
HAL Id: hal-00818800
https://hal.science/hal-00818800v1

Submitted on 29 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The dial-a-ride problem with transfers
Renaud Masson, Fabien Lehuédé, Olivier Péton

To cite this version:
Renaud Masson, Fabien Lehuédé, Olivier Péton. The dial-a-ride problem with transfers. 2012. �hal-
00818800�

https://hal.science/hal-00818800v1
https://hal.archives-ouvertes.fr

The Dial–A–Ride Problem with Transfers

Research Report 12/7/AUTO

october 2012

Renaud Masson Fabien Lehuédé Olivier Péton

LUNAM Université, École des Mines de Nantes, IRCCyN
4 rue Alfred Kastler, 44300 Nantes, France

renaud.masson@emn.fr, fabien.lehuede@emn.fr, olivier.peton@emn.fr

Abstract

The Dial–A–Ride Problem with Transfers (DARPT) consists in defining a set of routes that
satisfy transportation requests of users between a set of pickup points and a set of delivery points,
in the presence of ride time constraints. Users may change vehicles during their trip. This change
of vehicle, called a transfer, is made at specific locations called transfer points. Solving the DARPT
involves modeling and algorithmic difficulties. In this paper we provide a solution method based on an
Adaptive Large Neighborhood Search (ALNS) metaheuristic and explain how to check the feasibility
of a request insertion. The method is evaluated on real-life and generated instances. Experiments
show that savings due to transfers can be up to 8% on real-life instances.

Keywords: Dial–a–Ride Problem, Transfers, Simple Temporal Problem, Large Neighborhood Search.

1 Introduction

The Dial–A–Ride Problem (DARP) consists in defining a set of minimum cost routes in order to satisfy
a set of transportation requests. Each request involves transporting a set of users from a set of origins,
called pickup points to a set of destinations, called delivery points. Users associated with distinct requests
can share the same vehicle as long as its capacity is not exceeded. In addition, a maximum ride time is
associated with each request. It corresponds to the maximum duration of the trip between the pickup
point and the delivery point. This paper addresses a generalization of the DARP in which users can be
transferred from one vehicle to another at intermediate points, called transfer points [1]. This problem is
called the Dial–A–Ride Problem with Transfers (DARPT). As the DARP is a special case of the DARPT
for which the set of transfer points is empty, the DARPT is NP-hard.

The DARP is a generalization of the Vehicle Routing Problem (VRP). It can be either static [2], when
each request is known in advance, or dynamic, when requests can be integrated at any time [3]. Since the
DARP deals with people transportation, specific requirements concerning the quality of service have to
be taken into account. The objective function to be optimized is application-dependent: the number of
vehicles used, total ride time, total distance, cost or service-related criteria [4]. In the remainder of this
article, we consider a static case problem in which the objective function is to minimize the total distance
traveled. Quality of service is enforced by defining appropriate maximum ride times for each user.

This study is motivated by a demand-responsive transport application for people with mental disabilities
traveling to and from their home to social centers, vocational rehabilitation centers or schools. These
persons are able to get onto or off vehicles without physical assistance, but due to their lack of autonomy,
they cannot use public transportation systems. They travel in dedicated vehicles whose use is very
costly. Some organizations, responsible for the transportation of people with disabilities, wish to pool
their transportation system in order to decrease costs. The objective is thus to design routes in order
to service the users of several centers at a reduced cost. In order to improve the use of the vehicles,
one method consists in concentrating several vehicles in predetermined locations, called transfer points,
where users are transferred from one vehicle to another.

In this article, we show that the introduction of transfer points may generate significant savings for
both real-life and generated instances of the DARP. We extend an Adaptive Large Neighborhood Search

1

(ALNS) previously designed for the Pickup and Delivery Problem with Transfers (PDPT) [5]. We also
integrate a preliminary study on feasibility algorithms for the DARPT [6]. Besides, when the operators
that introduce transfers are not used, the proposed ALNS competes with the state of the art algorithms
for the DARP.

The remainder of this article is organized as follows. First, we present a review of related works. Then,
we formally describe the DARPT and the reasons for studying this problem. Section 4 is devoted to the
description of the solution method. Section 5 focuses on the problem of checking whether a given set
of routes is feasible or not. More specifically, we discuss how the feasibility can be verified within the
solution method framework. Section 6 presents computational experiments, while the conclusion appears
in the last section.

2 Related works

As far as we know, the only known definition of the DARPT as it is considered in this article is given in
works [1, 6]. This section presents relevant studies concerning the DARP and the Pickup and Delivery
Problem with Transfers (PDPT), since these problems are related to the DARPT. The PDPT, which
is a special case of the DARPT without the maximum ride time constraints has been the subject of
little research. Some of these works concerning the PDPT come from dial–a–ride applications, where no
quality of service constraints or objective are considered.

Cordeau and Laporte [2] provide a litterature review about the DARP. The main heuristic methods
proposed for solving the DARP are the following: Cordeau and Laporte [7] develop a Tabu Search .
Parragh et al. [8] propose a Variable Neighborhood Search (VNS), whose results are competitive with
the Tabu Search of Cordeau and Laporte [7]. Jain and Van Hentenryck [9] develop a constraint-based
Large Neighborhood Search (LNS) to solve the DARP in limited time. Parragh and Schmid [10] integrate
column generation in a Large Neighborhood Search.

As for the VRPTW, feasibility checking in local search methods has to be efficiently enforced for the
DARP. The maximum ride time constraint complicates this task significantly and several algorithms
have been proposed on this subject [11, 12].

To the best of our knowledge, the first work considering the opportunity of transferring users in a dial–a–
ride application is that of Stein [13]. In this study, neither the capacity of vehicles nor the time windows
are taken into account. The objective is to minimize the completion time of all routes. The author
propose two heuristics for this problem. Shang and Cuff [14] present a heuristic for a PDPT in which
every vertex can be used to perform a transfer. In this work, the transfer operation can be viewed as a
recourse policy, as transfers are used only if the insertion of a request into the solution requires the use of
an additional vehicle. Tangiah et al. [15] adapt the heuristic of Shang and Cuff to a dynamic version of
the problem. Cortés and Jayakrishnan [16] develop a simulation for a demand-responsive transit system
that allows a single transfer per passenger, in order to evaluate the feasibility of such a system. Mues and
Pickl [17] present a heuristic column generation for a problem with a single transfer point. The algorithm
is evaluated on instances with up to 70 requests. Mitrović-Minić and Laporte [18] present a local search
for a PDPT with uncapacitated vehicles. Experiments are performed on instances using the Manhattan
distance. These instances consider up to 100 requests. Gørtz et al. [19] propose heuristics for a PDPT
with capacitated and uncapacitated vehicles. Their objective is to minimize the makespan. Petersen and
Ropke [20] present an ALNS for a pickup and delivery problem with a single transfer point, concerning
the transportation of flowers in Denmark. The algorithm is evaluated on real-life instances containing up
to 982 requests. Qu and Bard [21] propose a GRASP coupled with an ALNS. The algorithm is evaluated
on instances with up to 25 requests. Masson et al. [5] develop an ALNS for the PDPT. They present
competitive results on the instances of Mitrović-Minić and Laporte and on real-life instances with up to
193 requests.

Very few exact approaches have been proposed for the PDPT. Cortés et al. [22] introduce the first
mathematical formulation of it, which they use to solve instances with up to six requests using a Branch-
and-Cut algorithm. Kerivin et al. [23] present a mathematical formulation for a version of the problem
without time windows. In their formulation, the time is discretized and every vertex can be used to
perform a transfer. Instances with up to 15 requests are solved using a Branch-and-Cut algorithm in less
than five hours. Fugenschuh [24] works on a school bus problem where the routes are already designed
and need to be assigned to a minimum number of vehicles. Some passengers can be transferred from
one bus to another. Nakao and Nagamochi [25] present a lower bound for the cost of the solution of the
PDPT with no time window and a single transfer point. This lower bound depends on the value z(PDP)

2

of the optimal solution without transfers. If z(PDPT) denotes the optimal solution of the problem with

transfers and |R| the number of requests, then z(PDPT) > z(PDP)

6d
√
|R|e+1

. Masson et al. [26] develop a

Branch-and-Cut-and-Price for a special case of the PDPT, called the Pickup and Delivery Problem with
Shuttles routes, where the set of distinct delivery locations is limited. In this problem, a vehicle is not
allowed to visit more than two distinct delivery locations within its route. Real-life instances are used
for experimentations. Instances with up to 87 customers are solved to optimality in less than 1 hour.

