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ESTIMATION/IMPUTATION STRATEGIES FOR MISSING DATA IN

SURVIVAL ANALYSIS

ELODIE BRUNEL(1), FABIENNE COMTE(2), AGATHE GUILLOUX(3,4,5)
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1. Introduction

We consider the problem of estimation from right-censored data, when the censoring indicator
is possibly missing. Let T be a random variable representing the time to death from the cause
of interest. Let C denote a right-censoring random time. Under usual random censorship, the
observation is Y = T ∧ C and δ = 1I(T ≤ C) and it is assumed that T and C admit densities
respectively denoted by fT and g. In addition, C is assumed to be independent of T .

When the cause of death is not recorded, the censoring indicator is missing: this is the missing
censoring indicator (MCI) model, see Subramanian Subramanian (2006), which is defined as
follows. Let ξ be the missingness indicator, that is ξ = 1 if δ is observed and ξ = 0 otherwise.
The observed data are then given for individual i ∈ {1, . . . , n}:

(Yi, δi, ξi = 1) or (Yi, ξi = 0).

We consider the so-called MAR context, which means that we assume that the indicator is
Missing At Random i.e. ξ and δ are independent conditionally to Y (contrary to the MCAR case
where it is assumed that the indicator are Missing Completely At Random, i.e. ξ is independent
of T and C). In this paper, we mainly concentrate on different strategies for dealing with missing
indicators.

This model has been considered by several authors in the last decade. For a complete overview
on missing data, we refer to the monography by Little and Rubin Little and Rubin (2002). Most
papers are interested in survival function and cumulative hazard rate estimation. In particular,
van der Laan and McKeague van der Laan and McKeague (1998) build a sieved nonparametric
maximum likelihood estimator of the survival function in the MAR case and prove its efficiency.
Their estimator is a generalization of the Kaplan-Meier estimator to this context and is the
first proposal reaching the efficiency bound. Subramanian Subramanian (2004) also proposes
an estimator of the survival function in the MAR case; he proves his estimate to be efficient as
well.

Kernel methods have also been used to build different estimators in the MAR context. Sub-
ramanian Subramanian (2006) estimates the cumulative hazard rate with a ratio of kernel es-
timators. He provides an almost sure representation, and a Central Limit Theorem (CLT). He
deduces results of the same type for the survival function. A study in a similar context is also
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provided by Wang and Ng Wang and Ng (2008). Recently, Wang et al. Wang et al. (2009)
proposed density estimator based on kernels and Kaplan Meier-type corrections of censoring.
They prove a CLT and suggest a bandwidth selection strategy. Extensions of these works to con-
ditional functions (both cumulative hazard and survival functions) in the presence of covariates
is developed in Wang and Shen Wang and Shen (2008).

Our aim here is to study nonparametric hazard rate estimation and more specifically, regres-
sion and model selection estimation of the function defined, for all t > 0 by:

(1) λ(t) =
fT (t)

1 − FT (t)
,

where fT and FT are respectively the probability density function (p.d.f.) and the cumulative
distribution function (c.d.f.) of the survival time T . Two contrasts and estimators are proposed,
and both involve the estimation of a specific nuisance functional parameter, π or ζ:

π(y) = E(ξ|Y = y) = P(ξ = 1|Y = y).(2)

ζ(y) = E(δ|Y = y) = P(δ = 1|Y = y),(3)

We compare different estimation-imputation strategies for recovering π and ζ. More precisely, we
propose either a parametric strategy following a logistic model − standard for π, but involving
imputation steps for ζ −, or a pure nonparametric regression strategy. We provide theoretical
properties and numerical comparisons for these procedures.

2. Model and strategies

2.1. Model assumptions. The unknown function λ to be estimated is hazard rate of the
random variable T , as defined by (1). We shall denote by GC the c.d.f. of C. We define the
conditional expectations of ξ and δ by (2) and (3).

The global model assumption is denoted (A0) and has several parts, specified hereafter.
(A0-1) The random vectors (Yi, Ci) are independent copies, for i = 1, . . . , n, of (Y,C).
(A0-2) For i = 1, . . . , n, we observe Yi = Ti ∧ Ci, ξi ∈ {0, 1}, and δi = 1I(Ti ≤ Ci) if ξi = 1,

otherwise ξi = 0.
(A0-3) C is independent of T .
(A0-4) ξ and δ are independent given Y .

Our estimation strategies are based on penalized contrasts. Namely, we obtain different
collections of estimator by minimization of empirical criteria on functional spaces spanned by
orthonormal bases defined on an interval [0, τ ]. We consider in the following two specific and
classical examples of bases and model collections:

(1) Trigonometric bases. They are defined by ϕ0(x) = (1/
√
τ)1I[0,τ ](x),

ϕ2j+1(x) =
√

2/τ sin(2πjx/τ)1I[0,τ ](x), ϕ2j(x) =
√

2/τ cos(2πjx/τ)1I[0,τ ](x).

Considering (ϕj)0≤j≤m−1 yields spaces Sm spanned by them, with odd dimensions m.
We denote by Sn the nesting space of the collection, i.e. the space corresponding to the
maximal dimension for Sm and we set Dn := dim(Sn) ≤

√
n/ log(n).

