converging to x, {k n } n∈N ⊆ X converging to k with k n ∈ G(x n ), and lim n→∞ d(y -k n , F (x n )) = lim inf u→x d(y -k, F (u)),
we deduce that

ϕ F (x, y -k) -ϕ F (u, y -k) d(x, u) > 1 τ + ε/2 , (since y -k ∈ B(ȳ -k, δ 4 )), (26) 
and

lim n→∞ d(y -k, F (x n )) = lim n→∞ d(y -k n , F (x n )) = lim inf u→x d(y -k, F (u)) = ϕ F (x, y -k).
On the other hand, by definition of the function ϕ E , there is a sequence {u n } n∈N ⊆ X converging to u

such that lim n→∞ d(y -k, F (u n )) = ϕ F (u, y -k).
Because u ∈ B(x, δ 3 ), x ∈ B(x, min{δ 2 , δ 3 }/2), {u n } n∈N → u, for n large enough, one has that u n ∈ B(x, δ 2 ). Similarly, since k ∈ B( k, δ 1 ) and {k n } n∈N ⊆ X converges to k, for n large enough, one has that

k n ∈ B( k, δ 1 ).
Therefore, by [START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen Wissenschaften[END_REF], and (26), there exists

z n ∈ G(u n ) such that z n -k n ≤ λd(x n , u n ). ( 27 
)
and

lim n→∞ d(y -k, F (x n )) -d(y -k, F (u n )) d(x, u) > 1 τ + ε .
Thus, noting that u = x, one has that lim sup

n→∞ d(y -k, F (x n )) -d(y -k, F (u n )) d(x n , u n ) = lim n→∞ d(y -k, F (x n )) -d(y -k, F (u n )) d(x n , u n ) = lim n→∞ d(y -k, F (x n )) -d(y -k, F (u n )) d(x, u) d(x, u) d(x n , u n ) = lim n→∞ d(y -k, F (x n )) -d(y -k, F (u n )) d(x, u) lim n→∞ d(x, u) d(x n , u n ) ≤ 1 τ + ε .
On the other hand,

d(y -z n , F (u n )) ≤ d(y -k n F (u n )) + k n -z n . (28) 
From relations ( 27), ( 28), we deduce that for any (x, k, y)

∈ B(x, min{δ 2 , δ 3 }/2) × B( k, δ 1 ) × B(ȳ, δ 4 -δ 1 )
with yk / ∈ F (x), k ∈ G(x), and any ε > 0, any sequence

{x n } n∈N ⊆ X converging to x, {k n } n∈N ⊆ X converging to k, there exists {(u n , z n )} n∈N with lim inf n→∞ d((u n , z n ), (x, k)) = lim inf n→∞ max{d(u n , x), z n -k /λ} ≥ lim inf n→∞ d(u n , x) > 0, (since 0 < d(x, u) ≤ d(u n , x) + d(u n , u) and u n → u) such that lim sup n→∞ d(y -k n , F (x n )) -d(y -z n , F (u n )) d((x n , k n ), (u n , z n )) ≥ lim sup n→∞ d(y -k n , F (x n )) -d(y -k n , F (u n )) -k n -z n d((x n , k n ), (u n , z n )) = lim sup n→∞ d(y -k n , F (x n )) -d(y -k n , F (u n )) -k n -z n max{d(x n , u n ), k n -z n /λ} ≥ lim sup n→∞ d(y -k n , F (x n )) -d(y -k n , F (u n )) max{d(x n , u n ), k n -z n /λ} -λ = lim sup n→∞ d(y -k n , F (x n )) -d(y -k n , F (u n )) d(x n , u n ) -λ > 1 τ + ε -λ, (since z n -k n /λ ≤ d(x n , u n )).
By Lemma 3.4 ((i) ⇔ (ii)), one concludes that E (F,G) is metrically regular around (x, k, ȳ) with modulus

(τ -1 -λ) -1 .
If the pair (F, G) is locally sum-stable around (x, ȳ -k, k), then, combining the hypothesis Proposition 3.3 and Proposition 3.1, we complete the proof. △ Combining Proposition 3.1 and Theorem 3.3, we obtain the following corollary, which is equivalent to the main result (Theorem 3.3) in [START_REF] Durea | Openness stability and implicit multifunction theorems: Applications to variational systems[END_REF], which is stated for the difference of an open mapping and a pseudo-Lipschitz one.

Corollary 3.1 Let X be a complete metric space, let Y be a Banach space and let F, G :

X ⇉ Y be closed multifunctions. Suppose that (x, k, ȳ) ∈ X × Y × Y is such that ȳ ∈ F (x) + k, k ∈ G(x) and F
is metrically regular around (x, ȳ -k) with modulus τ > 0 and G is pseudo-Lipschitz around (x, k) with modulus λ > 0 with τ λ < 1. Then, there exist a neighborhood U × V × W of (x, k, ȳ -k) and ε, τ > 0 such that, for every

(x, k, z) ∈ U × V × W, k ∈ G(x), z ∈ F (x), and ρ ∈]0, ε[, B(k + z, ρτ -1 ) ⊂ (F + G)(B(x, ρ)).

Metric Regularity of the Epigraphical Multifunction under Coderivative Conditions

In this section, X, Y are assumed to be Asplund spaces, i.e., Banach spaces for which each separable subspace has a separable dual (in particular, any reflexive space is Asplund; see, e.g., [START_REF] Borwein | Techniques of Variational Analysis[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF] for more details). We recall some notation, terminology and definitions basically standard and conventional in the area of variational analysis and generalized differentials (see [START_REF] Borwein | Techniques of Variational Analysis[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF][START_REF] Penot | Calculus Without Derivatives[END_REF][START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Schirotzek | Nonsmooth Analysis[END_REF][START_REF] Li | Codifferential Calculus , Set-Valued and Variational Analysis[END_REF] and the references therein).

As usual, • stands for the norm on X or Y , indifferently, and •, • signifies for the canonical pairing between X and its topological dual X ⋆ with the symbol

w ⋆
→ indicating the convergence in the weak ⋆ topology of X ⋆ and the symbol cl * standing for the weak ⋆ topological closure of a set. Given a set-valued mapping F : X ⇉ X ⋆ between X and X ⋆ , recall that the symbol

Lim sup x→x F (x) := x ⋆ ∈ X ⋆ ∃ x n → x, ∃ x ⋆ n w ⋆ → x ⋆ with x ⋆ n ∈ F (x n ), n ∈ N (29) 
stands for the sequential Painlevé-Kuratowski outer/upper limit of F as x → x with respect to the norm topology of X and the weak ⋆ topology of X ⋆ . Let us consider f : X → R ∪ {+∞} an extended-realvalued lower semicontinuous function and x fixed in X. The notation x f → x means that with x → x with f (x) → f (x). The Fréchet subdifferential ∂f (x) of f at x is given by the formula:

∂f (x) = x ⋆ ∈ X ⋆ : lim inf x→x, x =x f (x) -f (x) -x ⋆ , x -x x -x ≥ 0 , and ∂f (x) = ∅ if x / ∈ Dom f.
The notation ∂f (x) is used to denote the limiting subdifferential of f at x ∈ Dom f . It is defined by ∂f (x) := Lim sup The limiting normal cone of C at x is defined and denoted by