3 The Dial–A–Ride Problem with Transfers

In this section, we discuss the reason for considering the use of transfers in a dial-a-ride applications
and we formally present the DARPT. The main motivation for transferring users is to achieve savings
through flow consolidation at transfer points. The example depicted in Figures 1 and 2 illustrates the
savings due to transfers. Figure 1 illustrates a solution without any transfer. Each pickup point (pi) and
the associated delivery point (di) are serviced by the same vehicle. Time windows are represented by
the intervals above each vertex. Figure 2 presents a solution where the requests (p2,d2) and (p4,d4) are
transferred at point τ . This solution is 20% cheaper than the solution with no transfer.

[0, 3] [2, 8] [2, 8] [15, 20] [16, 21] [17, 22]

[0, 3] [2, 8] [2, 8] [15, 20] [16, 21] [17, 22]

p1 d1p5 d5p4

d4

d2

p2p3 d3p6 d6

Figure 1: A solution without transfer (DARP)

[0, 3] [2, 8] [2, 8] [15, 20] [16, 21] [17, 22]

[0, 3] [2, 8] [2, 8] [15, 20] [16, 21] [17, 22]

p1 d1p5 d5p4

d4

d2

p2p3 d3p6 d6

[0, 20]

τ

Figure 2: A solution with transfer (DARPT)

3.1 Formulation of the DARPT

The DARPT can be formally described as follows. Let R be the set of requests, T the set of transfer
points and K the set of homogeneous vehicles of capacity Q. A request r ∈ R corresponds to the
transportation of qr passengers from a pickup point pr to a delivery point dr. The sets of all pickup and
delivery points are denoted P and D respectively. Each vehicle performs a single route. The starting
and ending depots of vehicle k ∈ K are designated by ok and o′k. The set of all starting (resp ending)
depot locations is denoted O (resp. O′). The duration of a route cannot exceed L. The DARPT is
defined on a complete directed graph G = (V,A) where V = P ∪D ∪O ∪O′ ∪ T is the set of all vertices
and A = {(i, j)|i, j ∈ V, i 6= j} is the set of all arcs. A non-negative travel time θi,j and a travel cost ci,j
are associated with each arc (i, j) ∈ A. A time window [ei, li] is associated with each vertex vi ∈ V ,

3

where ei and li represent the earliest and the latest times at which service can begin at vertex i. Each
vertex i ∈ P ∪D ∪ T has a known service duration si, modeling the time needed to get users onto or off
vehicle. The number of users carried simultaneously by a vehicle cannot exceed its capacity Q. A vehicle
is allowed to wait at a vertex in order to service it within its time window. Each request r ∈ R has a
maximum ride time L̄r which is the maximum time allowed between the end of service at pr and the
beginning of service at dr. If two requests have a common pickup or delivery location, the corresponding
vertex is duplicated. According to this modeling, pickup and delivery vertices are associated with exactly
one request.

A solution of the DARPT is a set of |K| routes serving all requests and such that each vehicle k ∈ K
starts at ok and ends at o′k. For every request i ∈ R, vertices pi and di can be served by the same route,
provided that pi is served before di. Vertices pi and di can also be served by distinct routes k1 ∈ K and
k2 ∈ K. In this case, k1 and k2 have to service a common transfer point τ ∈ T , such that pi is serviced
before τ in k1 and τ is serviced before di in k2. Moreover the service time of τ in k2 must occur after its
service time in k1, plus the duration of the transfer operation.

The mathematical formulation of Cortés et al. [22] for the PDPT can be extended to the DARPT by
adding maximum ride time and maximum route time constraints. However, since this model contains 31
sets of constraints, we do not report it here.

3.2 Modeling transfer points

To keep track of the path followed by transferred requests, transfer points are duplicated as follows: for
each request i ∈ R transferred from route k1 ∈ K to route k2 ∈ K at transfer point τ ∈ T , τ is duplicated
in an inbound transfer vertex t−τ,i and an outbound transfer vertex t+τ,i. The inbound transfer point t−τ,i
represents the unloading of request i at transfer point τ , while t+τ,i models the reloading of request i at
transfer point τ . This model is described in Figure 3, where the left part illustrates the service to the
physical locations and the right part shows the vertices used in the model.

Physical flow of a transfer operation Corresponding graph representation

p3 p1 d2 d3

τ

p4 p2 d1 d4

p3

p4

p1 d2 d3

d4

t−τ,1 t+τ,2

t−τ,2 t+τ,1p2 d1

Figure 3: Modeling of transfer operations

4 An Adaptive Large Neighborhood Search

In this section, we describe the ALNS used to solve the DARPT. The ALNS extends the Large Neighbor-
hood Search (LNS) introduced by Shaw [27] in a constraint programming framework to solve the Vehicle
Routing Problem with Time Windows (VRPTW). The reader interested in an extensive description of
the LNS and its application to combinatorial problems is referred to the review by Pisinger and Ropke
[28].

The ALNS includes an adaptive layer which enables some parameters to be automatically adjusted
according to the performance of the heuristic in the last iterations. It was introduced by Pisinger and
Ropke to solve a large variety of vehicle routing problems [29] including the Pickup and Delivery Problem
with Time Windows [30]. It has been proven efficient for solving the PDPT [5].

4.1 Main scheme of the ALNS

The underlying principle of the ALNS is to destroy and repair a solution iteratively in order to improve
it. To do so the ALNS relies on heuristic operators which aim to either destroy (removing requests from

4

Algorithm 1 ALNS

Require: InitialSolution
1: BestSolution← InitialSolution
2: CurrentSolution← InitialSolution
3: while the termination criterion is not satisfied do
4: Selection of a Destroy and a Repair operator according to past performances
5: S ← CurrentSolution
6: S ← Destroy(S)
7: S ← Repair(S)
8: if S ≺ BestSolution then
9: BestSolution← S

10: CurrentSolution← S
11: else
12: if AcceptationCriterion(S,CurrentSolution) then
13: CurrentSolution← S
14: end if
15: end if
16: end while
17: return BestSolution

routes) or repairing (reinserting requests) the solution. The general functioning of the ALNS is depicted
in Algorithm 1.

The algorithm starts from an initial solution. At each iteration a pair of destroy and repair operators
are selected from a pool of operators in order to create a new solution by modifying the current solution
(line 4). The solution is destroyed by removing some of its requests (line 6). The repair step consists
in reinserting the destroyed requests (line 7). When the resulting solution is worse than the current
solution, an acceptation criterion similar to that of simulated annealing or record-to-record travel, can
be used to determine whether the new solution should replace the current solution (lines 12–13). In
our implementation, we use simulated annealing as an acceptation criterion. In the end, the algorithm
returns the best solution encountered during the search (line 17).

The destroy and repair operators are selected with a roulette wheel selection principle: a weight is
calculated for each operator and the roulette wheel selects each operator with a probability that is
proportional to its weight. A weight is calculated with rules similar to those described in [30]. In the
beginning of the algorithm, all operators have identical weights. Then, for each segment of 100 iterations,
each operator is evaluated with a score, initialized to 0 and updated as follows:

1. New best solution: each time the use of an operator results in a new best known solution, its
score is increased by 33.

2. New improving solution: each time the use of an operator results in a new solution which
improves the current one, its score is increased by 20.

3. New accepted solution: each time the use of an operator results in a new solution which cost is
worse than the current solution, but accepted by the acceptation criterion, its score is updated by
15.

Operators weights are updated every 100 iterations, as an exponential smoothing of the score with a
smoothing factor of 0.1.

4.2 Destroy operators

Our implementation of the ALNS uses six distinct destroy operators. These operators destroy the solution
by removing requests from routes. We mainly describe the operators that are dedicated to problems with
transfers. Those arising from other papers about the pickup and delivery problem are briefly enumerated
and commented on.

5

4.2.1 Destroy operators dedicated to transfers

The objective of the following operators is to remove either transferred requests from the solution or
requests that would benefit from a reinsertion with transfer. These operators were initially introduced to
solve the PDPT [5].