(2) Histogram bases. They are defined by ϕj(x) =
√

2m/τ1I[(j−1)τ/2m,jτ/2m[(x), for j =
1, . . . , 2m so that Sm = span(ϕj , j = 1, . . . , 2m) and Dm = 2m. We shall take m ≤
[log2(n)/2] where [z] denotes the integer part of z and log2(x) = log(x)/ log(2). We
denote by Sn the nesting space of the collection and we set Dn := dim(Sn) ≤ n/ log(n).
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These bases are representative examples of localized bases for the second one (as piecewise
polynomials, wavelets) or bounded non localized bases for the first one.

2.2. Strategy involving knowledge of ζ. The crucial property for the construction of an
estimation procedure is the following: for any integrable function h, we have

E(ζ(Y )h(Y )) = E[E(δ|Y )h(Y )] = E(δh(Y ))

= E[1I(T ≤ C)h(T )]

=

∫
h(t)(1 −GC)(t)fT (t)dt.

This yields the equality

(4) E(ζ(Y )h(Y )) = E(δh(Y )) =

∫
h(y)λ(y)(1 − L(y))dy

with 1 − L(y) = L̄(y) := P(Y ≥ y) = (1 − FT (y))(1 −GC(y)).
Next, we note that, with assumption (A0-4) and the definition of ζ, we have

E(δiξi + (1 − ξi)ζ(Yi)|Yi) = E(δi|Yi)E(ξi|Yi) + E[(1 − ξi)E(δi|Yi)|Yi]

= E(E(δi|Yi)(ξi + (1 − ξi))|Yi)

= E(δi|Yi).(5)

If ζ was known, we would consider the contrast:

Γth
n,1(h) =

1

n

n∑

i=1

∫ 1

0
h2(y)1I(Yi ≥ y)dy − 2

n

n∑

i=1

(ξiδi + (1 − ξi)ζ(Yi))h(Yi),

which is a particular case of the contrast introduced in Brunel et al. Brunel et al. (2013). Indeed,
if we compute the expectation of this theoretical contrast, we obtain, under the MAR assumption
and using (4) and (5),

E
(
Γth

n,1(h)
)

= ‖h‖2
µ1

− 2

∫
h(y)λ(y)dµ1(y) = ‖h− λ‖2

µ1
− ‖λ‖2

µ1
,

with dµ1(y) = (1 − L(y))dy.
Clearly, the above quantity is small if h is near of λ, and the measure denoted by µ1 plays

the role of a reference weighting norm. This explains why minimizing Γth
n,1 over an appropriate

set of functions would be a relevant strategy to estimate λ.
As ζ is unknown, we must substitute another quantity in the contrast. The first strategy we

could think about, is to use an estimator ζ̃ of ζ. Consequently, we consider

(6) Γest

n,1(h) =
1

n

n∑

i=1

∫ 1

0
h2(y)1I(Yi ≥ y)dy − 2

n

n∑

i=1

(
ξiδi + (1 − ξi)ζ̃(Yi)

)
h(Yi).

Estimators of ζ(y) are constructed below. This strategy of estimation of the unknown hazard
rate λ, via an estimation of ζ, is also considered in Wang et al.Wang et al. (2009). Such a
regression strategy was also considered in Brunel and Comte Brunel & Comte (2005) without
missing indicator.
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2.3. Strategy involving knowledge of π. A similar reasoning can be lead in case π is known.
Analogously, we consider the contrast

Γth
n,2(h) =

1

n

n∑

i=1

∫ 1

0
h2(y)π(y)1I(Yi ≥ y)dy − 2

n

n∑

i=1

δiξih(Yi).

Indeed, we can compute the expectation of Γth
n,2(h). First, we have

E(δiξih(Yi)) = E(E(δiξi|Yi)h(Yi))

and with (A0-4), we get E(δiξih(Yi)) = E(ζ(Yi)π(Yi)h(Yi)). Now, applying (4) to hπ (instead
of h) yields

E(δiξih(Yi)) =

∫
h(y)π(y)λ(y)(1 − L(y))dy.

Consequently,

E
(
Γth

n,2(h)
)

=

∫
h2(y)dµ2(y) − 2

∫
h(y)λ(y)dµ2(y) = ‖h− λ‖2

µ2
− ‖λ‖2

µ2
,

with dµ2(y) = π(y)(1−LY (y))dy. As previously, this explains why minimizing Γth
n,1 should allow

us to estimate λ.
As π is unknown, we replace it by an estimator π̃ in the contrast. Thus, we consider

(7) Γest

n,2(h) =
1

n

n∑

i=1

∫ 1

0
h2(y)π̃(y)1I(Yi ≥ y)dy − 2

n

n∑

i=1

δiξih(Yi).

2.4. Estimation of ζ or π: logit or nonparametric regression. In both (6) and (7), a step

has to be completed: we must make proposals for ζ̃ and π̃. Two strategies can be naturally
considered. First, coherently with the nonparametric setting of the first step, we can use a
nonparametric regression method.
Nonparametric regression for estimation of ζ(y) or π(y). The definition of ζ and π as conditional
expectations given Y (see (3) and (2)), allows us to estimate these functions by nonparametric
mean square contrast minimization. More precisely, we obtain a collection of estimators of ζ or
π on an interval A by minimizing for T varying over spaces Sm, the contrasts

γ̃n,1(T ) =
1

n

n∑

i=1

[ξiT
2(Yi) − 2ξiδiT (Yi)] or γ̃n,2(T ) =

1

n

n∑

i=1

[T 2(Yi) − 2ξiT (Yi)]

respectively.

