
HAL Id: hal-00819031
https://hal.science/hal-00819031v1

Submitted on 29 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Probabilistic Relational Models using
co-clustering methods

Anthony Coutant, Philippe Leray, Hoel Le Capitaine

To cite this version:
Anthony Coutant, Philippe Leray, Hoel Le Capitaine. Learning Probabilistic Relational Models using
co-clustering methods. Structured Learning: Inferring Graphs from Structured and Unstructured
Inputs (SLG 2013) ICML Workshop, 2013, Atlanta, United States. �hal-00819031�

https://hal.science/hal-00819031v1
https://hal.archives-ouvertes.fr


Learning Probabilistic Relational Models using
co-clustering methods

Anthony Coutant
LINA (UMR CNRS 6241),

KOD/GRIM Research Groups
Ecole Polytechnique de

l’Université de Nantes, France
anthony.coutant@univ-

nantes.fr

Philippe Leray
LINA (UMR CNRS 6241),

KOD Research Group
Ecole Polytechnique de

l’Université de Nantes, France
philippe.leray@univ-

nantes.fr

Hoel Le Capitaine
LINA (UMR CNRS 6241),
GRIM Research Group
Ecole Polytechnique de

l’Université de Nantes, France
hoel.lecapitaine@univ-

nantes.fr

ABSTRACT
Probabilistic Relational Models (PRM) are probabilistic graph-
ical models which define a factored joint distribution over a
set of random variables in the context of relational datasets.
While regular PRM define probabilistic dependencies be-
tween objects’ descriptive attributes, an extension called
PRM with Reference Uncertainty (PRM-RU) allows in ad-
dition to manage link uncertainty between them, by adding
random variables called selectors. In order to avoid prob-
lems due to large variables domains, selectors are associated
with partition functions, mapping objects to a set of clus-
ters, and selectors’ distributions are defined over the set of
clusters. In PRM-RU, the definition of partition functions
constrain us to learn them using flat (i.e. non relational)
clustering algorithms. However, many relational clustering
techniques show better results in this context. Among them,
co-clustering algorithms, applied on binary relationships, fo-
cus on simultaneously clustering both entities objects to use
as much information available from the relationship as pos-
sible. In this paper, we present a work in progress about
a new extension of PRM, called PRM with Co-Reference
Uncertainty, which associates, to each class containing refer-
ence slots, a single selector and a single co-partition function
learned using a co-clustering algorithm.

1. INTRODUCTION
Many machine learning approaches assume the individu-
als on their datasets as being independent and identically
distributed (i.i.d.). However, multiple problems in real life
break this hypothesis. For example, the probablity of a per-
son to develop some genetical diseases is influenced by the
history of his family’s medical issues.

Bayesian networks [19] are probabilistic graphical models
which rely on the i.i.d. assumption. Probabilistic Rela-
tional Models [15, 20] (PRM) extend Bayesian Networks to
relational datasets defined by a relational schema. Several

problems have been addressed with PRM framework in the
litterature such as recommendation [14] and clustering [23].
A recent book has also been written on the use of PRM for
Enterprise Architecture Analysis [3].

In regular PRM, the learning task aims at finding general
probabilistic dependencies between classes attributes values,
using information about both objects inner informations and
relationships between them. In this case, relationships be-
tween objects are supposed to be known and are not part of
the learned model.

PRM with Reference Uncertainty [11, 8, 9](PRM-RU) is an
extension of regular PRM removing the need for exhaus-
tive knowledge of relationships between objects. Link un-
certainty for a specific object is represented as a random
variable following a distribution over possible objects it can
be related to. However, in order to avoid large variables
problems, the possible objects are first regrouped in clus-
ters thanks to the use of a partition function and the ran-
dom variable simply follows a distribution over the partition
function’s clusters. Learning these functions can clearly be
made with clustering algorithms. Nevertheless, the parti-
tion functions’ definition constrain us to use flat clustering
algorithms.

In the clustering litterature, more and more work are focus-
ing on relationships data, implying several heterogeneous
entities, rather than flat (i.e. non relational) and homoge-
neous datasets. Results [5, 7, 12] showed that, when con-
sidering relationships data, represented for example as their
co-occurence matrices, it was often more efficient to cluster
simultaneously both individuals and features. In the case
of binary relationships, the methods following this princi-
ple are called co-clustering or bi-clustering and are of great
interest in our PRM-RU learning problem.

In this article, we propose a new PRM extension, called
PRM with Co-Reference Uncertainty, which associates, for
each class containing reference slots, a single selector vari-
able linked to a mapping function from every tuple of ob-
jects from reference slots’ ranges to a set of co-clusters. We
call these mapping functions co-partition functions and learn
them using a family of co-clustering algorithms based on
non-Negative Matrix Tri-Factorization (NMTF) techniques.