• Transfer point removal : this operator simultaneously removes requests that use a given transfer
point. The underlying idea is to give them a chance to be rerouted through another transfer point
or with no transfer.

• Pickup/Delivery cluster removal : this operator aims to remove a set of requests that would be
efficiently routed through a common transfer point. A set of requests may benefit from using a
common transfer point if their pickup (or their delivery) points form a cluster. If the pickup points
of a set of requests are close enough, they can be serviced together by a common vehicle and then
carried to a transfer point where they are spread among distinct vehicles.

• History removal : this operator is adapted from the two history removal heuristics proposed by
Pisinger and Ropke [29]. Its objective is to remove requests that do not seem well placed in the
current solution with regard to their position in the best known solutions encountered during the
search. We denote ρ(i) and σ(i) the predecessor and the successor of a vertex i within its route.
For each vertex j ∈ V and j′ ∈ V , we evaluate ξj,j′ the number of times in the 50 best solutions
that σ(j) = j′. A score φr is associated with each request r ∈ R. It is calculated as follows:

– if request r is not transferred, φr = ξρ(pr),pr + ξpr,σ(pr) + ξρ(dr),dr + ξdr,σ(dr) ;

– if request r is transferred at point τ ∈ T , φr = 1
2 (ξρ(t−τ,r),t−τ,r

+ ξt−τ,r,σ(t−τ,r) + ξρ(t+τ,r),t+τ,r
+

ξt+τ,r,σ(t+τ,r) + ξρ(pr),pr + ξpr,σ(pr) + ξρ(dr),dr + ξdr,σ(dr)).

4.2.2 General destroy operators

We implemented the following general purpose destroy operators which are common operators for the
LNS and ALNS algorithms. A good description of these heuristics can be found e.g. in [30] in the case
of the Pickup and Delivery Problem with Time Windows.

• Worst removal : this operator iteratively removes requests that cause the biggest detour in the
current solution.

• Random removal : this operator randomly selects the requests to be removed among the planned
requests.

• Related removal (or Shaw removal): this operator aims to remove requests that are alike, so that
their positions of service can somehow be interchanged.

4.3 Repair operators

The destroy operators result in a partial solution and a list of unplanned requests (also called a request
bank). The purpose of repair operators is to reinsert the unplanned requests into the partial solution. We
use two categories of operators: those which consider the possibility of using transfer points and those
which do not resort to transfer points.

4.3.1 Repair operators with transfers

• Best insertion with transfer : This operator is an adaptation of the operator of Mitrović-Minić and
Laporte [18] for the PDPT. For each unplanned request the best insertion without considering any
transfer opportunity is first evaluated. Then for each transfer point τ and each unplanned request
(pi, di), we evaluate the insertion cost as follows:

(i) the insertion cost of the pair (pi, τ) is evaluated and considered as inserted at its best position.
Then, an evaluation of the insertion cost of the pair (τ, di) is carried out.

(ii) the insertion cost of the pair (τ, di) is evaluated and considered as inserted at its best position.
Then, an evaluation of the insertion cost of the pair (pi, τ) is carried out for every route.

6

Finally, the best insertion among all evaluated insertions is performed.

• Transfer first :

The Transfer first neighborhood gives priority to the use of transfer points. As long as unplanned
requests remain, best insertions with transfers are performed. If no feasible insertion with transfer
can be found, the best insertion without transfer is then considered. When all requests have been
inserted, a post-processing step consists in iteratively removing each transferred request and trying
to reinsert it without transfer. This step aims to detect forced transfers that reduce the quality of
the current solution.

• Regret insertion with transfer : This heuristic facilitates the insertion of requests for which using a
transfer point is cheaper than insertion without transfer. For each destroyed request we compute
the difference between the insertion cost of this request using a transfer point and the best insertion
cost without transferring the request. The request with the largest difference is inserted first at its
best position.

4.3.2 General repair operators

The following operators are those for the PDPTW, from various papers, which insert requests without
transfers.

• Best insertion: At each iteration, the best insertion cost is computed for each unplanned request
and the request with the lowest insertion cost is inserted at its best position. The heuristic stops
when all requests are routed or none can be inserted anymore [30].

• Regret heuristic: This heuristic is based on the notion of regret, used for example by Potvin and
Rousseau [31] for the Vehicle Routing Problem with Time Windows (VRPTW), and extended by
Ropke and Pisinger [30]. Let U be the set of unplanned requests and, for each request i ∈ U , let ∆f ji
be the insertion cost of i in the jth best route at the best position. At each iteration, the request i?

selected for insertion at its best position is chosen such that i? = arg max
i∈U

(
k∑
j=2

∆f ji −∆f1
i

)
. The

heuristic stops when U is empty or no request can be inserted anymore. In our implementation, we
consider regret-k heuristics with values of k between 2 and 5.

5 Feasibility of a set of routes

A solution of the DARPT is feasible if it respects the capacity constraints as well as the temporal
constraints of the problem. Since the way the capacity constraints are handled in the DARPT does not
differ from the PDPTW, this issue is not discussed in this section. We highlight the feasibility check of
a solution with regard to the temporal constraints. A solution of a Vehicle Routing Problem is feasible
if and only if each route of the solution is feasible. Concerning the DARP, Cordeau and Laporte [7]
proposed an algorithm to determine the feasibility of a route in O(n2), where n is the number of vertices
in the route. However, in the DARPT, the routes are connected through transfer points. The need
for synchronization at transfer points leads to an interdependence problem [32], so that checking the
feasibility of the routes independently of each other is no longer possible.

In this section, we show that checking whether a solution of the DARPT satisfies the temporal constraints
of the problem can be modeled as a Simple Temporal Problem (STP), which is a special case of the
Temporal Constraint Satisfaction Problem (TCSP) [33]. Then we discuss how to solve this feasibility
problem and, more specifically, how to check whether the insertion of a request in a feasible solution
produces a feasible solution. Millions of feasibility checks are performed during the execution of the
ALNS so this check has to be as efficient as possible. As a result, we have developed sufficient conditions
and necessary conditions to accelerate the detection of feasible or infeasible solutions.

5.1 Formulation of the feasibility problem

The difficulty induced by transfers lies in the introduction of generalized precedence constraints between
vertices that are serviced by different routes. The consequence is that a modification in a given route can

7

impact the feasibility of another route. This is illustrated in Figure 4: an insertion of a vertex before p1

may delay the service at d3, which can lead to a violation of the maximum ride time constraint of request
3. Therefore, a modification of a route can impact the feasibility of another route.

p2 d2

d1

p1 t−τ,1

t+τ,1 d3p3

Figure 4: Illustration of the interdependence between routes

The set of service times at each vertex in a solution is called the schedule of the solution and denoted
H. Let us denote Hi the service time at vertex i ∈ V . The set of requests transferred at transfer point
τ ∈ T is represented by Rτ . Let us define the route feasibility problem (FP), which consists in finding
feasible dates Hi. (FP) is defined by the system (1)–(6):

Hσ(i) ≥ Hi + si + θi,σ(i), ∀i ∈ V \O′ (1)

Ht+τ,r
≥ Ht−τ,r

+ st−τ,r , ∀τ ∈ T, r ∈ Rτ (2)

ei ≤ Hi ≤ li, ∀i ∈ V (3)

Hdr − (Hpr + spr) ≤ L̄r, ∀r ∈ R (4)

Ho′k
−Hok ≤ L, ∀k ∈ K (5)

Hi ≥ 0, ∀i ∈ V. (6)

Constraints (1) establish that the service time at the successors of i ∈ V \O′ is greater than or equal
to the service time at vertex i, plus the service duration si and the traveling time between these two
vertices. Constraints (2) ensure the precedence between the service time at the inbound and outbound
transfer vertices. Constraints (3) guarantee that vertices should be served within their time windows.
Constraints (4) and (5) model the maximum ride time and maximum route time constraints respectively.