On the other hand, a natural strategy to estimate conditional indicators is the parametric
logistic regression.
Logistic regression. If we add a logistic assumption

ζ(y) =
exp(α0 + α1y)

1 + exp(α0 + α1y)
, π(y) =

exp(β0 + β1y)

1 + exp(β0 + β1y)
,

then we may use a maximum likelihood (M.L.) procedure. Note that, nevertheless, ζ and π
are different from this point of view. Indeed, concerning the estimation of π, ξ and Y are
observed and therefore, β0 and β1 correspond to standard logit-estimation. But this is not true
for ζ: we cannot directly compute the M.L. estimators for (α0, α1) since there are censoring
indicators δi missing. Thus, we follow a procedure proposed by Rubin Rubin (1987). For a
binary classification variable, a new logistic regression model is simulated from the posterior
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predictive distribution of the parameters and is used to impute the missing values for each
variable .

2.5. Computing the hazard estimators. We consider that we estimate the hazard rate on
a compact set

A = [0, τ ].

We set standard assumptions about boundedness from above and below.

(A1.1) ∀y ∈ A, λ(y) ≤ ‖λ‖A,∞ < +∞.
(A1.2) ∀y ∈ A, 1 − LY (y) ≥ L̄0 = miny∈A 1 − LY (y) > a > 0 for fixed positive constant a.
(A1.3) ∀y ∈ A, π(y) ≥ π0 = infy∈A π(y) > b > 0 for fixed positive constant b.
(A1.4) ∀y ∈ A, 0 < f∗0 ≤ fY (y) ≤ f∗1 < +∞.

Assumptions (A1.1) and (A1.2) are common natural assumptions, and assumption (A1.3) is
specific to the strategy involving π in the reference measure. Assumption (A1.4) is a common
technical assumption.

First, we define two types of estimators λ̂
(i)
m for i = 1, 2 on the space Sm by:

λ̂(i)
m = arg min

h∈Sm

Γest

n,i (h) where Sm = span{ϕj , j = 1, . . . , Dm}

The ϕj ’s constitute an L
2-orthonormal basis, and the function h is of the form h =

∑
j ajϕj .

The estimators are obtained by minimization of the contrasts (6)-(7) given in Sections 2.2
and 2.3. For the histogram basis, we can give their explicit expression in the MAR setting :

λ̂
(i),[H]

m̂ (y) =
∑Dm̂

j=1 â
(i),[H]

j ϕj(y) with the coefficient â
(i),[H]

j having the following form, provided the
denominators are non zero:

â
(1),[H]

j =

n∑

i=1

[δiξi + (1 − ξi)ζ̃(Yi)]ϕj(Yi)

n∑

i=1

∫ 1

0
ϕ2

j (y)1I(Yi≥y)dy

, â
(2),[H]

j =

n∑

i=1

δiξiϕj(Yi)

n∑

i=1

∫ 1

0
ϕ2

j (y)π̃(y)1I(Yi ≥ y)dy

.

More generally, let us define the matrices and vectors:
−→̂
a (i) =

(
â

(i)
j

)
1≤j≤Dm

,

Θ(1)
m :=

(
1

n

n∑

i=1

∫
ϕj(y)ϕj′(y)1I{Yi≥y}dy

)

1≤j,j′≤Dm

,

∆(1)
m = vec

(
1

n

n∑

i=1

(
δiξi + (1 − ξi)ζ̃(Yi)

)
ϕj(Yi))1≤j≤Dm

)
,

Θ(2)
m :=

(
1

n

n∑

i=1

∫
ϕj(y)ϕj′(y)π̃(y)1I{Yi≥y}dy

)

1≤j,j′≤Dm

∆(2)
m =

(
1

n

n∑

i=1

δiξiϕj(Yi)

)

1≤j≤Dm

.

Then the coefficients of the estimators must fulfill the matrix constraint:

Θ(i)
m

−→̂
a (i)

m = ∆(i)
m .

It follows that the estimator is well defined if Θ
(i)
m is invertible. We define ρ(M) as the spectral

radius of a matrix M , i.e. the largest eigenvalue in modulus of M . We set

(8)
−→̂
a (i)

m = (Θ(1)
m )−1∆(1)

m if ρ(Θ(i)
m ) ≥ max(ĉi, n

−1/2)

and
−→̂
a

(i)
m = 0 otherwise, with ĉ1 = ˆ̄L0/3 and ĉ2 = 4π̃0

ˆ̄L0/9.
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The quantities ˆ̄L0 and π̃0 are estimators of L̄0 = miny∈A 1 − LY (y) > 0 under (A1.2) and

π0 = miny∈A π(y) > 0 under (A1.3). An estimator ˆ̄L0 is defined in Comte et al. (2009), and
proved to have the required properties, namely, to satisfy:

(A2.1) For any integer k ≥ 1, there exists a constant C
(L0)
k > 0 such that P(| ˆ̄L0− L̄0| > L̄0/2) ≤

C
(L0)
k /nk.

For π̃0, we can study min π̃(y) but we state results in term of the conditions π̃ must fulfill:

(A2.2) P

(∥∥∥∥
π̃ − π

π

∥∥∥∥
∞,A

> 1/4

)
:= P(Ωc

π) ≤ C

nk
for k ≥ 4 and C a given constant.

After this stage, the coefficients â
(i)
j , for i = 1, 2 provide the development of an estimator

(9) λ̂(i)
m (y) =

∑

j

â
(i)
j ϕj(y).