N (x; C) = ∂δ C (x).
Let us consider a closed multifunction F : X ⇉ Y and ȳ ∈ F (x). The Fréchet coderivative of F at (x, ȳ)

is the mapping D⋆ F (x, ȳ) : Y ⋆ ⇉ X ⋆ defined by

x ⋆ ∈ D⋆ F (x, ȳ)(y ⋆ ) ⇔ (x ⋆ , -y ⋆ ) ∈ N ((x, ȳ); gph F ),
while the Mordukhovich (limiting) coderivative of F at (x, ȳ) is the mapping

D ⋆ F (x, ȳ) : Y ⋆ ⇉ X ⋆ defined by x ⋆ ∈ D ⋆ F (x, ȳ)(y ⋆ ) ⇔ (x ⋆ , -y ⋆ ) ∈ N ((x, ȳ); gph F ).
Here, N ((x, ȳ); gph F ) and N ((x, ȳ); gph F ) are the Fréchet and the limiting normal cone to gph F at (x, ȳ), respectively.

To obtain a point-based condition for metric regularity of multifunctions in infinite dimensional spaces, one often uses the so-called partial sequential normal compactness (PSNC) property.

A multifunction F : X ⇉ Y is partially sequentially normally compact at (x, ȳ) ∈ gph F , iff, for any

sequences {(x k , y k , x ⋆ k , y ⋆ k )} ∈ gph F × X ⋆ × Y ⋆ satisfying (x k , y k ) → (x, ȳ), x ⋆ k ∈ D⋆ (x k , y k )(y ⋆ k ), x ⋆ k w ⋆ → 0, y ⋆ k → 0, one has x ⋆ k → 0 as k → ∞. Remark 4.1 Condition (PSNC) at (x, ȳ) ∈ gph F is satisfied if X is finite dimensional, or F is pseudo- Lipschitz around that point.
In the following, we need a result on the metric inequality (see, e.g., Ioffe [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF], Huynh &Théra [START_REF] Ngai | Metric inequality, subdifferential calculus and applications[END_REF]). Let us recall that the sets {Ω 1 , Ω 2 } satisfy the metric inequality at x iff, there are τ > 0 and r > 0 such that

d(x, Ω 1 ∩ Ω 2 ) ≤ τ [d(x, Ω 1 ) + d(x, Ω 2 )
] for all x ∈ B(x, r).

Definition 4.1

We say that at x, property (H) is satisfied if

for any sequences {x ik } k∈N ⊂ Ω i (i = 1, 2), {x ik * } ∈ N (x ik ; Ω i ) k∈N (i = 1, 2) such that {x ik } k∈N → x, and x ⋆ 1k + x ⋆ 2k k∈N → 0, then necessarily {x ⋆ 1k } → 0 and {x ⋆ 2k } → 0.
Property (H) was called by A. Y. Kruger, dual (or normal) uniform regularity (see, [START_REF] Kruger | About regularity of collections of sets[END_REF] and [START_REF] Kruger | About stationarity and regularity in variational analysis[END_REF] for a comparison between hypothesis (H) and the metric inequality. One can also note that (H) is the Asplund space version of the Mordukhovich "limiting qualification condition" (cf. [22, Definition 3.2 (ii)]). Although formally the last one is weaker, it is easy to show that in the Asplund space setting the two conditions are equivalent.

Proposition 4.1 Let {Ω 1 , Ω 2 } be two closed subsets of X and fix x ∈ Ω 1 ∩Ω 2 . If we suppose that property (H) holds, then the sets {Ω 1 , Ω 2 } satisfy the metric inequality at x. Under this assumption, there is some r > 0 such that for every ε > 0, and x ∈ B(x, r), there exist x 1 , x 2 ∈ B(x, ε) such that

N (x; Ω 1 ∩ Ω 2 ) ⊂ N (x 1 ; Ω 1 ) + N (x 2 ; Ω 2 ) + εB X ⋆ . ( 30 
)
Let us consider two multifunctions F, G : X ⇉ Y . To these multifunctions, we associate the two sets

C 1 := {(x, y, z) ∈ X × Y × Y : y ∈ G(x)} and C 2 := {(x, y, z) ∈ X × Y × Y : z ∈ F (x)}.
Remark 4.2 Hypothesis (H) can be restated for the sets {C 1 , C 2 } at (x, ȳ, z) ∈ C 1 ∩ C 2 as follows:

(i) (H): for any sequences

{(x k , y k )} k∈N ⊂ gph G, {(v k , z k )} k∈N ⊂ gph F, x ⋆ k ∈ D⋆ G(x k , y k )(y ⋆ k ), u ⋆ k ∈ D⋆ F (v k , z k )(z ⋆ k ), such that if (x k , y k ) → (x, ȳ), (v k , z k ) → (x, z), x ⋆ k + u ⋆ k → 0, y ⋆ k → 0, z ⋆ k → 0, then x ⋆ k → 0, u ⋆ k → 0, as k → 0.
It holds whenever one of following conditions is fulfilled:

(ii) F -1 or G -1 is pseudo-Lipschitz around (z, x) or (ȳ, x), respectively;

(iii) either F is PSNC at (x, z) or G is PSNC at (x, ȳ), and

D ⋆ F (x, z)(0) ∩ -D ⋆ G(x, ȳ)(0) = {0}.
Proof Observe that, if F -1 or G -1 is pseudo-Lipschitz around (z, x) and (ȳ, x), respectively, then assumption (H) always holds (see for instance [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I: Basic Theory[END_REF]).

We now assume that (iii) holds. Take

{(x k , y k )} k∈N ⊂ gph G, {(v k , z k )} k∈N ⊂ gph F, x ⋆ k ∈ D⋆ G(x k , y k )(y ⋆ k ), u ⋆ k ∈ D⋆ F (v k , z k )(z ⋆ k ), such that (x k , y k ) → (x, ȳ), (v k , z k ) → (x, z), x ⋆ k + u ⋆ k → 0, y ⋆ k → 0, z ⋆ k → 0.
If the sequences {x ⋆ k } k∈N , {u ⋆ k } k∈N are unbounded, we can assume that

x ⋆ k → ∞, u ⋆ k → ∞, and x ⋆ k x ⋆ k w ⋆ → x ⋆ , u ⋆ k u ⋆ k w ⋆ → u ⋆ .
Then,

y ⋆ k / x ⋆ k → 0 and z ⋆ k / u ⋆ k → 0.
Consequently,

x ⋆ ∈ D ⋆ G(x, ȳ)(0), u ⋆ ∈ D ⋆ F (x, z)(0).
On the other hand,

u ⋆ + x ⋆ = 0, (since x ⋆ k + u ⋆ k → 0).
It follows that

u ⋆ ∈ D ⋆ F (x, z)(0) ∩ -D ⋆ G(x, ȳ)(0).
Therefore, by assumption, this yields x ⋆ = u ⋆ = 0.