The rest of the paper is organised as follows. Section 2
describes the PRM with Reference Uncertainty models, a
definition of their learning algorithm and discuss their weak-
ness concerning partition functions. Section 3 then proposes
a brief overview of co-clustering approaches and motivates
the particular choice of NMTF based algorithms. Finally,
section 4 describes our new PRM with Co-Reference Uncer-
tainty model and its learning process.

2. PROBABILISTIC RELATIONAL MODELS
WITH REFERENCE UNCERTAINTY

2.1 Relational Schema
A relational schema of a relational model M describes a
set of n classes X = {X1, . . . ,Xn}. Every Xi ∈ X is com-
posed of a set of descriptive attributes Ai = {A1

i , . . . ,Am
i }

and a set of reference slots Ri = {R1
i , . . . ,Rl

i} relating
the class to each other. We call slot chain of size l, a
sequence (r1, . . . , rl) ∈ Rl = {R1 ∪ . . . ∪ Rn}l in which
Ran[ri−1] = Dom[ri]. We note I(M) an instance of M,
that is a set of objects xi for every class Xi ∈ X , each
object being assigned a set of specific values for its class’
attributes and reference slots.

2.2 Regular PRM
Given a relational schema M, we are interested in finding
probabilistic dependencies between its attributes. Let VA

be a set of random variables, each one being defined on the
domain of a different attribute ofM. Regular PRM models
are defined below.

Definition 1. [20] A regular PRM (Probabilistic Rela-
tional Model) is a pair (G,Θ) where G corresponds to its
graph structure and Θ to its set of parameters. The graph
G = (N , E) is a directed acyclic graph (DAG) containing a
node Ni ∈ N for every random variable Vi ∈ VA and an edge
e ∈ E for every direct probabilistic dependencies between two
random variables (two nodes can only be connected in G if
there exist a slot chain between the corresponding attributes
in M). Every node Ni ∈ N is then associated to a parame-
ter θi ∈ Θ which describe the probability distribution of the
corresponding random variable conditionally to the random
variables of its parent in the graph G.

Regular PRM allow to use information about objects re-
lationships in order to predict the values of these objects
attributes. However, they are based on the assumption
that links between objects are known for different instances.
Thus, it is not possible to make link prediction with regular
PRM. In this case, we can rely on an extension called PRM
with Reference Uncertainty.

2.3 PRM-RU
In order to manage link uncertainty, we must consider more
random variables than in regular PRM. Let VR, the set of
random variables being associated to the set of reference
slots of M. Thus, given a specific instance I of M, there
exist for each reference slot Rij in the relational schema,
with Ran[Rij ] = Xk ∈ X , a random variable VRij ∈ VR
which can take values in I(Xk), that is the set of unique
identifiers of the whole objects set of type Xk for I. It is

important to note that variables of VR directly depend on
I and can have huge domains. Indeed, it is common to see
millions (and far more) of individuals for a specific entity in
a database. This leads to several problems. First, we cannot
define the variables and their distributions for any instance if
we keep this variables set as is. Then, it seems unreasonable
to store and compute distributions over huge domains. Fi-
nally, we can be skeptical about the quality of learning this
kind of random variables, since it is unlikely that we will
have sufficient statistics for this task. As a consequence, we
should replace VR by a new set VSR, describing synthetical
distribution over reduction of reference slots domains.

Definition 2. [10] A PRM with Reference Uncertainty
(PRM-RU) Π defined from M is a PRM as described in
definition 1. In addition, we add for every variable v in
VSR, linked to the reference slot Rik, a selector node in G
associated to a partition function ψp. In PRM-RU, the vari-
able v is defined over a set of c clusters C = {Cp1, . . . , Cpc}
and the associated partition function defines a mapping from
the objects of Ran[Rik] to Dom[ψp] = Dom[v] = C. The
selector nodes are each linked to a parameter θi ∈ Θ describ-
ing the probability distribution of the corresponding random
variable conditionally to the random variables of its parent
in the graph G.

For an instance I(M), a PRM-RU describes a factored joint
distribution which can be written as:

P (I|Π) =
∏
Xi∈X

∏
x∈I(Xi)

∏
Aij∈Ai

P (x.Aij |Pa(x.Aij))

∏
Rij∈Ri,

Xk=Ran[Rij ]

xk=x.Rij

P (x.S(Rij) = ψ[xk] |Pa(x.S(Rij)))

|I(Xk[ψ[xk]])| , (1)

where x.S(Rij) is the value of the selector of the reference
slot Rij for x, ψ[xk] corresponds to ΨRij [xk] that is the
cluster assigned to xk by the partition function of Rij , and
|I(Xk[ψ[xk]])| is the number of objects in I of type Xk and
assigned to the same cluster as xk by the partition function
of Rij .