The model selection device is now based on the following criterion: for i = 1, 2,

(10) m̂(i) = arg min
m∈Mn

(Γest

n,i (λ̂m) + p̂en(i)(m))

where

Mn = {m ∈ N,dim(Sm) ≤ Nn}.
Moreover

(11) p̂en(i)(m) = κi‖λ̂‖∞,A
dim(Sm)

n
,

where Φ0 is such that ∀t ∈ Sm, ‖t‖∞ ≤ Φ0‖t‖ and λ̂ = λ̂m0 is an estimator in the collection, on

a space Sm0 with dimension Dm0 such that log(n) ≤ Dm0 ≤ n1/4. Moreover, the dimension Dm

of the spaces Sm has to be larger than log(n).

The computation of ζ̃ and π̃ is similar and the vector of their coefficients in the basis
(ϕj)1≤j≤dm

is defined by the inverse of matrices

Υ(1)
m =

(
1

n

n∑

i=1

ξiϕj(Yi)ϕj′(Yi)

)

1≤j,j′≤Dm

, Υ(2)
m =

(
1

n

n∑

i=1

ϕj(Yi)ϕj′(Yi)

)

1≤j,j′≤Dm

,

multiplied respectively by vectors

Ξ(1)
m = ∆(2)

m , Ξ(2)
m =

(
1

n

n∑

i=1

ξiϕj(Yi)

)

1≤j≤Dm

with adequate thresholds.

2.6. Theoretical Results. We consider that we estimate the hazard rate on a compact set
A = [0, τ ].

The empirical reference norms are defined by

‖h‖2
n,1 =

1

n

n∑

i=1

∫ 1

0
h2(y)1I(Yi ≥ y)dy, ‖h‖2

n,2 =
1

n

n∑

i=1

∫ 1

0
h2(y)π(y)1I(Yi ≥ y)dy

associated with the natural scalar product 〈h1, h2〉n,i obtained by polarization identity.
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Let us also define another integral norm with respect to d̺(y) = fY (y)dy where fY is the pdf
of Y1, that is

(12) ‖ψ‖2
̺ =

∫
ψ2(y)d̺(y) =

∫
ψ2(y)fY (y)dy.

The result we can obtain is the following, for estimators ζ̃ or π̃ computed on an independent
sample of observations.

Theorem 1. Let λ̂
(i)

m̂(i) be the estimator defined by (8)-(9)-(10)-(11) for i = 1, 2, under As-

sumptions (A0). Assume that the collection of models is nested and the estimators ζ̃ and π̃ are
computed on independent samples.

(1) If (A1.1)-(A1.2)-(A1.4) and (A2.1) hold, there exists a choice of κ1 such that, for n
large enough

(13) E(‖λ1IA − λ̂
(1)

m̂(1)‖2
n,1) ≤ C1 inf

m∈Mn

(‖λ1IA − λm‖2 + ‖λ‖A,∞
Dm

n
) + C ′

1E(‖ζ̃ − ζ‖2
̺) +

C ′′
1

n
,

where C1 is a numerical constant and C ′
2, C

′′
2 are constants depending on the constants

of the problem.
(2) If (A1.1)–(A1.4) and (A2.1)-(A2.2) hold, there exists a choice of κ2 such that, for n

large enough

(14) E(‖λ1IA − λ̂
(2)

m̂(2)‖2
n,2) ≤ C2 inf

m∈Mn

(‖λ1IA − λm‖2 + ‖λ‖A,∞
Dm

n
) + C ′

2E(‖π̃ − π‖2
̺) +

C ′′
2

n
,

where C2 is a numerical constant and C ′
2, C

′′
2 are constants depending on the constants

of the problem.

Inequality (13) is proved in Brunel et al. (2013) in a more general setting, and a sketch of the
proof of (14) is given in appendix.

Note that the larger κi, the larger pen(i)(m) in the upper bound.
The results stated in (13)-(14) involve three terms:

• the first terms are common, infm∈Mn
(‖λ1IA − λm‖2 + ‖λ‖A,∞Dm/n and correspond to

the squared-bias (‖λ1IA − λm‖2)/variance (‖λ‖A,∞Dm/n) compromise,

• the second term is E(‖ζ̃ − ζ‖2
̺) or E(‖π̃ − π‖2

̺), that is the mean-square risk of the
estimator of ζ or π on A. These quantities can have different orders, depending on the
second step strategy,

• the last terms C ′′
1 /n or C ′′

2/n are negligible.

We can obtain adaptive nonparametric rate with the same model selection principle for ζ and
π, if we apply the nonparametric strategy (see Theorem 2 for ζ in Brunel et al. (2013) Brunel
et al. (2013)).

On the other hand, with the logit strategy, we have

ζ̃(y) =
eα̂0+yα̂1

1 + eα̂0+yα̂1
, π̃(y) =

eβ̂0+yβ̂1

1 + eβ̂0+yβ̂1

,

and we get

E(‖ζ̃ − ζ‖2
̺) ≤ 2

(
E((α̂0 − α0)

2) + E(Y 2
1 )E((α̂1 − α1)

2)
)
,

E(‖π̃ − π‖2
̺) ≤ 2

(
E((β̂0 − β0)

2) + E(Y 2
1 )E((β̂1 − β1)

2)
)
.