Hence,

x ⋆ k x ⋆ k → 0, or u ⋆ k u ⋆ k → 0, (by PSNC property of F or G).
This contradicts the fact that

x ⋆ k x ⋆ k
, and

u ⋆ k u ⋆ k are in the unit sphere S Y ⋆ of Y ⋆ . So, the sequences {x ⋆ k } k∈N , {u ⋆ k } k∈N are bounded.
Without any loss of generality, we can assume that

x ⋆ k w ⋆ → x ⋆ , u ⋆ k w ⋆ → u ⋆ .
It follows that

x ⋆ ∈ D ⋆ G(x, ȳ)(0), u ⋆ ∈ D ⋆ F (x, z)(0).
Moreover,

x ⋆ + u ⋆ = 0.
Hence,

u ⋆ ∈ D ⋆ F (x, z)(0) ∩ -D ⋆ G(x, ȳ)(0).
Therefore, by assumption, we obtain x ⋆ = u ⋆ = 0, and x ⋆ k → 0, or, u ⋆ k → 0, (by PSNC property of F or G). The proof is complete. △

The following lemma gives an estimation for the strong slope of the function ϕ E ((x, k), y).

Lemma 4.1 Let (x, ȳ-k, k) ∈ X ×F (x)×G(x) be given. Assume that the sets {C 1 , C 2 } defined, as above, satisfy hypothesis (H) at (x, k, ȳ -k). Then there exists ρ > 0 such that, for all (x, k, y) ∈ B((x, k, ȳ), ρ)

with y / ∈ F (x) + k, k ∈ G(x) as well as d(y, F (x) + k) < ρ, one has |∇ϕ E ((•, •), y)|(x, k) ≥ lim δ↓0                          inf                          x ⋆ : (u, w) ∈ gph F, (v, z) ∈ gph G, u, v ∈ B(x, δ), u ⋆ ∈ D⋆ G(v, z)(y ⋆ ), y ⋆ = 1, z ∈ B(k, δ) x ⋆ ∈ D⋆ F (u, w)(y ⋆ + z ⋆ ) + u ⋆ , z ⋆ ∈ δB Y ⋆ , | w + k -y -ϕ E ((x, k), y)| < δ, | y ⋆ + z ⋆ , w + k -y -w + k -y | < δ                                                   . Proof Obviously, if (H) is satisfied at (x, k, ȳ -k) then it is also satisfied at all points (u, v, w) ∈ X × G(u) × F (u) near (x, k, ȳ -k), say (u, v, w) ∈ X × G(u) × F (v) ∩ B X×Y ×Y ((x, k, ȳ -k), 3ρ). Let (x, k, y) ∈ B X×Y ×Y ((x, k, ȳ -k), ρ) be such that y / ∈ F (x) + k, k ∈ G(x) and d(y, F (x) + k) < ρ. Set |∇ϕ E ((•, •), y)|(x, k) := m.
By the lower semicontinuity of ϕ E (Note that ϕ E is given by the first equality in Lemma 3.2) as well as the definition of the strong slope, for each ε ∈]0, ϕ E ((x, k), y)[, there is η ∈ (0, ε)

with 4η + ε < ϕ E ((x, k), y) and 1 -(m + ε + 3)η > 0 such that d(y, F (u) + l) ≥ ϕ E ((x, k), y) -ε, for all u ∈ B(x, 4η), l ∈ B(k, η) ∩ G(u) and m + ε ≥ ϕ E ((x, k), y) -ϕ E ((z, k ′ ), y) max{ x -z , k -k ′ } for all z ∈ B(x, η), k ′ ∈ B(k, η) ∩ G(x).
Consequently,

ϕ E ((x, k), y) ≤ ϕ E ((z, k ′ ), y) + (m + ε) z -x + (m + ε) k -k ′ for all z ∈ B(x, η), k ′ ∈ B(k, η) ∩ G(x).
By the definition of ϕ E , take u

∈ B(x, η 2 /4), v ∈ F (u), l ∈ B(k, η 2 /8) ∩ G(u) such that y -l -v ≤ ϕ E ((x, k), y) + η 2 /8.
By this way,

y -k -v ≤ ϕ E ((x, k), y) + η 2 /4. Taking into account that ϕ E ((z, k ′ ), y) ≤ d(y, F (z) + k ′ ) with k ′ ∈ G(z), then ϕ E ((z, k ′ ), y) ≤ y -k ′ -w with w ∈ F (z) and k ′ ∈ G(z). It follows that ϕ E ((z, k ′ ), y) ≤ y -k ′ -w + δ C2 (z, k ′ , w) + δ C1 (z, k ′ , w).
From the inequality,

y -k -v ≤ ϕ E ((z, k ′ ), y) + (m + ε) z -x + η 2 /4,
we obtain that

y -k -v ≤ y -k ′ -w + δ C2 (z, k ′ , w) + δ C1 (z, k ′ , w) + (m + ε) z -u + (m + ε)η + η 2 /4,
where (u 5 , k 5 , w 5 ) ∈ C 2 ∩B X×Y ×Y ((u 3 , k 3 , w 3 ), η), (u 6 , k 6 , w 6 ) ∈ C 1 ∩B X×Y ×Y ((u 3 , k 3 , w 3 ), η). From [START_REF] Jourani | Metric inequality and subdifferential calculus in Banach spaces[END_REF] and [START_REF] Klatte | Nonsmooth equations in Optimization[END_REF], one deduces that

(0, 0, 0) ∈ (0, k ⋆ 2 , w ⋆ 2 ) + N ((u 5 , k 5 , w 5 ); C 2 )+ N ((u 6 , k 6 , w 6 ); C 1 ) + (u ⋆ 4 , 0, 0) + (m + ε + 3)η[ BX ⋆ × BY ⋆ × BY ⋆ ].
Therefore, there exist

(u ⋆ 5 , k ⋆ 5 , w ⋆ 5 ) ∈ [ BX ⋆ × BY ⋆ × BY ⋆ ], (u ⋆ 6 , k ⋆ 6 , 0) ∈ N ((u 6 , k 6 , w 6 ); C 1 ), i.e., u ⋆ 6 ∈ D⋆ G(u 6 , k 6 )(-k ⋆ 6 ) such that (-u ⋆ 4 -(m + ε + 3)ηu ⋆ 5 -u ⋆ 6 , -k ⋆ 2 -(m + ε + 3)ηk ⋆ 5 -k ⋆ 6 , -w ⋆ 2 -(m + ε + 3)ηw ⋆ 5 ) ∈ N ((u 5 , k 5 , w 5 ); C 2 ).
It follows that

-k ⋆ 2 -(m + ε + 3)ηk ⋆ 5 -k ⋆ 6 = 0, and 
(-u ⋆ 4 -(m + ε + 3)ηu ⋆ 5 -u ⋆ 6 , -w ⋆ 2 -(m + ε + 3)ηw ⋆ 5 ) ∈ N ((u 5 , w 5 ); gph F ).
Consequently,