The problem (FP) can be modeled as a special case of the TCSP, the Simple Temporal Problem. The
TCSP considers a set of variables Xi with continuous domains. Each variable represents a time moment.
Every constraint l of the TCSP is represented as a set of continuous intervals [al, bl]. Two kinds of
constraints are considered: unary constraints (a1 ≤ Xi ≤ b1) ∨ · · · ∨ (an ≤ Xi ≤ bn) and binary
constraints (a1 ≤ Xi −Xj ≤ b1) ∨ · · · ∨ (an ≤ Xi −Xj ≤ bn). In the STP, each constraint is represented
by a single interval. A dummy variable X0 is introduced to represent the beginning of the planning
horizon (X0 = 0). Therefore every constraint of the STP can be represented as a binary constraint. Let
V ′ designate the set of variables and A′ the set of constraints. The STP can be formulated by equations
(7)–(9):

Xj −Xi ≤ δi,j ∀(i, j) ∈ A′ (7)

Xi ≥ 0 ∀i ∈ J (8)

X0 = 0 (9)

Let us introduce vertex 0 representing the beginning of the planning horizon, and problem (FP’) defined

8

by equations (10)–(17):

Hi −Hσ(i) ≤ −si − θi,σ(i), ∀i ∈ V \O′ (10)

Ht−τ,r
−Ht+τ,r

≤ −st−τ,r , ∀r ∈ Rτ (11)

H0 −Hi ≤ −ei, ∀i ∈ V (12)

Hi −H0 ≤ li, ∀i ∈ V (13)

Hdr −Hpr ≤ L̄r − spr , ∀r ∈ R (14)

Ho′k
−Hok ≤ L, ∀k ∈ K (15)

Hi ≥ 0, ∀i ∈ V. (16)

H0 = 0, ∀i ∈ V. (17)

Constraints (10) and (11) are equivalent to constraints (1) and (2). Constraints (12) imply that the
service at vertex i ∈ V cannot start before the beginning of its time window (recall that H0 is 0).
Symmetrically, constraints (13) state that the service at vertex i ∈ V cannot start after the end of its
time window. Therefore constraints (12) and (13) are equivalent to constraints (3). Constraints (14) and
(15) are equivalent to constraints (4) and (5). As a matter of fact, (FP’) is a simple temporal problem
which models the same feasibility problem as (FP).

5.2 Solving the feasibility problem

Evaluating route feasibility for the DARPT is equivalent to proving the consistency of the corresponding
STP. The STP can be represented by a directed graph G′ = (V ′, A′) – called a distance graph – in which
each vertex represents a time variable and each arc represents a constraint between two variables. An
arc from a vertex xi ∈ V ′ to a vertex xj ∈ V ′ has a weight δi,j . Figure 5 shows such a graph. For the
sake of readability, only a small number of the constraints are represented.

p1 t−τ,1 p2 d2

p3 t+τ,1 d3 d1

0

−θ
p1,t
−
τ,1

− sp1 −θ
t−τ,1,p2

− s
t−τ,1

−θp2,d2 − sp2

−θ
p3,t

+
τ,1

− sp3 −θ
t+τ,1,d3

− st+ −θd3,d1 − sd3

−s
t−τ,1

−ep1

L̄3

lp3

Figure 5: a STP distance graph

In this figure, each kind of constraint is represented by a distinct arc format. Dotted arcs represent max-
imum ride time constraints. Dashed arcs are time window constraints. Plain arcs represent precedence
constraints An instance of the STP is consistent if and only if its corresponding distance graph has no
circuit with a negative length. Such a circuit is also called an infeasible loop [34] and corresponds to an
inconsistent set of constraints.

Several algorithms have been developed to search for negative length circuits in graphs. Cherkassky et
al. [35] detailed some of them, but their experimental comparisons did not lead to a clear conclusion
that one is better than another. We have selected the BFCT algorithm [36], which is a variation of the
Bellman-Ford algorithm. It takes graph G′ as an input and indicates if the graph contains a negative
length circuit or not. If no negative length circuit is found, it provides an as late as possible schedule.
The complexity of this algorithm is O(|V ′||A′|). In the ALNS, BFCT is called to evaluate each insertion
position for each unrouted request in routes with transfers. This operation is likely to be performed

9

millions of times during the execution of the algorithm, which may result in a large amount of CPU time
spent on this procedure.

In order to reduce the number of calls to the BFCT algorithm, we present a set of necessary and sufficient
conditions. The goal of these is to help determine the feasibility of an insertion without resorting to the
use of the BFCT algorithm. Necessary conditions are used to identify unfeasible insertions efficiently.
Sufficient conditions establish the feasibility of a route efficiently. Eventually, if none of these conditions
can prove that a solution is feasible or not, the BFCT algorithm will be used. In the remainder of this
section, the candidate vertices designate the pair of vertices that compose the request for which insertion
is evaluated.

5.2.1 Necessary conditions

In order to identify infeasible insertions in a feasible partial solution, we propose two necessary conditions.
In the first one, we relax the maximum ride time and maximum route time constraints and check that
the time windows constraints can be respected. In the second, we relax the precedence constraints at the
transfer points, and verify that each route can meet its time constraints.

NC1: Relaxation as a PDPT: The first necessary condition (NC1) is based on the relaxation of the
ride time and route duration constraints. It has been shown for the PDPT that time window violations
can be identified in constant time, provided a pre-processing step of worst case complexity O(|Vs|2) is
performed after each actual insertion in a partial solution s (where Vs is the set of vertices in the partial
solution s) [5]. To strengthen this necessary condition, time windows can be tightened according to the
following result [33]. Let λi,j be the length of the shortest path between two vertices i ∈ V ′ and j ∈ V ′
in the distance graph G′ of a consistent instance of the STP. The set of feasible values for Hi is then
[−λi,0, λ0,i]. The insertion heuristic starts from a feasible partial solution s, which is associated with a
consistent instance of the STP. In addition, if s has been proven feasible by the BFCT algorithm, λi,0
and λ0,i have been calculated for all i in Vs. It is also easy to show that inserting a vertex in a route
can only lengthen the shortest paths in G (because travel times satisfy the triangular inequality). As a
result, the tightened time window [−λi,0, λ0,i] that can be deduced from s should be satisfied after any
request insertion into s. In order to be able to use these tightened time windows, we compute the λi,0
and λ0,i for all i ∈ V ′ after each modification (insertion or removal of a request) of the solution. The
complexity of the computation of λi,0 and λ0,i for all i ∈ V ′ is O(|V ′|2).

NC2: Relaxation as a DARP: The second necessary condition is based on the relaxation of con-
straints (2), which connect routes at transfer points. For each transfer point τ ∈ T and each request
(pi, di) transferred at τ , (pi, di) is split into two requests (pi, τ) and (τ, di). The maximum ride times of
these requests can be computed as follows: let γpi be the ride time minus waiting times between pi and
τ in the current solution, the maximum ride time of (τ ,di) is set to L̄i−γpi . Applying the same principle
to the ride time γdi between τ and di, request (pi,τ) is given a maximum ride time of L̄i − γdi . Routes
for which transferred requests are split can be scheduled independently using the feasibility algorithm of
Cordeau and Laporte [7] for the DARP.

Definition 1 The route feasibility problem in which all transferred requests have been split is called the
“split route feasibility problem”. Let us denote (SFP) the “split route feasibility problem” associated with
the feasibility problem (FP).

Proposition 1 Let (FP) be a route feasibility problem for the DARPT. If (SFP) is not consistent then
(FP) is not consistent.

Proof: Let us consider a transferred request i and its two associated split requests i′ and i′′. γi′′

designates the actual ride time minus the waiting times between the pickup and delivery vertices of
i′′. If the split request i′ is not ride time-consistent (does not satisfy the ride time constraints) in the
schedule produced by the algorithm of Cordeau and Laporte [7], then Hdi− (Hpi +spi) > L̄i′+γi′′ . Since
L̄i′ = L̄i − γi′′ , this is equivalent to Hdi − (Hpi + spi) > L̄i. Hence request i is not ride time-consistent
in any schedule. Similarly, we can show that if i′′ is not ride time-consistent, then i cannot be ride
time-consistent. Therefore if (SFP) is not consistent, (FP) is not consistent. �

Of course, time windows can be tightened in (SFP) as proposed in NC1. If no inconsistency is found, a
feasible schedule for this solution may exist. In this case, sufficient feasibility conditions can be established

10

to identify feasible solutions quickly. The complexity of checking the necessary condition NC2 is O(n2),
where n designates the number of vertices in the route into which the insertion is performed.