All these terms are of order 1/n as soon as all parameters are estimated with parametric rate.
The questions that we have to study empirically are:
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(1) If the logit assumptions are fulfilled, is the nonparametric strategy much worse than the
parametric one?

(2) If the logit model is not satisfied, can the logit approximation still correctly estimate π
or ζ?

(3) How much does the quality of the estimator of these quantities influences that of λ?

3. Imputation based strategy

The second approach, we aim to explore, is inspired from stochastic regression imputation.
The idea is no longer to substitute an estimator of the unknown quantity ζ but rather to
substitute a random number γi to ζ(Yi) which has the same expectation.

Let γi generating from a Bernoulli distribution with parameter ζ(Yi) given ξi = 0. Here,
the quantity ζ(Yi) has also to be estimated as in Section 2.4, and we consider again both
nonparametric and logit strategies. Then, we are in position to define the following contrast:

(15) Γimp

n (h) =
1

n

n∑

i=1

∫ 1

0
h2(y)1I(Yi ≥ y)dy − 2

n

n∑

i=1

(ξiδi + (1 − ξi)γi)h(Yi).

and the imputation strategy gives the following estimator:

λ̂(3)
m = arg min

h∈Sm

Γimp

n (h) where Sm = span{ϕj, j = 1, · · · ,Dm}.

We do not provide the theoretical study of the estimator defined by this contrast since E(Γimp

n (h)) =
E(Γth

n,1(h)). We propose a numerical comparison of this strategy with the other strategies devel-
opped in Section 2.

4. Numerical Comparison

To illustrate the behaviors of the different estimators, we consider three models to simulate
data from the MCI, i.e. n independent replications of

(Yi = Ti ∧ Ci, δi, ξi = 1) or (Yi, ξi = 0).

In each model, the parameters are set in order to obtain around 30 % of censoring and 85 %
(resp. 55 %) of non missing indicators.

Model 1 (Weibull-Logistic). Each Ti is drawn from a Weibull distribution with scale a = 10 and
shape b = 4, each Ci from an exponential distribution with mean µ = 25. For each individual i,
the missing indicator is simulated from a Bernoulli distribution with parameter π(yi) with

π(y) =
1

1 + exp(−β1 − β2y)
,

we set β1 = 0.1 and β2 = 0.25 (resp. 0.005) to obtain 85 % (resp. 55 %) non missing indicators.
In this model:

ζ(y) = (1 +
µ

ba−byb−1
)−1.

Model 2 (Monotone). It is based on an example from Subramanian Subramanian (2009). For
each i, Yi is drawn from an exponential distribution with parameter 1. The censoring and missing
indicators are simulated from Bernoulli distributions with parameters resp. ζ(yi) and π(yi) with:

π(y) = 1 − exp(−θ exp(y)) and ζ(y) =
1

1 + exp(−α1 − α2y)
,
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with θ = 1 (resp. 0.32) to obtain 85 % (resp. 55 %) non missing indicators, and α1 = −2,
α2 = 5.2. Note that, the hazard rate h(y) coincides with the auxiliary function ζ(y) in this
model.

Model 3 (Non-monotone). Consider the same schema as Model 2, with

ζ(y) = 0.9| sin(π/2 − 1.5y)| + 0.1.

Weibull/ Estimation strategy Estimation strategy Imputation strategy
Logistic with Γest

n,1 with Γest

n,2 Γimp

n

Missing rate 15% 45 % 15% 45 % 15 % 45 %
n = 200
NP 0.055 0.061 0.120 0.269 0.055 0.067

(0.032) (0.043) (0.081) (0.162) (0.032) (0.051)

logit 0.055 0.053 0.151 0.286 0.053 0.055
(0.029) (0.032) (0.123) (0.160) (0.031) (0.032)

n = 1000
NP 0.017 0.021 0.035 0.086 0.018 0.024

(0.010) (0.014) (0.018) (0.037) (0.010) (0.015)

logit 0.016 0.016 0.062 0.092 0.016 0.019
(0.008) (0.009) (0.036) (0.026) (0.008) (0.012)

n = 5000
NP 0.008 0.009 0.011 0.025 0.008 0.009

(0.007) (0.008) (0.010) (0.023) (0.006) (0.009)

logit 0.007 0.008 0.023 0.024 0.007 0.008
(0.005) (0.006) (0.022) (0.023) (0.006) (0.006)

Table 1. Average and standard deviation (in parenthesis) of the MISE over 500
replicated samples for hazard rate estimators of Model 1 (Weibull-Logistic), for
estimation strategies with Γest

n,1 and Γest

n,2 and imputation strategy Γimp

n . Censoring

rate ≃ 30%.

For K = 500 replications over different paths, we compute the (empirical) average MISE of the

penalized estimators λ̃ over a grid of size 100:

MISE =
1

K

K∑

k=1

(
τk
100

100∑

i=1

(
λ(ti) − λ̃(k)(ti)

)2
)
,

where τk is the inter-quantile interval length associated with the 10% and 90% empirical quantiles
of the Yi’s . The value of the constant κ appearing in the penalty has been calibrated over the
three models and fixed to 2 (resp. 3.5) for the contrast Γest

n,1 (resp. Γest

n,2). We also give in
parenthesis the standard deviation value of the MISE evaluated over the 500 samples. The
results are summarized in Tab. 1–4. For each model, we give the MISEs of our penalized

estimators λ̂
(1)

m̂(1) for the estimation strategy involving ζ in column 1-2, λ̂
(2)

m̂(2) for the estimation

strategy involving π in column 3-4 and λ̂
(3)

m̂(3) for the imputation strategy in column 5-6.
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Subramanian Estimation strategy Estimation strategy Imputation strategy
monotone with Γest

n,1 with Γest

n,2 Γimp

n

Missing rate 15% 45 % 15% 45 % 15 % 45 %
n = 200
NP 0.102 0.125 0.201 0.410 0.102 0.124