-k ⋆ 6 = k ⋆ 2 + (m + ε + 3)ηk ⋆ 5 and (-u ⋆ 4 -(m + ε + 3)ηu ⋆ 5 -u ⋆ 6 ) ∈ D⋆ F (u 5 , w 5 )(w ⋆ 2 + (m + ε + 3)ηw ⋆ 5 ). Remark that k ⋆ 6 = -k ⋆ 2 -(m + ε + 3)ηk ⋆ 5 ≥ 1 -(m + ε + 3)η > 0.
Hence, setting

y ⋆ := (k ⋆ 2 + (m + ε + 3)ηk ⋆ 5 )/ k ⋆ 2 + (m + ε + 3)ηk ⋆ 5 , z ⋆ := (w ⋆ 5 -k ⋆ 5 )(m + ε + 3)η/ k ⋆ 2 + (m + ε + 3)ηk ⋆ 5 , x ⋆ 1 := u ⋆ 6 / k ⋆ 2 + (m + ε + 3)ηk ⋆ 5 , x ⋆ 2 := (-u ⋆ 4 -(m + ε + 3)ηu ⋆ 5 )/ k ⋆ 2 + (m + ε + 3)ηk ⋆ 5 ,
one obtains that

x ⋆ 1 ∈ D⋆ G(u 6 , k 6 )(y ⋆ ) and (x ⋆ 2 -x ⋆ 1 ) ∈ D⋆ F (u 5 , w 5 )(y ⋆ + z ⋆ ), (36) 
where

y ⋆ = 1, z ⋆ ≤ 2(m + ε + 3)η 1 -(m + ε + 3)η := δ, x ⋆ 2 ≤ m + ε + (m + ε + 3)η 1 -(m + ε + 3)η . (37) 
On the other hand, since k 1 ∈ B(k, η), w 5 ∈ B(w 1 , 2η), according to relation [START_REF] Jourani | Verifiable conditions for openness and metric regularity of multivalued mappings in Banach spaces[END_REF] one has ( 38)

ϕ E ((x, k), y) -ε -3η ≤ y -k 1 -w 1 -w 5 -w 1 -k 1 -k ≤ y -k -w 5 ≤ y -k 1 -w 1 + w 5 -w 1 + k 1 -k ≤ y -k -v + 3η ≤ ϕ E ((x, k), y) + η 2 /4 + 3η. Consequently, | y -k -w 5 -ϕ E ((x, k), y)| ≤ 3η + ε. (39) 
On the other hand, one has

y ⋆ + z ⋆ , y -k -w 5 -y -k -w 5 ≤ δ y -k -w 5 ; (40) 
and, by k 2 ∈ B(k, η); w 2 , w 5 ∈ B(w 1 , 2η), from [START_REF] Ng | Error bounds for lower semicontinuous functions in normed spaces[END_REF], one has the following estimates

y ⋆ + z ⋆ , k + w 5 -y = w ⋆ 2 + (m + ε + 3)ηw ⋆ 5 , k + w 5 -y k ⋆ 2 + (m + ε + 3)ηk ⋆ 5 = w ⋆ 2 , w 2 + k 2 -y + w ⋆ 2 , w 5 -w 2 + w ⋆ 2 , k -k 2 + (m + ε + 3)η w ⋆ 5 , w 5 + k -y k ⋆ 2 + (m + ε + 3)ηk ⋆ 5 ≥ w 2 + k 2 -y -3η -2η -(m + ε + 3)η w 5 + k -y (1 + (m + ε + 3)η) , ≥ w 5 + k -y (1 -(m + ε + 3)η) -8η (1 + (m + ε + 3)η) (41) 
As ε, η > 0 are arbitrary small, by combining relations ( 36)-( 41), we complete the proof.

Theorem 4.1 Let X, Y be Asplund spaces, and let F, G : X ⇉ Y be closed multifunctions. Suppose that

(x, k, ȳ) ∈ X × Y × Y be such that ȳ ∈ F (x) + k, k ∈ G(x) and the sets {C 1 , C 2 } satisfy the hypothesis (H) at (x, k, ȳ -k). Let m > 0. If there exist a neighborhood U × V × W of (x, k, ȳ) and γ > 0 such that, for each (x, y, k) ∈ U × V × W with y / ∈ F (x) + k, k ∈ G(x), m ≤ lim δ↓0                          inf                          x ⋆ : (u, w) ∈ gph F, (v, z) ∈ gph G, u, v ∈ B(x, δ), u ⋆ ∈ D⋆ G(v, z)(y ⋆ ), y ⋆ = 1, z ∈ B(k, δ), x ⋆ ∈ D⋆ F (u, w)(y ⋆ + z ⋆ ) + u ⋆ , z ⋆ ∈ δB Y ⋆ , w + k -y ≤ γ + δ, | y ⋆ + z ⋆ , w + k -y -w + k -y | < δ                                                   , then there exists a neighborhood U 1 × V 1 × W 1 of (x, k, ȳ) such that md((x, k), S E (F,G) (y)) ≤ ϕ E ((x, k), y) for all (x, k, y) ∈ U 1 × V 1 × W 1 .
This theorem implies the following result: Theorem 4.2 Let X, Y be Asplund spaces, and let F, G : X ⇉ Y be closed multifunctions, and let

(x, k, ȳ) ∈ X × Y × Y be such that ȳ ∈ F (x) + k, k ∈ G(x). Let m > 0. If the sets {C 1 , C 2 } satisfy the hypothesis (H) at (x, k, ȳ -k) and m < lim inf (x1,w) F →(x,ȳ-k),(x2,z) G →(x, k),δ↓0      x ⋆ : x ⋆ ∈ D⋆ F (x 1 , w)(y ⋆ + δB Y ⋆ ) + u ⋆ u ⋆ ∈ D⋆ G(x 2 , z)(y ⋆ ), y ⋆ = 1,      (42) 
where the notations (x 1 , w)

F → (x, ȳ -k), (x 2 , z) G → (x, k) mean that (x 1 , w) → (x, ȳ -k), (x 2 , z) → (x, k) and (x 1 , w) ∈ gph F, (x 2 , z) ∈ gph G,
then there exists a neighborhood

U 1 × V 1 × W 1 of (x, k, ȳ) such that md((x, k), S E (F,G) (y)) ≤ ϕ E ((x, k), y) for all (x, k, y) ∈ U 1 × V 1 × W 1 .
The next result gives a point-based condition for metric regularity of the epigraphical multifunction.

Theorem 4.3 Let X, Y be Asplund spaces, and let F, G : X ⇉ Y be closed multifunctions, and let

(x, k, ȳ) ∈ X × Y × Y be such that ȳ ∈ F (x) + k, k ∈ G(x). Suppose that (i) F or G is PSNC at (x, ȳ -k) and (x, k), respectively; (ii) D ⋆ F (x, ȳ -k)(0) ∩ -D ⋆ G(x, k)(0) = {0}; (iii) for any u ⋆ n ∈ D⋆ F (x n , y n -k n )(y ⋆ n + (1/n)B Y ⋆ ), v ⋆ n ∈ D⋆ G(x n , k n )(y ⋆ n ) such that u ⋆ n + v ⋆ n → 0, y ⋆ n w ⋆ → 0 it follows that y ⋆ n → 0;
Under the condition that

Ker D ⋆ F (x, ȳ -k) + D ⋆ G(x, k) = {0}, (43) 
the multifunction E (F,G) is metrically regular around (x, k, ȳ).