5.2.2 Sufficient conditions

The sufficient conditions aims to identify that a given insertion is feasible. The first sufficient condition
evaluates whether the insertion modifies the service time of vertices already inserted in the solution, while
the second condition determines if the solution service time modifications provided by NC2 for the DARP
relaxation are valid for the DARPT.

SC1: Heuristic constant time rescheduling: Let s be a consistent partial solution and let us denote
λsi,0 the length of the shortest path between i and 0 in the distance graph induced by s. According to
[33], a consistent schedule Hs for s is given by Hs

i = −λsi,0 for all vertices i ∈ Vs. Let j be an unrouted
request made up of vertices pj and dj , and let s′ be the solution resulting from an insertion of j into a
partial solution s which satisfies NC1.

Proposition 2 Let s′ be a solution resulting from the insertion of request j into a partial solution s to
the DAPRT. s′ is consistent if:

1. ∀i ∈ Vs, Hs′

i = −λsi,0,

2. Hs′

pj ∈ [epj , lpj],

3. Hs′

dj
∈ [edj , ldj],

4. j is ride time-consistent in s’.

This is a very straightforward result, but it does not show how to check that inserting a request at a
given position has no impact on the current schedule. Proposition 3 presents equivalent conditions that
can be checked in constant time.

Proposition 3 s′ is consistent if:

1. Hs′

dj
= max(edj ,−λsρ(dj),0 + sρ(dj) + θρ(dj),dj),

2. Hs′

pj = max(epj ,−λsρ(pj),0 + sρ(pj) + θρ(pj),pj , H
s′

dj
− L̄j − spj)

3. Hs′

pj + spj + θpj ,σ(pj) ≤ −λsσ(pj),0
,

4. Hs′

dj
+ sdj + θdj ,σ(dj) ≤ −λsσ(dj),0

.

A similar result can be established if one vertex of request j is a transfer point.

SC2: DARP solution feasibility: This second sufficient feasibility condition is based on the schedule
obtained after applying the route scheduling algorithm of Cordeau and Laporte to the split route feasibility
problem during the evaluation of NC2. By definition, if NC2 is satisfied, requests that are not transferred
in this route are ride time-consistent and satisfy their time window. Split requests also satisfy their time
window but should be proven ride time-consistent. In addition, at transfer points, the delivery operation
should occur before the pickup. A sufficient condition is obtained if the (SFP) schedule provides consistent
times for these requests.

Proposition 4 Let s be a solution that satisfies NC2 and let H be the (SFP) schedule established by the
route scheduling algorithm of Cordeau and Laporte during NC2 evaluation. For all split requests j ∈ Vs,
we denote pj, t

−
τ,j, t

+
τ,j, dj the pickup, inbound, outbound and delivery vertices of j in this solution. A

solution s is consistent if for all split requests j ∈ s:

1. Hdj − (Hpj + spj) ≤ L̄j,

2. Ht+τ,j
≥ Ht−τ,j

+ st−τ,j
.

The conditions of Proposition 4 can be checked for each split request in constant time.

11

5.2.3 Applying necessary and sufficient conditions

The way of sequencing calls to necessary conditions NC1 and NC2 and sufficient conditions SC1 and
SC2 plays an important role in the efficiency of the algorithm. Sufficient condition SC1 is used after
NC1, and SC2 uses the schedule produced by the Cordeau and Laporte route scheduling algorithm
during NC2 evaluation. Therefore, when both necessary conditions and sufficient conditions are used,
each sufficient condition is called after its associated necessary condition. Since conditions NC1 and
SC1 can be verified in constant time, it is advisable to call them before NC2 and SC2 which have a
complexity of O(n2) (n is the number of vertices in the route). The BFCT algorithm is called only
when all necessary conditions and none of the sufficient conditions are satisfied. The sequence of calls to
necessary and sufficient conditions is depicted in Figure 6.

NC1? SC1? NC2? SC2? STP?

Insertion FeasibleInsertion Infeasible

Yes

No

No

Yes

Yes

No

No

Yes

No Yes

Figure 6: Sequencing of the necessary conditions and sufficient conditions

6 Computational experiments

The algorithm described in this article was developed in C++ and the experiments were run on an i3-530
computer operated by Ubuntu 10.04. First, we tried to evaluate the speed up due to the use of the
necessary conditions and the sufficient conditions on some real-life instances. Then, we compared the
solution method described in this paper to state of the art solution methods for the DARP (which is
a special case of the DARPT). Finally, we evaluated the potential savings due to transfers on a set of
real-life instances as well as instances from the literature.

6.1 Instances

The proposed LNS was evaluated on a set of 10 real-life instances arising from distinct sources: specialized
centers for disabled children, vocational rehabilitation centers for adults and schools receiving both able-
bodied and disabled children. In the first two sources, each delivery location is a common destination
for dozens of requests. The instances considered correspond to a few centers which wish to pool the
organization of their transport. In the following, the names of these instances start with “Centers”.
In the case of the transportation of disabled schoolchildren, each school is the destination for a small
number of people. Thus, the instances generally include all the schools of a given geographical area,
possibly several dozen. The names of these instances start with “Schools”.

The instances considered include between 55 and 193 requests. Without loss of generality, we only
consider outbound trips from home to the centers. Thus, the pickup points are the personal addresses
of the people and the delivery points and transfer points are the centers or schools. All requests have
distinct pickup points and correspond to individual demands (qi = 1). The number of delivery points is
comprised between 2 and 5 for specialized schools or vocational rehabilitation centers and between 13 and
33 for all other schools. Instances are named “category-|P |-|D|” such that the number of requests and
delivery locations is reflected in their name. For example, instance Centers-193-5 is of the type “Centers”
and consists of 193 requests and 5 delivery locations.

The delivery points may have different opening hours. The time window [ei, li] for vehicle arrival is
defined such that li corresponds to the beginning of the daily activity. The time window opening ei is
set at 15 to 30 minutes prior to li, depending on the center. We assume that the vehicles start from a
dummy location located at distance 0 from every pickup location. The traveling time matrices between
locations are asymmetric and satisfy the triangle inequality. The maximum ride time is set at 45 minutes.

12

6.2 Efficiency of the necessary conditions and the sufficient conditions

In order to evaluate the impact of the necessary conditions and the sufficient conditions, three config-
urations of the method were run on the real-life instances for 1000 iterations of the ALNS. In the first
configuration – called “STP” – an STP is solved with the BFCT algorithm each time one wants to
evaluate whether an insertion is feasible. In the second configuration – called “NC1 + NC2” – only the
necessary conditions are used before resorting to the STP. In the third configuration – called “All” – all
necessary conditions and the sufficient conditions are used as presented in Figure 6. For equity reasons,
all configurations evaluate exactly the same sequence of requests insertions. The results are presented
in Table 1. The first column of the table indicates the instance name. The columns 2 to 4 report the
time needed by the three configurations to perform 1000 iterations. Finally the last column reports
the percentage of feasible insertions among the evaluated insertions. Note that some trivially infeasible
insertions are not evaluated (e.g. if ei + si + θi,j > lj the insertion of vertex j in any position located
after vertex i in a route is not evaluated). Center instances have much fewer feasible insertions because,
on average, people live further from their delivery point and the maximum ride time constraint is more
binding.

Instances
Computation time (in s) % of feasible

STP NC1 + NC2 All insertions
Center-81-2 429 106 83 1.3%
Center-84-2 142 62 58 2.8%
Center-87-2 320 132 98 2.4%
Center-109-2 1981 247 187 1.1%
Center-193-5 15249 1028 900 1.2%
School-55-16 51 52 52 53.0%
School-66-13 61 61 59 39.8%
School-84-21 127 120 118 31.9%
School-84-33 201 165 162 23.1%
School-106-24 232 195 189 20.7%
Center 18121 1575 1326 1.3%
School 672 593 580 25.7%
All 18793 2168 1906 2.0%

Table 1: Impact of the necessary conditions and sufficient conditions on the solving time

The speed-up factor due to the necessary conditions and sufficient conditions varies a great deal from
one instance category to another. For the School instances, where the percentage of feasible insertions
is very high, the speed-up is almost negligible. However, for the biggest Center instances, the speed-up
factor can reach 10 or 15. For these Center instances, most of the speed-up is provided by the necessary
conditions.