(0.051) (0.052) (0.143) (0.445) (0.057) (0.051)

logit 0.105 0.101 0.177 0.182 0.102 0.120
(0.062) (0.060) (0.083) (0.071) (0.0592) (0.0576)

n = 1000
NP 0.037 0.037 0.073 0.181 0.037 0.038

(0.016) (0.014) (0.043) (0.131) (0.017) (0.014)

logit 0.036 0.035 0.063 0.084 0.037 0.039
(0.018) (0.018) (0.035) (0.035) (0.017) (0.016)

n = 5000
NP 0.012 0.012 0.028 0.080 0.012 0.012

(0.011) (0.011) (0.025) (0.068) (0.012) (0.011)

logit 0.013 0.013 0.019 0.023 0.013 0.012
(0.012) (0.011) (0.018) (0.022) (0.012) (0.011)

Table 2. Average and standard deviation (in parenthesis) of the MISE over
500 replicated samples for hazard rate estimators of the Model 2, for estimation
strategies with Γest

n,1 and Γest

n,2 and imputation strategy Γimp

n . Censoring rate ≃ 30%.
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Figure 1. Strategy involving estimation of π: Left-side: True hazard rate (black

line) for Model 2 and its estimators λ̂
(2)

m̂(2) with both nonparametric (magenta dot-

ted line) and logit (cyan plain line) estimators of π. Right-Side: True auxiliary
function π (black line) and its nonparametric (magenta) and logit (cyan) estima-
tors. n = 1000 with ≃ 30% censoring and 45% missing indicators.

For each strategy and each model, we consider various sample sizes n = 200, 1000 and 5000
and two levels of missing indicators namely 15% and 45%. The abbeviations ”NP” and ”logit”
stand for the way of estimating the auxiliary functions ζ or π according to the strategy under
study (estimation of ζ with Γest

n,1 and Γimp

n or estimation of π with Γest

n,2). First, whatever the
model we considered, we observe that the strategy involving π gives very poor performances
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compared to the other ones. The difference between the strategies involving π or ζ is of great
importance for a numerical point of view. In fact, as we can see by examining the sequence of

coefficients â
(1),[H]
j and â

(2),[H]
j , the estimator π̃ appear in the denominator (while the estimator

ζ̃ does not) and it results that a small estimation error for π can strongly increase the final error
on the hazard estimator. We can see on Figure 1 that despite a quite good estimation of π, the
MISE in Table 1–3 is always the worst for the estimation strategy involving π. Consequently,
we focus on the other strategies. Both imputation or estimation strategy involving the function
ζ have very similar behavour and perform as well. We also notice that the logit estimator of ζ
versus the nonparametric one is nearly impossible to beat at least for sample sizes n = 200, 1000.
Of course, when the logit assumption is violated, for large sample (n = 5000) and important
missing rate 45%, the results are deteriorating, see Table 3.

Subramanian Estimation strategy Estimation strategy Imputation strategy
non-monotone with Γest

n,1 with Γest

n,2 Γimp

n

Missing rate 15% 45 % 15% 45 % 15 % 45 %
n = 200
NP 0.132 0.163 0.218 0.269 0.132 0.163

(0.061) (0.060) (0.088) (0.248) (0.061) (0.060)

logit 0.138 0.180 0.234 0.257 0.137 0.170
(0.060) (0.058) (0.081) (0.073) (0.062) (0.060)

n = 1000
NP 0.064 0.076 0.105 0.125 0.065 0.076

(0.019 (0.016) (0.029) (0.055) (0.019) (0.016)

logit 0.066 0.096 0.113 0.128 0.065 0.077
(0.019) (0.018) (0.026) (0.024) (0.019) (0.016)

n = 5000
NP 0.038 0.039 0.055 0.067 0.038 0.040

(0.039) (0.038) (0.054) (0.066) (0.040) (0.040)

logit 0.040 0.065 0.061 0.069 0.040 0.065
(0.040) (0.064) (0.062) (0.069) (0.040) (0.064)

Table 3. Average and standard deviation (in parenthesis) of the MISE over 500
replicated samples for hazard rate estimators of Model 3, for estimation strategies
with Γest

n,1 and Γest

n,2 and imputation strategy Γimp

n . Censoring rate ≃ 30%.

5. Proofs

5.1. Proof of Theorem 1. The first inequality is obtained as a particular case of the bound
proved in Brunel et al. Brunel et al. (2013), see also Comte et al. ?. Below, we give steps for
obtaining the second inequality.

The reference centered empirical process is

νn(h) =
1

n

n∑

i=1

(
δiξih(Yi) −

∫
h(y)λ(y)π(y)1I{Yi≥y}dy

)
.
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Figure 2. Strategies involving estimation of ζ: Left-side: True hazard rate

(black line) for Model 3 and its estimators λ̂
(1)

m̂(1) with nonparametric (magenta

dotted line) and logit (cyan plain line) estimators of ζ and λ̂
(3)

m̂(3) with nonparamet-

ric estimator of ζ (red dotted line). Right-Side: True auxiliary function ζ (black
line) and its nonparametric (magenta) and logit (cyan) estimators. n = 1000
with ≃ 30% censoring and 45% missing indicators.