Proof We prove the result by contradiction. Suppose that E (F,G) fails to be metrically regular around (x, k, ȳ). Then, by Theorem 4.2, there exist sequences

(x n , y n -k n ) F → (x, ȳ -k), (x n , k n ) G → (x, k), (x ⋆ n , u ⋆ n , y ⋆ n , z ⋆ n ) ∈ X ⋆ × X ⋆ × Y ⋆ × Y ⋆ , with x ⋆ n ∈ D⋆ F (x n , y n -k n )(y ⋆ n + z ⋆ n ) + u ⋆ n , u ⋆ n ∈ D⋆ G(x n , k n )(y ⋆ n ), y ⋆ n ∈ S Y ⋆ , z ⋆ n ∈ (1/n)B Y ⋆ , and 
x ⋆ n → 0. Then there is v ⋆ n ∈ D⋆ F (x n , y n -k n )(y ⋆ n + z ⋆ n ) such that x ⋆ n = u ⋆ n + v ⋆ n .
Since Y is an Asplund space, we can assume that y

⋆ n w ⋆ → y ⋆ ∈ Y ⋆ .

Applications to Variational Systems

In this section, we use the above results to study some properties of variational systems of the form

0 ∈ F (x) + G(x, p), ( 44 
)
where X is a complete metric space, Y is a Banach space, P is a topological space considered as a parameter space, F : X ⇉ Y, G : X × P ⇉ Y are given multifunctions. The solution set of ( 44) is defined by

S (F +G) (p) := {x ∈ X : 0 ∈ F (x) + G(x, p)}, (45) 
and we denote

S (F +G) (y, p) := {x ∈ X : y ∈ F (x) + G(x, p)}.
For every (y, p) ∈ Y × P,

S E (F,G) (y, p) = {(x, k) ∈ X × Y : y ∈ F (x) + k, k ∈ G(x, p)},
and, for every p ∈ P,

S E (F,G) (p) = {(x, k) ∈ X × Y : 0 ∈ F (x) + k, k ∈ G(x, p)}.
We say that the multifunction S (F +G) is Robinson metrically regular (see [START_REF] Robinson | Theory for systems of inequalities, I. Linear systems[END_REF][START_REF] Robinson | Stability theory for systems of inequalities, II. Differentiable nonlinear systems[END_REF]) around (x, p) with modulus τ , iff there exist neighborhoods U, V of x, p, respectively, such that d(x, S (F +G) (p)) ≤ τ d(0, F (x) + G(x, p)), for all (x, p) ∈ U × V.

We also recall that the multifunction G : X × P ⇉ Y is said to be pseudo-Lipschitz around (x, p, ȳ) with ȳ ∈ G(x, p) with respect to x, uniformly in p with constant κ > 0 iff there is a neighborhood U × V × W of (x, p, ȳ) such that G(x, p) ∩ W ⊂ G(u, p) + κd(x, u) BY for all x, u ∈ U, and for all p ∈ V.

The lower semicontinuous envelope (x, p, k, y) → ϕ p,E ((x, k), y) of the distance function

d(y, E (F,G) ((x, p), k)) is defined by, for each (x, p, k, y) ∈ X × P × Y × Y ϕ p,E ((x, k), y) := lim inf (u,v,w)→(x,k,y) d(w, E (F,G) ((u, p), v)) =      lim inf (u,v)→(x,k),v∈G(u,p) d(y, F (u) + k), if k ∈ G(x, p)
+∞, otherwise.

Lemma 5.1 Let X be a complete metric space and Y be a Banach space and let P be a topological space.

Suppose that the set-valued mappings F : X ⇉ Y, G : X × P ⇉ Y satisfy the following conditions for some (x, k, p) ∈ X × Y × P : (iii) for each (y, p) ∈ Y × P ;

{(x, k) ∈ X × Y : ϕ p,E ((x, k), y) = 0} = S E (F,G) (y, p).
Proof We only note that, if the multifunction p ⇉ G(x, p) is lower semicontinuous at p, then so is the mapping E (F,G) ((x, •), k). △ By using the strong slope of the lower semicontinuous envelope ϕ p,E , one has the following result.

Theorem 5.1 Let X be a complete metric space, Y be a Banach space and let P be a topological space.

Suppose that the set-valued mappings F : X ⇉ Y, G : X × P ⇉ Y satisfy conditions (a), (b), (c) from Lemma 5.1 around (x, k, p) ∈ X × Y × P . If there exist a neighborhood

T 1 × U 1 × V 1 × W 1 of (x, p, k, 0)
and reals m, γ > 0 such that |∇ϕ p,E ((•, •), y)|(x, k) ≥ m for all (x, p, k, y)

∈ T 1 × U 1 × V 1 × W 1 with ϕ p,E ((x, k), y) ∈]0, γ[, then there exists a neighborhood T × U × V × W of (x, p, k, 0) such that md((x, k), S E (F,G) (y, p)) ≤ ϕ p,E ((x, k), y), for all (x, p, k, y) ∈ T × U × V × W.
Proof. Applying Theorem 3. Proof By the hypothesis, there exist a neighborhood T × U × V × W ⊂ X × P × Y × Y of (x, p, k, 0) and m > 0 such that, for every (x, p, k, y)

∈ T × U × V × W, it holds md((x, k), S E (F,G) (y, p)) ≤ ϕ p,E ((x, k), y).
Here, we can assume V = B( k, θ), with certain positive θ. Then, for every small ε > 0 and for every

(x, p, k, y) ∈ T × U × [B( k, θ) ∩ G(x, p)] × W, there is (u, z) ∈ S E (F,G) (y, p), i.e., y ∈ F (u) + z, z ∈ G(u, p) such that md(u, x) ≤ m max{d(u, x), z -k } < (1 + ε)d(y, F (x) + k).
Noting that u ∈ (F + G) -1 (y), we obtain that

md(x, (F + G) -1 (y)) < (1 + ε)d(y, F (x) + k). Thus, md(x, (F + G) -1 (y)) ≤ (1 + ε)d(y, F (x) + G(x, p) ∩ B( k, θ)), or, md(x, S (F +G) (y, p)) ≤ (1 + ε)d(y, F (x) + G(x, p) ∩ B( k, θ)).
Since this inequality does not depend on arbitrarily small ε > 0, we obtain that

md(x, S (F +G) (y, p)) ≤ d(y, F (x) + G(x, p) ∩ B( k, θ))
for all (x, p, y) ∈ T × U × W.

Taking ȳ = 0 and y = ȳ, we obtain the second conclusion of the Theorem. The proof is complete. △

In the sequel, we use for the parametrized case the concept of locally sum-stability, which was considered in the previous section. Proof The proof of this proposition is very similar to that of Proposition 3.3. Here, we sketch the proof.

Suppose that (46) holds for every (x, p) ∈ T × U. Here, we can assume that T = B(x, δ), with some positive δ > 0.