Table 2 reports the failure rates of the necessary conditions and the sufficient conditions. It is considered
that a necessary condition fails when it does not detect infeasible insertions. Symmetrically, a sufficient
condition fails when it does not detect a feasible insertion. The first column is the instance name. The
next columns present the failure percentage of each category of conditions.

Instances NC1 NC2 SC1 SC2
Center-81-2 17.2% 2.1% 95.6% 61.1%
Center-84-2 41.1% 1.2% 95.9% 42.0%
Center-87-2 21.3% 2.6% 97.1% 57.5%
Center-109-2 12.9% 1.3% 94.5% 52.4%
Center-193-5 6.8% 0.5% 96.0% 46.9%
School-55-16 41.5% 0.8% 94.1% 24.4%
School-66-13 35.1% 2.4% 92.1% 28.9%
School-84-21 21.7% 1.1% 94.3% 30.6%
School-84-33 13.7% 1.0% 96.4% 33.8%
School-106-24 19.5% 0.7% 94.9% 32.8%

Table 2: Percentage of failure of the necessary conditions and sufficient conditions

In the worst case, the DARP relaxation (NC2) has a failure rate of 2.6%, while the PDPT relaxation

13

(NC1) has a failure rate of 41.5%. The average failure rate of NC1 is 23.1%. However, the sufficient
conditions do not exhibit such low failure rates. In the best case, the failure rate of SC1 is 92.1%, while
failure rates of SC2 ranges from 24.4% to 61.1%. These results are not very surprising since sufficient
conditions only perform well for small modifications of the current solution. On the other hand, the
necessary conditions only relax a few constraints, which explains why they are able to detect most of the
infeasibilities. For the instances with a very low percentage of feasible insertions, improving the sufficient
conditions would have only a marginal effect. However, for instances such as the School instances, where
the percentage of feasible insertions ranges from 20 to 50%, improving the sufficient conditions would
improve the method.

6.3 Evaluation on instances of the Dial–A–Ride Problem

There are no available benchmark instances for the DARPT. The closest optimization problem is the
DARP, which is a special case of the DARPT with T = ∅. Thus, we solved the instances of Cordeau
and Laporte for the DARP [7] with our implementation of the ALNS and compared its performance with
algorithms solving the DARP.

6.3.1 Evaluation after five minutes of computation

First, we present the results obtained by our ALNS after five minutes of computation and compare them
with the LNS-FFPA algorithm of Jain and Van Hentenryck [9] and the Hybrid LNS of Parragh and
Schmid [10]. Each instance was run five times. The results are reported in Table 3. Columns 1 to
3 represent the name of the instance, the number of vehicles and the number of requests, respectively.
Columns 4 and 5 are the average results and the relative difference between the best known results and the
average solution of the algorithm LNS-FFPA algorithm. Columns 6 and 7 report the same informations
for the Hybrid LNS. Finally, these results are reported for our implementation of the ALNS in columns
8 and 9.

Instance LNS-FFPA [9] H-LNS [10] ALNS

Name |K| |R| Avg. ∆BKS Avg. ∆BKS Avg. ∆BKS

R1a 3 24 190.77 0.39% 190.02 0.00% 190.02 0.00%
R2a 5 48 304.45 1.03% 303.63 0.76% 301.98 0.21%
R3a 7 72 547.15 2.85% 536.77 0.90% 536.74 0.89%
R4a 9 96 595.05 4.35% 581.41 1.96% 588.37 3.18%
R5a 11 120 662.56 5.56% 643.72 2.56% 655.02 4.36%
R6a 13 144 832.74 6.05% 837.01 6.59% 824.21 4.96%
R7a 4 36 292.86 0.39% 291.93 0.08% 291.71 0.00%
R8a 6 72 505.15 3.23% 498.44 1.86% 500.30 2.24%
R9a 8 108 711.6 7.84% 697.22 5.66% 691.45 4.79%
R10a 10 144 911.18 6.55% 908.12 6.19% 903.35 5.64%

R1b 3 24 164.46 0.00% 164.46 0.00% 164.46 0.00%
R2b 5 48 301.67 2.03% 297.99 0.79% 300.58 1.66%
R3b 7 72 504.69 4.10% 495.02 2.10% 499.26 2.98%
R4b 9 96 566.48 7.02% 540.76 2.16% 554.96 4.84%
R5b 11 120 610.33 5.60% 607.17 5.05% 604.28 4.55%
R6b 13 144 785.13 6.43% 772.21 4.68% 780.71 5.83%
R7b 4 36 248.31 0.04% 248.21 0.00% 248.21 0.00%
R8b 6 72 477.75 3.55% 473.19 2.56% 472.35 2.38%
R9b 8 108 633.51 6.75% 620.39 4.54% 617.22 4.00%
R10b 10 144 857.95 8.16% 874.36 10.23% 844.48 6.46%

Avg. 535.19 5.05% 529.10 3.86% 528.48 3.74%

Table 3: Results with limited running time

The ALNS finds better average results in 13 out of 20 instances. The relative gap between the best known
solutions and the average cost found by the ALNS is 3.74% on average. The gap with the best solutions
found by the ALNS is even below 2% on average.

14

6.3.2 Evaluation after 50000 iterations of the ALNS

In this experiment, the number of iterations performed by the ALNS was set at 50000. We compared
the results of the ALNS with those of the VNS of Parragh et al. [8] and of the H-LNS of Parragh and
Schmid [10]. Table 4 presents the results. Columns 2 to 4 report the solution with the minimum cost,
average cost and average run time (in minutes) of the VNS of Parragh et al. [8]. Columns 5 to 7 report
the same information for the Hybrid LNS [10]. Columns 8 to 10 concern our ALNS. Column 11 reports
the value of the best known solution for each instance.

Instances VNS [8] H-LNS [10] ALNS BKS [10]
Min. Avg. CPU Min. Avg. CPU Min. Avg. CPU

R1a 190.02 190.02 5.18 190.02 190.02 0.54 190.02 190.02 2.09 190.02
R2a 301.34 301.78 12.06 301.34 302.53 2.76 301.34 301.72 6.06 301.34
R3a 533.01 536.08 19.31 535.28 538.21 5.11 532.00 533.55 13.17 532
R4a 573.92 578.21 24.13 571.09 576.26 16.29 573.47 579.54 30.47 570.25
R5a 636.77 637.72 87.69 629.52 637.59 26.70 631.40 636.14 44.00 627.68
R6a 802.12 809.27 94.10 788.88 800.35 48.48 791.35 797.92 64.96 785.26
R7a 291.71 294.26 5.09 291.71 292.56 1.02 291.71 292.56 3.45 291.71
R8a 490.58 495.7 44.29 491.93 495.2 5.92 491.02 496.01 14.76 489.33
R9a 666.96 673.18 103.97 661.47 676.09 24.89 663.52 669.42 34.43 659.85
R10a 866.97 873.15 211.29 872.31 878.93 47.17 862.25 866.24 67.75 855.15
R1b 164.46 164.46 6.24 164.46 166.06 0.61 164.46 165.52 2.19 164.46
R2b 296.65 299.19 15.71 295.96 298.88 3.00 295.96 296.68 9.17 295.66
R3b 490.16 494.23 28.83 484.83 491.29 8.19 486.99 491.83 23.82 484.83
R4b 533.15 540.5 72.66 534.84 541.19 22.58 532.91 535.59 51.26 529.33
R5b 583.12 588.48 131.85 587.67 590.22 44.09 578.41 584.99 91.54 577.98
R6b 742.28 751.55 227.25 738.01 743.64 71.50 741.70 748.75 128.36 737.69
R7b 248.21 248.21 8.77 248.21 248.21 1.30 248.21 248.21 5.06 248.21
R8b 462.50 468.97 39.10 463.67 470.25 9.54 461.39 465.34 23.63 461.39
R9b 600.18 607.94 75.70 593.49 606.25 27.49 600.19 604.66 68.13 593.49
R10b 796.90 805.93 250.20 804.22 812.81 69.57 795.64 799.64 118.18 793.21
Avg. 513.55 517.94 73.17 512.45 517.83 21.84 511.70 515.22 40.12 509.44

Table 4: Results with a limit on the number of iterations.

On average, ALNS is competitive with the state of the art methods. The solutions found by the ALNS
are, on average, around 1% worse than the best known solutions.