The figure 1(b) shows an example of PRM-CRU defined
from the relational schema in figure 1(a).

2.4 Learning PRM-RU
PRM-RU learning algorithm shares the same principles as
for Bayesian networks. The structure learning is then based
on an iterative greedy search method where each iteration
consists in 1) generating all possible neighbours; 2) evaluat-
ing score of every PRM resulting from neighborhood search;
3) choose the model maximizing it. However, unlike Bayesian
networks, the information coming from the relational schema
is used in PRM-RU learning to constrain the choice of possi-
ble parents for a node. Indeed, the neighborhood generation
will favor the nodes which are ”close” to each other for the
parenting relationships. The closeness of two nodes is de-
fined here as the length of the slot chain between them.
As usual, the algorithm continues until convergence. In
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Figure 1: (a) Relational Schema (b) Example of PRM-RU structure (c) Corresponding PRM-CRU structure

Bayesian networks, the neighbourhood of a specific model
is obtained with three possible operators: add, remove and
reverse an edge. In PRM-RU, these operators are still avail-
able (constrained by the size of slot chains between parents
and children). In addition, two new operators are added to
update partition functions: refine and abstract. The former
re-runs the partition function learning using one more at-
tribute, potentially leading to more detailed functions. The
latter does the complete opposite. These operators are sub-
ject to constraints limiting the choice of partition functions
attributes in only one class corresponding to the range of
the corresponding reference slot.

2.5 Limits of clustering in PRM-RU
PRM are made to deal with fundamentally relational data,
making the information ”flow” all over the model when rea-
soning with them. However, the concept of partition func-
tion as described in PRM-RU is not relational. Indeed,
this concept is described as a mapping from a set of ob-
jects of one specific class to a set of clusters, only using
information about this set of objects, as if they were iso-
lated from the other classes’ individuals. Existing literature
about PRM-RU do not provide detailed information about
partition function learning [11, 8, 9]. An often mentionned
point is about using Cartesian product of every involved
attributes values’ sets. However, it does not seem to be effi-
cient if the dataset is big. The partition function definition
suggests they are rather obtained through the use of regu-
lar, flat clustering algorithm. This case could be the most we
can do whenever we are in a class with only one reference
slot. However, for classes describing relationship between
several entities, and containing more than one slot, we can
try to learn more interesting partition functions taking into
consideration all the related objects together with the rela-
tionship information and not only each entity’s object sepa-
rately. In order to do that, we propose to use advantages of a

set of clustering algorithms which have known great success
in the clustering community, called co-clustering algorithms,
instead of regular ones. This approach is described in the
following section.

3. CO-CLUSTERING AND PRM
3.1 Brief overview of co-clustering approaches
In the clustering community, co-clustering techniques, also
called bi-clustering, have become more and more popular
and have shown better results than their flat clustering coun-
terparts on many experiments involving non i.i.d. datasets.
We can cite examples from document mining [5], gene min-
ing [13], and image processing [21] contexts. Taking a re-
lationship between two entities, materialized for example
as a co-occurence matrix, the idea behind co-clustering ap-
proaches is to simultaneously cluster the two entities sets, us-
ing both the information of the relationship itself and even-
tually the inner information of entities.

Several approaches have been used to address this problem.
Some methods are based on information theory. Dhillon et
al. [6] see the relationship between the two entity sets as a
joint distribution between random variables in the entity’s
sets domains, and addresses the co-clustering problem as
finding the co-clusters which approximates this joint distri-
bution the best, i.e. which leads to the least mutual informa-
tion loss from the original one. Banerjee et al. [1] generalize
the evaluation of the best co-clusters by using a distorsion
measure between the approximate joint distribution and the
original one, taking this measure in a family of distorsion
measure called Bregman divergences. Shan and Banerjee
[22] enlarge this hard co-clustering assignment problems into
soft assignment ones, using a generative model.