It is constituted of two different processes which have different orders, νn(h) = νn,1(h)− νn,2(h)
with

νn,1(h) =
1

n

n∑

i=1

(δiξih(Yi) − 〈h, λ〉µ2),(16)

νn,2(h) =
1

n

n∑

i=1

(∫
h(y)λ(y)π(y)1I{Yi≥y}dy − 〈h, λ〉µ2

)
.(17)

We define a set Ω = ∆ ∩ ΩL̄0
∩ Ωπ where Ωπ is defined in (A2.2) and

Ĝ =
⋂

m∈Mn

Ĝm, Ĝm = {minSp(Θ(2)
m ) ≥ max(4π̃0

ˆ̄L0/9, n
−1/2)},

∆ =

{
∀h ∈ Sn,

∣∣∣∣∣
‖h‖2

n,2

‖h‖µ2

− 1

∣∣∣∣∣ ≤
1

2

}
and ΩL̄0

=

{
|
ˆ̄L0

L̄0
− 1| ≤ 1

2

}
.

It is easy to see that (see Brunel et al. Brunel et al. (2013)):

Lemma 1. Under the assumptions of Theorem 1, for n large enough, the following embedding
holds: ∆ ∩ ΩL̄0

∩ Ωπ ⊂ Ĝ ∩ ΩL̄0
∩ Ωπ.

As a consequence, for all m ∈ Mn, the matrices Θ
(2)
m are invertible on Ω.
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Let us denote by λA = λ1IA and πA = π1IA. We start with the decomposition

Γest

n,2(h) − Γest

n,2(ℓ) = ‖h− λA‖2
n,2 − ‖ℓ− λA‖2

n,2 − 2νn(h− ℓ)

+
1

n

n∑

i=1

∫
(h− λA)2(y)1I{Yi≥y}(π̃ − πA)(y)dy

− 1

n

n∑

i=1

∫
(ℓ− λA)2(y)1I{Yi≥y}(π̃ − πA)(y)dy

+
2

n

n∑

i=1

∫
(h− ℓ)(y)λ(y)1I{Yi≥y}(π̃ − πA)(y)dy.

Then, let us denote by λm the orthogonal projection of λA on Sm and use the definition of
λ̂m̂ on Ω (see Lemma 1). We assume first that ‖λ‖A,∞ is known and denote by pen(m) =

κ‖λ‖A,∞Dm/n, and write Γest

n,2(λ̂m̂) + pen(m̂) ≤ Γest

n,2(λm) + pen(m).
Then we get, on Ω,

‖λ̂m̂ − λA‖2
n,2 ≤ ‖λm − λA‖2

n,2 + pen(m) + 2νn(λ̂m̂ − λm) − pen(m̂)

− 1

n

n∑

i=1

∫
(λ̂m̂ − λA)2(y)1I{Yi≥y}(π̃ − πA)(y)dy

+
1

n

n∑

i=1

∫
(λm − λA)2(y)1I{Yi≥y}(π̃ − πA)(y)dy

− 2

n

n∑

i=1

∫
(λ̂m̂ − λm)(y)λ(y)1{Yi≥y}(π̃ − πA)(y)dy.(18)

First, we write

2|νn(λ̂m̂ − λm)| ≤ 1

8
‖λ̂m̂ − λm‖2

µ2
+ 8 sup

h∈Bm,m̂(0,1)
ν2

n(h),

where Bm,m′(0, 1) = {h ∈ Sm + Sm′ , ‖h‖µ2 ≤ 1}. It follows that

2|νn(λ̂m̂ − λm)|1IΩ ≤ 1

4
‖λ̂m̂ − λm‖2

n,21IΩ + 16

(
sup

h∈Bm,m̂(0,1)
ν2

n,1(h) − p(m, m̂)

)

+

+16p(m, m̂) + 16 sup
h∈Bm,m̂(0,1)

ν2
n,2(h)

≤ 1

2
‖λ̂m̂ − λ‖2

n,21IΩ +
1

2
‖λm − λ‖2

n,2 + 16

(
sup

h∈Bm,m̂(0,1)
ν2

n(h) − p(m, m̂)

)

+

+16p(m, m̂) + 16 sup
h∈Bm,m̂(0,1)

ν2
n,2(h),(19)

where p(m,m′) is defined below.
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Next, using the definition of Ωπ and assumption (A2.2), we have

1

n

∣∣∣∣∣
n∑

i=1

∫
(λm − λA)2(y)1I{Yi≥y}(π̃ − πA)(y)dy

∣∣∣∣∣ 1IΩπ

≤ 1

4n

n∑

i=1

∫
(λm − λA)2(y)1I{Yi≥y}πA(y)dy ≤ 1

4
‖λm − λA‖2

n,2.(20)

In the same way,

(21)
1

n

∣∣∣∣∣
n∑

i=1

∫
(λ̂m̂ − λ)2(y)1I{Yi≥y}(π̃ − π)(y)dy

∣∣∣∣∣ 1IΩπ
≤ 1

4
‖λ̂m̂ − λ‖2

n,2.