6.4 Savings due to transfers

This section evaluates the savings due to transfers. Since optimal solutions to instances of the DARPT
of realistic size are unknown, a comparison of optimal solutions with or without transfers is impossible.
Thus, we used two approaches to evaluate the savings due to transfers. First, we compared heuristic
solutions of the DARPT to known optimal solutions of the DARP. This yielded lower bounds for the
savings due to transfers. Then, we compared heuristic solutions of the DARP and the DARPT on real-
life instances. This estimated the savings achievable in practice in the context of demand-responsive
transport.

6.4.1 Lower bounds for the savings due to transfers

In order to compute lower bounds for the savings due to transfer points, we compared heuristic solutions
to the DARPT with optimal solutions to the DARP computed by a Branch-and-Cut algorithm [37]. For
each DARP instance we created two DARPT instances. The first one considers one unique transfer point
located at a depot in the center of the area. The second one considers every vertex as a potential transfer
point.

Table 5 reports the results of five runs of the ALNS limited to 25000 iterations or 10 hours. Column 1
is the instance name. Column 2 reports the optimal solution of the DARP. Columns 3 to 6 report the
average solution, the best solution, the savings due to transfers and the run time of the ALNS with a
single transfer point (in seconds) respectively. Columns 7 to 10 report similar information in the case of
multiple transfer points.

Savings due to transfers vary a geat deal from one instance to another. Moreover, the location and
number of the transfer points seem to have a non-negligible impact on savings. When only the depot
can be used to perform a transfer, the savings are more than 1.5% in only 6 instances. When multiple

15

Inst.

B&C ALNS ALNS
T = ∅ T = {Depot} T = N

Opt. Avg. Min.
Gap CPU

Avg. Min.
Gap CPU

no Tr. (s) no Tr. (s)
a2-16 294.25 294.25 294.25 0.00% 70 293.70 293.70 -0.19% 251
a2-20 344.83 344.83 344.83 0.00% 106 340.96 340.96 -1.14% 644
a2-24 431.12 412.80 412.80 -4.44% 160 410.00 410.00 -5.15% 1013
a3-24 344.83 341.88 341.88 -0.86% 149 338.71 338.32 -1.92% 938
a3-30 494.85 485.61 485.59 -1.91% 292 476.42 476.09 -3.94% 2104
a3-36 583.19 548.43 548.31 -6.36% 497 531.90 531.49 -9.73% 4466
a4-40 557.69 557.94 557.94 0.04% 527 544.86 543.81 -2.55% 4989
a4-48 668.62 666.66 665.87 -0.41% 787 639.33 638.06 -4.79% 13675
a5-40 498.41 496.54 496.54 -0.38% 462 490.47 490.46 -1.62% 6122
a5-50 686.62 671.00 669.43 -2.57% 1106 649.97 646.94 -6.13% 17527
a5-60 808.42 803.40 802.86 -0.69% 1306 779.88 778.17 -3.89% 33126
a6-48 604.12 608.85 608.22 0.67% 804 595.49 592.89 -1.89% 11586
a6-60 819.60 800.08 796.74 -2.87% 1454 779.10 775.23 -5.72% 32722
a6-72 916.05 919.12 914.71 -0.15% 2426 908.28 904.85 -1.24% t.o.
a7-56 724.04 717.60 715.38 -1.21% 961 697.14 690.85 -4.80% 21731
a7-70 889.12 902.43 897.96 0.98% 3246 876.38 872.18 -1.94% t.o.
a7-84 1033.37 1040.12 1035.56 0.21% 3681 1028.87 1020.90 -1.22% t.o.
a8-64 747.46 737.06 733.44 -1.91% 1625 720.55 717.84 -4.13% t.o.
a8-80 945.73 939.50 936.17 -1.02% 2968 916.60 909.75 -3.95% t.o.
a8-96 1232.61 1249.32 1238.84 0.50% 6517 1210.72 1183.73 -4.13% t.o.
Avg. 681.25 676.87 674.87 -1.12% 1457 661.47 657.81 -3.50% 18345

Table 5: Savings due to transfers on instances adapted from Ropke et al. [37].

transfer points are authorized, the savings are more than 1.5% in 14 instances. On average the savings
are 3 times bigger in the latter case. However, solving times tend to be very long. The limit of 10 hours
is exceeded – written “t.o.” in the table – when the potential number of transfer points is larger than 140
requests (70 pickup points + 70 delivery points), when all points can be used to perform a transfer. Note
that in some cases, the ALNS for the DARPT cannot find better solutions than the optimal solution
to the DARP. These results can be explained by the structure of the instance of Cordeau and Laporte,
which is not really adapted to transfers.

6.4.2 Savings on real-life instances

In order to compute savings due to transfers on real-life instances, we compared heuristic solutions of the
DARP and the DARPT, both computed with the ALNS. Each instance was solved 5 times by the ALNS
with a limit of 25000 iterations or 10 hours. Table 6 reports the results. Column 1 is the instance name.
Column 2 indicates the number of transfer points (- means a DARP instance). Columns 3 and 4 report
the average and best solution over the 5 runs. Column 5 reports the average running time (in seconds).
Finally column 6 reports the gap between the solutions with and without transfers.

The savings due to transfers range from 2.17% to 8.24% for the Center instances and from 0.97% to
6.50% for the School instances. The counterpart is a large increase in the computing time. In order to
evaluate whether the maximum ride time constraint has an impact on these savings, we also solved the
instances without these constraints – in this case, the problem is a Pickup and Delivery Problem with
Transfers (PDPT). The results are reported in Table 7. The columns have the same meaning as columns
1-4 and 6 of Table 6.

The cost of solutions is higher when maximum ride time constraints are considered, which is understand-
able since the problem is more constrained. However, the savings due to transfers are rather similar with
or without maximum ride time constraints. The only exception is the instance School-84-21 for which
the savings due to the use of transfers is 6.17% in the case of the PDPT and 3.25% in the case of the
DARPT. Therefore it seems that on those real-life instances, the maximum ride time constraint does not
have a large impact on the savings due to transfers.

16

Instances |T | Avg. Cost Min. Cost CPU (s) Gap Tr.

Center-81-2
- 499.11 496.97 1265

-4.92%
2 477.21 472.52 15539

Center-84-2
- 939.24 934.88 1088

-2.17%
2 919.84 914.60 7725

Center-87-2
- 500.72 500.72 1572

-3.47%
2 488.09 483.37 16777

Center-109-2
- 740.40 740.08 1917

-7.19%
2 690.89 686.90 23186

Center-193-5
- 1347.60 1342.38 6168

-8.24%
5 1242.62 1231.82 t.o.

School-55-16
- 672.03 672.03 480

-0.97%
16 665.58 665.53 3044

School-66-13
- 859.52 859.52 662

-2.66%
13 836.62 836.62 4873

School-84-21
- 1142.52 1142.52 1008

-3.25%
21 1109.16 1105.40 12914

School-84-33
- 1269.67 1269.67 991

-6.50%
33 1188.47 1187.08 24270

School-106-24
- 995.90 995.58 1475

-3.59%
24 961.55 959.82 29721

Table 6: Evaluation of savings due to transfer on real cases

Instances |T | Avg. Cost Min. Cost Gap Tr.

Center-81-2
- 453.09 452.72

-3.23%
2 438.64 438.08

Center-84-2
- 782.04 782.03

-2.54%
2 769.83 762.15

Center-87-2
- 478.06 477.25

-2.96%
2 463.92 463.12

Center-109-2
- 650.20 647.88

-6.33%
2 610.74 606.85

Center-193-5
- 1253.63 1250.30

-9.23%
5 1152.44 1134.90

School-55-16
- 654.72 654.72

-0.75%
16 649.78 649.78

School-66-13
- 824.82 824.82

-2.98%
13 800.51 800.27

School-84-21
- 1121.37 1121.37

-6.17%
21 1055.67 1052.17

School-84-33
- 1239.65 1239.32

-6.23%
33 1164.48 1162.08

School-106-24
- 978.64 978.15

-4.12%
24 940.02 937.85

Table 7: Solution without maximum ride time constraints

17

6.5 Performance of the destroy and repair operators

In order to assess the performance of the destroy and repair operators, we have conducted experiments
on a subset of 10 representative instances: instances a2-20, a3-18, a3-30, a4-16 and a4-32 by Cordeau and
Laporte, and real-life instances Center-81-2, Center-84-2, School-55-16, School-66-13 and School-84-21.