Different methods use relationship matrix (Laplacian matrix
of a graph or directly the relationship matrix) factorization



techniques. We can cite methods based on Singular Value
Decomposition [16] (SVD) or spectral clustering approaches
[5]. Other interesting factorization techniques are based on
non Negative Matrix Factorization approaches (NMF ap-
proach is well studied in [18] and we can see some example
for data-mining in [2, 4]). They focus on finding an approxi-
mation of the original relationship matrix R12 of n objects of
type X1 and m objects of type X2, under the form of a prod-

uct of two low dimension matrices G
(n×c)
1 .G

(c×m)
2 where c

represents the number of clusters and Gk capture informa-
tion about assignation of Xk individuals to clusters set Ck.
They then solve the following optimization problem:

min ‖R12 −G1G
T
2 ‖, s.t. G1 ≥ 0, G2 ≥ 0 (2)

Recent method [7] have shown the interest of adding a third
matrix to absorb the different scales of R12, G1 and G2,
also allowing to relax the constraint of the same number
of clusters for both entities. The methods based on a 3-
factor decomposition are called non-Negative Matrix Tri-
Factorization (NMTF) and solve the following optimization
problem:

min ‖R12 −G1SG
T
2 ‖, s.t. G1 ≥ 0, G2 ≥ 0, S ≥ 0 (3)

For the co-clustering problem, the S ≥ 0 constraint is re-
laxed.

3.2 Integrating co-clustering in PRM learning
process

Even if many approaches exist to deal with co-clustering,
most of them do not fit perfectly with the richness of in-
formation available in PRM. Indeed, most of co-clustering
algorithm do not use inner objects data in addition to re-
lationship information, whereas we use both information to
learn a PRM. As a consequence, this is one main constraint
for the selection of a co-clustering algorithm to integrate
with PRM.

Some recent work [12, 26, 24, 25] regularize the matrices fac-
torization for co-clustering tasks, as described above, through
the adding of entities information by the mean of intra-
classes affinity matrices. Beyond the fact that it provides the
desired advantage of intra-class information use, these co-
clustering algorithms can take into consideration the topo-
logical space (or manifold) of every entity, avoiding the trou-
ble of always considering simple Euclidean spaces. These
techniques show good results in experimentations. For these
reasons, co-clustering algorithms operating on manifolds are
well suited for our PRM learning problem. We briefly de-
scribe their principle in the following subsection.

3.3 Co-clustering with Laplacian regulariza-
tion

LetR12 be a relationship matrix between two entitiesX1 and
X2. The two entities Xk with k ∈ {1, 2} are described as
sets of objectsXk = {x1k, . . . , x

nk
k } where nk is the number of

objects of the entity k. We can describe information between
objects of the entity Xk under the form of a square affinity
matrix Wk. Let now define a clusters set Ck for every Xk.

The objective of co-clustering is then to find the functions fk
mapping every object xki ∈ Xk to a cluster ckj ∈ Ck for every
k ∈ [1, 2]. From matrices R12, W1 and W2, the algorithm
targets to find the best result matrices Gk and S minimizing:

J = ‖R−G1SG2
T ‖2F +

∑
k∈{1,2}

λktr
[
Gk

TLkGk

]
s.t. G ≥ 0

(4)

where ‖.‖F is the Frobenius norm, Lk = Dk − Wk is the
graph Laplacian corresponding to Xk and Dk is the diagonal
degree matrix corresponding to Xk. Two results are then
useful for us. First, the matrices Gk can be interpreted
after normalization as a posterior distribution of clustering
for every xki ∈ Xk. Then, the S matrix can allow us to
calculate P (C1C2), where C1 and C2 are random variables
respectively defined on C1 and C2.

We can see that integrating this kind of co-clustering algo-
rithm into PRM learning process requires the calculation of
the right intra-class similarity matrices. The details of this
integration is the object of the following section.

4. PRM WITH CO-REFERENCE UNCER-
TAINTY

We propose here to take benefit from co-clustering approaches
in order to learn PRM models using even more relational
information than those used by PRM-RU. We define a new
model based on this idea called PRM with Co-Reference Un-
certainty (PRM-CRU) described below.

4.1 Definition
Keeping the same definition of a relational model M as
before, we update the set of random variables V S(M) =
VA ∪ VSR considered. We now define the synthetical ran-
dom variables VSR corresponding to reference slots R ofM
as variables describing distributions over reduction of carte-
sian product of several reference slots domains. We now
associate for every class Xi ∈ X at most one partition func-
tion, which is a co-partition function if the class contains
two reference slots. The formal definition of PRM-CRU is
given below.

Definition 3. A PRM-CRU Π defined fromM is a PRM
as described in definition 1. In addition, we add for every
variable v ∈ VSR, linked to an entity Xi ∈ X with |Ri| ∈
{1, 2}, a co-selector node in G associated to a co-partition
function ψi. In PRM-CRU, the variable v is defined over a
set of c co-clusters C = {Ci1, . . . , Cici} and the associated
partition function defines a mapping from I(Ran[Ri1]) ×
. . . × I(Ran[Riri ]) to Dom[ψi] = Dom[v] = C. The selec-
tor nodes are each linked to a parameter θi ∈ Θ describing
the probability distribution of the corresponding random vari-
able conditionally to the random variables of its parent in the
graph G.