Moreover, using first the Schwarz Inequality and then 2xy ≤ x2/a+ay2 for x, y and a > 0 (here
a = 16), we get

2

n

∣∣∣∣∣
n∑

i=1

∫
(λ̂m̂ − λm)(y)λ(y)1I{Yi≥y}(π̃ − πA)(y)dy

∣∣∣∣∣ ≤
1

16n

n∑

i=1

∫
(λ̂m̂ − λm)2(y)1I{Yi≥y}π(y)dy

+
16

n

n∑

i=1

∫
[(π̃ − πA)2(y)/π(y)]λ2(y)1IA(y)dy

≤ 1

16
‖λ̂m̂ − λm‖2

n,2 +
16‖λ‖∞,A

nπ0

n∑

i=1

∫
(π̃ − πA)2(y)λ(y)1IA(y)dy

Therefore, as π̃ is computed on an independent sample of observations, we get

2

n
E

(∣∣∣∣∣
n∑

i=1

∫
(λ̂m̂ − λm)(y)λ(y)1I{Yi≥y}(π̃ − π)(y)dy

∣∣∣∣∣ 1IΩ
)

≤ 1

8
E(‖λ̂m̂ − λ‖2

n,21IΩ) +
1

8
‖λ− λm‖2

µ2
+

16‖λ‖∞,A

π0
E

(∫

A
(π̃ − π)2(y)λ(y)dy

)

≤ 1

8
E(‖λ̂m̂ − λ‖2

n,21IΩ) +
1

8
‖λ− λm‖2

µ2
+

16‖λ‖∞,A

L̄0π0
E

(∫

A
(π̃ − π)2(y)fY (y)dy

)

≤ 1

8
E(‖λ̂m̂ − λ‖2

n,21IΩ) +
1

8
‖λ− λm‖2

µ2
+

16‖λ‖∞,A

L̄0π0
E(‖π̃ − π‖2

̺).(22)

Now, gathering (18)–(22), we get, as 1− 1/2− 1/4− 1/8 = 1/8 and 1 + 1/2 + 1/4 + 1/8 = 15/8,

1

8
E(‖λ̂m̂ − λA‖2

n,21IΩ) ≤ 15

8
‖λm − λA‖2

µ2
+ pen(m) +

16‖λ‖∞,A

L̄0π0
E(‖π̃ − π‖2

̺)

+16E

(
sup

h∈Bm,m̂(0,1)
ν2

n,2(h)

)

+16E

((
sup

h∈Bm,m̂(0,1)
ν2

n,1(h) − p(m, m̂)

)

+

)
+ 16E(p(m, m̂) − pen(m̂)).(23)
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Now write νn,2(h) =
∫
A h(y)λ(y)( ˆ̄L(y) − E( ˆ̄L(y))π(y)dy with ˆ̄L(y) = (1/n)

∑n
i=1 1IYi≥y. Clearly

sup
h∈Bm,m̂(0,1)

ν2
n,2(h) ≤ 1

L̄2
0

sup
h∈Bm,m̂(0,1)

∫

A
h2(y)dµ2(y)

∫

A
λ2(y)( ˆ̄L(y) − E( ˆ̄L(y))2dµ2(y)

=
1

L̄2
0

∫

A
λ2(y)( ˆ̄L(y) − E( ˆ̄L(y))2dµ2(y).

Therefore, since E[( ˆ̄L(y) − E( ˆ̄L(y))2] = L̄(y)(1 − L̄(y))/n ≤ 1/(4n) and π(y) ≤ 1, we get

(24) E

(
sup

h∈Bm,m̂(0,1)
ν2

n,2(h)

)
≤

‖λ‖2
A,∞

4nL̄2
0

∫
L̄(y)dy =

‖λ‖2
A,∞E(Y1)

4nL̄2
0

.

We can use Talagrand Inequality (see Talagrand Talagrand (1996)) to prove the proposition
below, and we refer to Brunel et al. Brunel et al. (2013) for details.

Proposition 1. Under the Assumptions of Theorem 1, there exists a numerical constant κ such
that, for

p(m,m′) = (κ/16)

(
‖λ‖2

A,∞

Dm +Dm′

n

)
,

we have

E

(
sup

h∈Bm,m̂(0,1)
(ν2

n,1(h) − p(m, m̂))+

)
≤ C

n

and this, together with (23) and (24) yields, as 16p(m,m′) ≤ pen(m) + pen(m′), that

1

8
E(‖λ̂m̂ − λA‖2

n,21IΩ) ≤ 15

8
‖λm − λA‖2

µ2
+ 2pen(m) +

C

n
.

Next, we study E(‖λ̂m̂ − λ‖2
n,21IΩc). We have first (see Brunel et al. Brunel et al. (2013)):

Lemma 2. Under the assumptions of Theorem 1, we have ‖λ̂m̂‖2
n,2 ≤ Cn3 for a constant C

depending on the basis.

Moreover (A2.2) ensures that P(Ωc
π) ≤ C/nk, (A2.1) implies that P(Ωc

L̄0
) ≤ C

(L0)
k /nk and

Proposition 4 in Comte et al. (2008) can be adapted here to get P(∆c) ≤ C
(∆)
k /nk, under the

condition that Dn
2 ≤ n/ log2(n) if basis (1) is used and Dn ≤ n/ log2(n) if basis (2) is used.

Gathering these elements yields E(‖λ̂m̂ − λ‖2
n1IΩc) ≤ C/n by choosing k = 4.

For the method allowing to replace ‖λ‖A,∞ by an estimator, we refer to Comte et al. (2008). 2
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