Since (F, G) is locally sum-stable around (x, p, -k, k), there exists δ > 0 such that, for every (x, p) ∈ B(x, δ) × U and every w ∈ (F + G)(x) ∩ B(0, δ), there are y ∈ F (x) ∩ B(-k, θ) and z ∈ G(x) ∩ B( k, θ)

such that w = y + z.

Fix (x, p) ∈ B(x, δ) × U. We consider two following cases:

Case 1. d(0, F (x) + G(x, p)) < δ/2. Fix γ > 0, small enough so that d(0, F (x) + G(x, p)) + γ < δ/2, and take t ∈ F (x) + G(x, p) such that t < d(0, F (x) + G(x, p)) + γ.

Hence we have t < δ/2, i.e., t ∈ B(0, δ/2) ⊂ B(0, δ). It follows that t ∈ [F (x) + G(x, p)] ∩ B(0, δ).

Therefore, there are y ∈ F (x) ∩ B(-k, θ) and z ∈ G(x, p) ∩ B( k, θ) such that t = y + z.

Consequently, t ∈ F (x) ∩ B(-k, θ) + G(x, p) ∩ B( k, θ) ⊂ F (x) + G(x, p) ∩ B( k, θ). It follows that d(0, F (x) + G(x, p) ∩ B( k, θ)) ≤ t .
This yields

d(0, F (x) + G(x, p) ∩ B( k, θ)) < d(0, F (x) + G(x, p)) + γ,
and therefore, as γ > 0 is arbitrarily small, we derive that

d(0, F (x) + G(x, p) ∩ B( k, θ)) ≤ d(0, F (x) + G(x, p)).
By [START_REF] Fabian | Error bounds: necessary and sufficient conditions[END_REF], one derives Shrinking W smaller if necessary, we can assume that W ⊂ U. Choosing 0 < δ 1 < min{δ, τ δ/4}. For every (x, p) ∈ B(x, δ 1 ) × W, and for every small ε > 0, there exists u ∈ S (F +G) (p) such that

d(x, S (F +G) (p)) ≤ τ d(0, F (x) + G(x, p)), for all (x, p) ∈ B(x, δ) × U.
d(x, u) ≤ (1 + ε)τ d(0, F (x) + G(x, p)). So, d(x, u) ≤ d(x, x) + d(x, u) < δ 1 + τ (1 + ε)d(0, F (x) + G(x, p)) < τ δ/4 + τ (1 + ε)δ/4 ≤ τ /2d(0, F (x) + G(x, p)) + τ /2(1 + ε)d(0, F (x) + G(x, p).
Taking the limit as ε > 0 goes to 0, it follows that

d(x, S (F +G) (p)) ≤ τ d(0, F (x) + G(x, p)),
establishing the proof. △

The following theorem establishes the Lipschitz property for the solution mapping S E (F,G) .

Theorem 5.2 Let X be a complete metric space, Y be a Banach space, P be a topological space. Suppose that F : X ⇉ Y and G : X × P ⇉ Y are multifunctions satisfying conditions (a), (b), (c) in Lemma 5.1.

If F is metrically regular around (x, -k) with modulus τ > 0 and G is pseudo-Lipschitz around (x, p, k)

with respect to x, uniformly in p with modulus λ > 0 such that τ λ < 1, then E (F,G) is metrically regular around (x, p, k, 0) with respect to (x, k), uniformly in p, with modulus (τ -1λ) -1 .

Moreover, assume in addition that P be a metric space. If G is pseudo-Lipschitz around (x, p, k) with respect to p, uniformly in x with modulus γ > 0, then S E (F,G) is pseudo-Lipschitz around ((0, p), (x, k))

with modulus L = γ + (γ + 1)(τ -1λ) -1 ). In particular, S E (F,G) is pseudo-Lipschitz around ((0, p), (x, k))

with modulus γ(1 + (τ -1 -λ) -1 ).
Proof The first part is the parametrized version of Theorem 3.3. Its proof is completely similar to the one of Theorem 3.3, and is omitted. For the second part, as E (F,G) is metrically regular around (x, p, k, 0) with respect to (x, k), uniformly in p, with modulus (τ -1λ) -1 , there exists δ 1 > 0 such that d((x, k), S E (F,G) (y, p)) ≤ (τ -1λ) -1 ϕ p,E ((x, k), y),

for all (x, p, k, y) ∈ B((x, p, k, 0), δ 1 ). Now, if G is pseudo-Lipschitz around (x, p, k) with respect to p, uniformly in x with modulus γ > 0 then there is δ 2 > 0 such that G(x, p) ∩ B( k, δ 2 ) ⊂ G(x, p ′ ) + γd(p, p ′ ) BY ,

for all p, p ′ ∈ B(p, δ 2 ), for all x ∈ B(x, δ 2 ). ⊆ S E (F,G) (y ′ , p ′ ) + Ld((y ′ , p ′ ), (y, p)) BX × BY , where, L = γ + (γ + 1)(τ -1λ) -1 , and by taking y = y ′ = 0 in relation [START_REF] Ngai | Error bounds and implicit multifunctions in smooth Banach spaces and applications to optimization[END_REF], one also derives that S E (F,G)

is pseudo-Lipschitz around ((0, p), (x, k)) with modulus γ(1 + (τ -1λ) -1 ).

The proof is complete. △

If we add the assumption that (F, G) is locally sum-stable, we obtain the Lipschitz property of S (F +G) .

Theorem 5.3 Let X be a complete metric space and Y be a Banach space, P be a metric space. Suppose (ii) F is metrically regular around (x, -k) with modulus τ > 0;

(iii) G is pseudo-Lipschitz around (x, p, k) with respect to x, uniformly in p with modulus λ > 0 such that τ λ < 1;

(iv) G is pseudo-Lipschitz around (x, p, k) with respect to p, uniformly in x with modulus γ > 0. Then S (F +G) is Robinson metrically regular around (x, p) with modulus (τ -1λ) -1 . Moreover, S (F +G) is pseudo-Lipschitz around (x, p) with constant γ(τ -1λ) -1 .

Proof Applying Proposition 5.2, Proposition 23 and Proposition 20, respectively, we obtain that S (F +G)

is Robinson metrically regular around (x, p) with modulus (τ -1λ) -1 . Thus, there exists δ 1 > 0 such 

Concluding Remarks

We conclude the paper with some comments and perspectives on metric regularity/pseudo-Lipschitzness of set-valued mappings and on the study of the associated variational systems. It is not possible to obtain effective results on the Lipschitzness of the sum when the both multifunctions F and G depend on the parameter p (see [START_REF] Aragón Artacho | Metric regularity and Lipschitzian stability of para-metric variational systems[END_REF], and [START_REF] Durea | Openness stability and implicit multifunction theorems: Applications to variational systems[END_REF]). Similarly to [START_REF] Durea | Openness stability and implicit multifunction theorems: Applications to variational systems[END_REF], we also used variational techniques to obtain the desired variational properties of the sum or to the correspondent variational systems; however, in this article, we used the theory of error bound systematically to study metric regularity of a type of epigraphical multifunction associated to two given set-valued mappings. On one hand, this approach, avoids the closedness of the sum mapping F +G, on the other hand, it provides a way to derive variational properties of the system associated to the epigraphical mapping without using the sum-stable property (Theorem 5.2). This method, allows to study more general kinds of multifunctions, such as composition of two set-valued mappings, as well as variational systems associated to them.