The figure 1(c) shows an example of PRM-CRU defined from
the relational schema in figure 1(a). It is important to note
that, if M contains at least one entity with more than two
reference slots, it is not possible to create a PRM-CRU on
it. Relaxing this constraint will be the object of future work.



4.2 Learning PRM-CRU
PRM-CRU models do not need a change of learning algo-
rithm structure, relatively to PRM-RU learning, but a re-
definition of the refine and abstract operators which con-
tent will strongly depend on the choosen co-clustering al-
gorithm. First, it is important to remind that many co-
clustering algorithm only focus on relationship matrices (for
binary cases) or equivalent in more dimension. For these
algorithms, adding or removing attributes from concerned
classes by the refine and abstract operators will not change
anything. Thus, in this first case, learning a PRM-CRU
boils down to first learning every co-partition functions once
and for all, and then use only edges operators during greedy
search. Secondly, for co-clustering methods using both rela-
tionship and entities inner information, the input taken for
the latter is under the form of similarity matrices. In this
case, the refine and abstract method must trigger a three
steps procedure: 1) update the set of attributes Pi; 2) com-
pute the new similarity matrix for the updated entity’s ob-
jects (no need to recompute these matrices for other classes
of the relationship); 3) relaunch the co-clustering algorithm
with updated similarities.

More formally, let consider a specific partition function ψi

in Ψ linked to the entity Xi ∈ X with |Ri| = 2 (there is
no partition function ψi if |Ri| = 0; the partition function
works as in PRM-RU in the case where |Ri| = 1). Let
X = Ran[Ri1]∪Ran[Ri2], the set of classes being the range
of at least one reference slot of Xi. Let then A =

⋃
∀Xi∈X

Ai

the set of potential attributes for ψi and Pi ⊂ A, the set of
current used attributes by ψi. Given a fixed number of clus-
ters k, the refine operator will add an attribute a ∈ A− Pi

to Pi from class Xi ∈ X, recalculate the similarity matrix
SI(Xi) and re-runs the corresponding co-clustering algorithm
to find k new clusters from all the similarity matrices of in-
volved classes instances. Similarly, the abstract operator
will remove an attribute a ∈ A − Pi from Pi, recalculate
the corresponding similarity matrix and finally re-runs the
co-clustering algorithm. Unlike for the PRM-RU case, only
one constraint still hold on the two operators call: the one
forbidding a refine call if every potential attribute has been
added (Pi = A). Indeed, a co-clustering algorithm can still
work without any attribute since it always has the relation-
ship matrix to work on.

4.3 Discussion
PRM-CRU are aimed to offer more accurate clusters to the
PRM learning algorithm than in PRM-RU. The objective
is to improve the probabilistic likelihood P (I|G,Ψ,Θ) we
can reach with Greedy Search heuristic, since we can more
accurately fit the data with co-clustering, than with flat clus-
tering methods, in numerous situations. This gain comes at
a cost, however, due to the limitation of co-clustering tech-
niques themselves. Indeed, we can not currently work with
relational schema with classes having more than two refer-
ence slots, and classes with exactly two reference slots can
not have more than one descriptive attribute (otherwise, it
would not be able to have a single matrix to represent the
relationship data).

5. CONCLUSION AND PERSPECTIVES

In this paper, we have presented a work in progress about a
new extension of PRM, called PRM with Co-Reference Un-
certainty, which defines a single selector variable for each
class containing reference slots. This variable is associated
to a co-partition function, which is learned thanks to a co-
clustering algorithm. We have particularly described algo-
rithms based on NMF techniques and have motivated the
interest of using more particularly NMTF techniques with
Laplacian regularization.

It is important to note that, in its current state, our work
can not be applied to all datasets since it does not sup-
port every relational schema. The main limitation is due to
the use of co-clustering algorithms which can only be used
on binary relationships expressed as matrices. Since a rela-
tional schema can involve more complex classes with more
reference slots, it is important to work on generalizing this
method for the case of any n-ary relationship. This could be
done for example with tensor decomposition techniques [17],
which seems promising. We will focus on this generalization
in future work.

Another interesting task on which we will focus on is the
analysis of the set of co-partition functions obtained by learn-
ing the PRM-CRU. By finding a consensus on the multiple
co-partition functions obtained, we can try to reverse the
problem addressed in this article: making multi-relational
clustering with PRM learning algorithm after having made
PRM learning using relational clustering.
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