Moreover, we also note that if a set-valued mapping F : X ⇉ Y is pseudo-Lipschitz around (x, ȳ) ∈ gph F , then it is lower semicontinuous at x. So, in any results above, if we impose the assumption of pseudo-Lipschitzness to F , then the assumption of lower semicontinuity is automatically satisfied.

  and N C (x) = ∅ otherwise. Setting f (x, p) = ∇g(x)p, relation (3) takes the form 0 ∈ f (x, p) + N C (x).

  will be used throughout this paper. In what follows, X, Y , etc., unless specified otherwise, are metric spaces, and we use the same symbol d(•, •) to denote the distance in all of them or between a point x to a subset Ω of one of them : d(x, Ω) := inf u∈Ω d(x, u). By B(x, ρ) and B(x, ρ) we denote the open and closed balls of radius ρ around x, while, if X is a normed linear space, we use the notations B X , BX for the open and the closed unit balls, respectively. By a multifunction (set-valued mapping) S : X ⇉ Y , we mean a mapping from X into the subsets (possibly empty) of Y . We denote by gph S the graph of S, that is the set {(x, y) ∈ X × Y : y ∈ S(x)}, and by D(S) := {x ∈ X : S(x) = ∅} the domain of S. When S has a closed graph, we say that S is a closed multifunction.

  set C ⊂ X and x ∈ C, the Fréchet normal cone to C at x is denoted N (x; C) and is defined as the Fréchet subdifferential of indicator function δ C of C at x, i.e., N (x; C) := ∂δ C (x), where δ C (x) = 0 if x ∈ C, and δ C (x) = +∞ if x / ∈ C.

  (a) (x, k) ∈ S E (F,G) (p); (b) the set-valued mapping p ⇉ G(x, p) is lower semicontinuous at p; (c) the set-valued mapping F is a closed multifunction, and for any p near p, the set-valued mapping x ⇉ G(x, p) is a closed multifunction. Then (i) for ever p near p, the epigraphical multifunction E (F,G) has closed graph, and, E (F,G) ((x, •), k) is lower semicontinuous at p; (ii) the function p → ϕ p,E ((x, k), 0) is upper semicontinuous at p;

Proposition 5 . 1

 51 2 and Lemma 5.1 for the mapping E (F,G) (•, •), one obtains the proof. Let X be a complete metric space and Y be a Banach space and let P be a topological space. Suppose that the set-valued mappings F : X ⇉ Y, G : X × P ⇉ Y satisfy conditions (a), (b), (c) from Lemma 5.1 around (x, k, p) ∈ X ×Y ×P . If there exist a neighborhood T ×U ×V ×W ⊂ X ×P ×Y ×Y of (x, p, k, 0) and m > 0 such thatmd((x, k), S E (F,G) (y, p)) ≤ ϕ p,E ((x, k), y) for all (x, p, k, y) ∈ T × U × V × Wthen there exists θ > 0 such that md(x, S (F +G) (y, p)) ≤ d(y, F (x) + G(x, p) ∩ B( k, θ)) for all (x, p, y) ∈ T × U × W. Therefore, md(x, S (F +G) (p)) ≤ d(0, F (x) + G(x, p) ∩ B( k, θ)) for all (x, p) ∈ T × U.

Definition 5 . 1 . 2 . 5 . 2 Proposition 5 . 3

 5125253 Let F : X ⇉ Y, G : X × P ⇉ Y be two multifunctions and (x, p, ȳ, z) ∈ X × P × Y × Y be such that ȳ ∈ F (x), z ∈ G(x, p). We say that the pair (F, G) is locally sum-stable around (x, p, ȳ, z) iff, for every ε > 0, there exists δ > 0 and a neighborhood W of p such that, for every (x, p) ∈ B(x, δ) × W and every w ∈ (F + G)(x) ∩ B(ȳ + z, δ), there are y ∈ F (x) ∩ B(ȳ, ε) and z ∈ G(x) ∩ B(z, ε) such that w = y + z.A following simple case which ensures the locally sum-stability of the pair (F, G), is analogous to Proposition 3Proposition Let F : X ⇉ Y, G : X × P ⇉ Y be two multifunctions and (x, p, ȳ, z) ∈ X × P × Y × Y such that ȳ ∈ F (x), z ∈ G(x, p). If G(x, p) = {z}and G is upper semicontinuous at (x, p), then the pair (F, G) is locally sum-stable around (x, p, ȳ, z). Let X be a complete metric space, Y be a Banach space and let P be a topological pace.Suppose that the set-valued mappingsF : X ⇉ Y, G : X × P ⇉ Y satisfy conditions (a), (b), (c) from Lemma 5.1 around (x, k, p) ∈ X × Y × P . If there exist a neighborhood T × U of (x, p) and θ, τ > 0 such that d(x, S (F +G) (p)) ≤ τ d(0, F (x) + G(x, p) ∩ B( k, θ)) for all (x, p) ∈ T × U,(46)and (F, G) is locally sum-stable around (x, p, -k, k), then S (F+G) is Robinson metrically regular around (x, p) with modulus τ .The conclusion remains true if the assumption of local sum stability around (x, p, -k, k) is replaced by the following one: G(x, p) = {z} and G is upper semicontinuous at (x, p).

Case 2 .

 2 d(0, F (x) + G(x, p)) ≥ δ/2. According to condition (c), the multifunction p ⇉ G(x, •) is lower semicontinuous at p. It follows that the distance function d(0, F (x) + G(x, •)) is upper semicontinuous at p, and thus, there exists a neighborhood W of p such that d(0, F (x) + G(x, p) ≤ δ/4, for all p ∈ W.

Set α := min{δ 1 /

 1 (γ +1), δ 2 }. Fix (y, p), (y ′ , p ′ ) ∈ B(0, α)×B(p, α). Take (x, k)∈ S E (F,G) (y, p))∩[B(x, α)× B( k, α)]. Since (x, k) ∈ S E (F,G) (y, p)) ∩ [B(x, α) × B( k, α)], then y ∈ F (x) + k, k ∈ G(x, p) and (x, k) ∈ B(x, α) × B( k, α).Along with[START_REF] Azé | On implicit multifunction theorems[END_REF], we can find thatk ′ ∈ G(x, p ′ ) such that kk ′ ≤ γd(p, p ′ ) < γα,which follows that k ′ ∈ B( k, δ 1 ). Therefore, by[START_REF] Fabian | About error bounds in metric spaces[END_REF], one hasd((x, k ′ ), S E (F,G) (y ′ , p ′ )) ≤ (τ -1λ) -1 ϕ p ′ ,E ((x, k ′ ), y ′ ), ≤ (τ -1λ) -1 d(y ′ , F (x) + k ′ )),Hence, by noting that y ∈ F (x) + k, one deduces that (49)d((x, k), S E (F,G) (y ′ , p ′ )) ≤ kk ′ + d((x, k ′ ), S E (F,G) (y ′ , p ′ )) ≤ γd(p, p ′ ) + (τ -1λ) -1 d(y ′ , F (x) + k ′ )), ≤ γd(p, p ′ ) + (τ -1λ) -1 ( yy ′ + kk ′ ) ≤ γ(1 + (τ -1λ) -1 )d(p, p ′ ) + (τ -1λ) -1 yy ′and so S E (F,G) (y, p)) ∩ [B(x, α) × B( k, α)]

  that F : X ⇉ Y and G : X × P ⇉ Y satisfy conditions (a), (b), (c) in Lemma 5.1. Moreover, assume that (i) (F, G) is locally sum-stable around (x, p, -k, k);

  that d(x, S (F +G) (p)) ≤ (τ -1λ) -1 d(0, F (x) + G(x, p)), for all (x, p) ∈ B((x, p), δ 1 ).On the other hand, since G is pseudo-Lipschitz around (x, p, k) with respect to p, uniformly in x with modulus γ > 0, we can find δ 2 > 0 such that G(x, p) ∩ B( k, δ 2 ) ⊂ G(x, p ′ ) + γd(p, p ′ ) BY , for all p, p ′ ∈ B(p, δ 2 ), for all x ∈ B(x, δ 2 ). Moreover, since the pair (F, G) is locally sum-stable around(x, p, -k, k), there is δ 3 > 0 such that, for every (x, p) ∈ B(x, δ 3 ) × B(p, δ 3 ) and every w ∈ [F (x) + G(x, p)] ∩ B(0, δ 3 ), there are y ∈ F (x) ∩ B(-k, δ 2 ), z ∈ G(x, p) ∩ B( k, δ 2) such that w = y + z. Set α := min{δ 1 , δ 2 , δ 3 }. Take p, p ′ ∈ B(p, α), and x ∈ S (F +G) (p) ∩ B(x, α), i.e., 0 ∈ F (x) + G(x, p) and x ∈ B(x, α).Moreover, we observe that for every w ∈ [F (x) + G(x, p)] ∩ B(0, α),w ∈ F (x) ∩ B(-k, δ 2 )) + G(x, p) ∩ B( k, δ 2 ) ⊆ F (x) + G(x, p ′ ) + γd(p, p ′ ) BY . Thus, [F (x) + G(x, p)] ∩ B(0, α) ⊆ F (x) + G(x, p ′ ) + γd(p, p ′ ) BY . Since 0 ∈ F (x) + G(x, p), and also 0 ∈ [F (x) + G(x, p)] ∩ B(0, α), thus 0 ∈ F (x) + G(x, p ′ ) + γd(p, p ′ ) BY .It follows that there is w ∈ F (x) + G(x, p ′ such that w ≤ γd(p, p ′ ). Therefore,d(x, S (F +G) (p ′ )) ≤ (τ -1λ) -1 d(0, F (x) + G(x, p ′ )) ≤ (τ -1λ) -1 w ≤ γ(τ -1λ) -1 d(p, p ′ ).So, S (F +G) (p) ∩ B(x, α) ⊆ S (F +G) (p ′ ) + γ(τ -1λ) -1 d(p, p ′ ) BX , establishing the proof.

  x, p) and ε > 0. Let {x n } n∈N be a sequence converging to x. When n is

	Then, x n / ∈ F -1 p (y), i.e., y / ∈ F (x n , p) when n is sufficiently large, say n ≥ n 0 . By (iii), we consider a
	sequence {u n } n∈N with lim inf n→∞ d(u n , x) > 0 such that	
		lim sup n→∞	d(y, F (x n , p)) -d(y, F (u n , p)) d(x n , u n )	>	1 τ + ε	.
	sufficiently large, say n ≥ n 0 , then x n ∈ U as well as y / ∈ F (x n , p). Hence d(x n , S(y, p)) ≤ τ d(y, F (x n , p)).
	For each n ≥ n 0 , pick u n ∈ S(y, p) such that d(x n , u n ) < (1 + ε/2τ )d(x n , S(y, p)). We claim that
	lim inf n→∞ d(u n , x) > 0. Otherwise, there would exist some subsequence, {u n k } k∈N converging to x such
	that u n k ∈ S(y, p), i.e., y ∈ F (u n k , p). Then, since F (•, p) is graph-closed this would imply y ∈ F (x, p), a
	contradiction. Moreover for all n ≥ n 0 ,		
	d(x n , u n ) < (1 + ε/2τ )d(x n , S(y, p)) ≤ (τ + ε/2)[d(y, F (x n , p)) -d(y, F (u n , p))].
	This shows that (20) holds.			
	For (iii) ⇒ (ii). Since the multifunction p ⇉ F (x, p) is assumed to be lower semicontinuous at p,
	then the function (p, y) → d(y, F (x, p)) is upper semicontinuous at (p, ȳ) (see, e.g., in [53, Cor. 20 ]).
	Therefore,				
	lim sup	ϕ p (x, y) ≤ lim sup	d(y, F (x, p)) ≤ d(ȳ, F (x, p)) = ϕ p(x, ȳ).
	(p,y)→( p,ȳ)		(p,y)→( p,ȳ)		
	That is, the function (p, y) → ϕ p (x, y) is upper semicontinuous at (p, ȳ), and therefore, by virtue of
	Theorem 3.1, it suffices to observe that statement (ii) of Theorem 3.1 is verified. Indeed, let (x, y, p) ∈
	U × V × W with y / ∈ F (x, p) and ϕ p (x, y) < γ and let ε ∈ (0, 1) be given. Let {x n } n∈N be a sequence
	converging to x with				
		lim			

n→∞ d(y, F (x n , p)) = ϕ p (x, y) = lim inf u→x d(y, F (u, p)).

It has been pointed out recently to the authors by Hiriart-Urruty that traces of the error bound property were already in[START_REF] Rosenbloom | Quelques classes de problèmes extrémaux[END_REF], published in 1951.
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for all (z, w) ∈ B(x, η) × Y, k ′ ∈ B(k, η). Applying the Ekeland variational principle [START_REF] Ekeland | On the variational principle[END_REF] to the function

and the function

attains a minimum on B(x, η) × B(k, η) × Y at (u 1 , k 1 , w 1 ). Hence, using the sum rule for Fréchet subdifferentials, we can find

Note that

Then, by [59, Theorem 2.8.3] (see, also [60, proof of Theorem 3.6]), we know that

Hence,

Now, in order to have (u 3 , k 3 , w 3 ) ∈ B X×Y ×Y ((x, k, ȳ -k), 3ρ), we take η smaller if necessary, and, by virtue of Proposition 4.1, one has

We consider the following cases:

Case 1. The sequences {u ⋆ n } n∈N , {v ⋆ n } n∈N are unbounded. We can assume that

Then,

Consequently,

On the other hand,

Therefore, by (ii), we have that 

Moreover,

By (⋆), one has that y ⋆ = 0. Now, by assumption, one gets y ⋆ n → 0 which contradicts to y ⋆ n = 1. △ Remark 4.3 If X, Y are finite dimensional spaces, then conditions (i), (iii) hold true automatically, while condition (ii) holds if F or G is pseudo-Lipschitz at (x, ȳ -k) or (x, k), respectively.