In the ALNS algorithm described in section 4.1, the score of an operator is increased on three events: the
operator provides a new best known solution, a new improving solution, or a new accepted solution. For
each event, we measure the individual contribution of each operator as the following ratio: the number
of times the event arises from the operator over the total number of occurrences of the event.

Theses results are summarized in Table 8 for destroy operators and in Table 9 for repair operators. In
each table, the first column reports the name of the operators. Columns 2 to 4 report the minimal,
average and maximal percentage of new best solutions found by each operator. Columns 5 to 7 report
the same information concerning improvements over the current solution. Finally, columns 8 to 10 report
this information for new deteriorating solutions accepted by the acceptation criterion. Note that the
results in column 3, 6 and 9 sum up to 100% for each category of operators: destroy operators and
repairs operators. In Table 9, the best insertion and the regret insertion results are aggregated in the last
line.

Destroy Operators
New BKS New improving New accepted

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
Transfer point removal 0% 11% 30% 10% 15% 20% 7% 15% 22%
Pickup/Delivery cluster removal 0% 15% 29% 5% 17% 23% 5% 17% 22%
History removal 0% 12% 20% 4% 12% 19% 4% 12% 18%
Worst removal 0% 19% 40% 0% 15% 26% 0% 14% 23%
Random removal 10% 19% 29% 13% 20% 33% 13% 19% 27%
Related removal 0% 24% 50% 15% 21% 41% 15% 23% 41%

Table 8: Performance of the destroy operators during the execution of the ALNS algorithm

Regarding destroy operators (Table 8), none clearly dominates the others. The related removal operator
is responsible, on average, for the identification of 24% of the new best solutions. But on some instances,
this operator is not involved in the identification of a single new best solution. Clearly, the efficiency of
each destroy operator depends on the instance.

Repair Operators
New BKS New improving New accepted

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
Best insertion with transfer 17% 29% 50% 23% 28% 41% 22% 34% 43%
Transfer first 36% 51% 83% 36% 53% 61% 36% 45% 53%
Regret insertion with transfer 0% 13% 31% 1% 11% 23% 2% 12% 23%
Best insertion + regret 0% 7% 24% 0% 8% 16% 0% 9% 17%

Table 9: Performance of the repair operators during the execution of the ALNS algorithm

On the contrary, the results in Table 9 clearly show the need for repair operators suited for transfers .
On average, the Transfer First operator is is involved in half of the occurrences of the three events. The
Regret insertion with transfer seems to be less efficient, but still can identify up to 31% of the new best
solutions on some instances. In conclusion, the contribution of repair operators also varies a lot from
one instance to another, but all operators that introduce transfers are meaningful. Even though the best
insertion and the regret insertion seem less efficient, they are less time consuming than the others and
they must be kept to remove some transfers.

7 Conclusion

In this article, we developed an Adaptive Large Neighborhood Search (ALNS) to solve the Dial–A–Ride
Problem with Transfers. The algorithm strongly relies on previous work carried out on the Pickup and
Delivery Problem with Transfers [5] and competes with state-of-the art methods for the DARP. We show
that the feasibility of the insertion of a request into a feasible solution can be efficiently checked. We
provide lower bounds for the savings due to transfers and apply the ALNS to real-life instances for which
we evaluate the practical savings due to transfers. The introduction of transfer points can lead to non-
negligible savings (up to 8.25%). However, it does not seem straightforward to characterize instances
that may benefit most from the introduction of transfers.

This work opens up some new perspectives. In this study, the quality of service provided to the users has
been modeled only by maximum ride time constraints. However, users generally consider transfers as a

18

deterioration in their quality of service. As a matter of fact, one could consider to restricting the number
of passengers transferred, the maximum waiting time of an user at a transfer point or the overall waiting
time of the users at transfer points.

Another perspective concerns the interconnection between routes. When the number of interconnected
routes grows, a single unexpected event in one route can propagate to the whole network. Therefore,
building robust solutions to the DARPT seems to be a challenging line of research.

References

References

[1] R. Masson, F. Lehuédé, O. Péton, A tabu search algorithm for the dial-a-ride problem with transfers,
in: Proceedings of the International Conference on Industrial Engineering and Systems Management,
Metz, France, 2011, pp. 1224–1232.

[2] J.-F. Cordeau, G. Laporte, The dial-a-ride problem : models and algorithms, Annals of Operations
Research 153 (1) (2007) 29–46.

[3] G. Berbeglia, J.-F. Cordeau, G. Laporte, Dynamic pickup and delivery problems, European Journal
of Operational Research 202 (1) (2010) 8–15.

[4] J. Paquette, J.-F. Cordeau, G. Laporte, Quality of service in dial-a-ride operations, Computers &
Industrial Engineering 56 (2008) 1721–1734.

[5] R. Masson, F. Lehuédé, O. Péton, An adaptive large neighborhood search for the pickup and delivery
problem with transfers, Transportation Science, articles in advance, doi:10.1287/trsc.1120.0432.

[6] R. Masson, F. Lehuédé, O. Péton, Simple temporal problems in route scheduling for the dial-a-ride
problem with transfers, in: N. Beldiceanu, J. N., P. E. (Eds.), Integration of AI and OR Techniques
in Contraint Programming for Combinatorial Optimization Problems - 9th International Conference,
CPAIOR 2012, Nantes, France, May 28 - June 1, 2012. Proceedings, Vol. 7298 of Lecture Notes in
Computer Science, Springer, 2012, pp. 275–291.

[7] J.-F. Cordeau, G. Laporte, A tabu search heuristic for the static multi-vehicle dial-a-ride problem,
Transportation Research Part B: Methodological 37 (6) (2003) 579–594.

[8] S. N. Parragh, K. F. Doerner, R. F. Hartl, Variable neighborhood search for the dial-a-ride problem,
Computers & Operations Research 37 (2010) 1129–1138.

[9] S. Jain, P. Van Hentenryck, Large neighborhood search for dial-a-ride problems, in: J. Lee (Ed.),
Principles and Practice of Constraint Programming – CP 2011, Vol. 6876 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 400–413.

[10] S. Parragh, V. Schmid, Hybrid column generation and large neighborhood search for the dial-a-ride
problem, Computers & Operations Research 40 (1) (2013) 490–497.

[11] M. Firat, G. J. Woeginger, Analysis of the dial-a-ride problem of hunsaker and savelsbergh, Opera-
tions Research Letters 39 (1) (2011) 32 – 35.

[12] B. Hunsaker, M. Savelsbergh, Efficient feasibility testing for dial-a-ride problems, Operations Re-
search Letters 30 (2002) 169–173.

[13] D. Stein, Scheduling dial–a–ride transportation systems, Transportation Science 12 (1978) 232–249.

[14] J. S. Shang, C. K. Cuff, Multicriteria pickup and delivery problem with transfer opportunity, Com-
puters & Industrial Engineering 30 (4) (1996) 631–645.

[15] S. Thangiah, A. Fergany, S. Awam, Real-time split-delivery pickup and delivery time window prob-
lems with transfers, Central European Journal of Operations Research 15 (2007) 329–349.

[16] C. E. Cortés, R. Jayakrishnan, Design and operational concepts of high-coverage point-to-point
transit system, Transportation Research Record 1783 (2002) 178–187.

19

[17] C. Mues, S. Pickl, Transshipment and time windows in vehicle routing, in: ISPAN’05: Proceedings
of the 8th International Symposium on Parallel Architectures, Algorithms and Networks, IEEE
Computer Society, Washington, DC, USA, 2005, pp. 113–119.

[18] S. Mitrović-Minić, G. Laporte, The pickup and delivery problem with time windows and transship-
ment, INFOR 44 (3) (2006) 217–228.

[19] I. L. Gørtz, V. Nagarajan, R. Ravi, Minimum makespan multi-vehicle dial-a-ride, in: Proceedings of
the 17th ESA, Copenhagen, Denmark. Lecture Notes in CS, Vol. 5757, 2009, pp. 540–552.

[20] H. L. Petersen, S. Ropke, The pickup and delivery problem with cross-docking opportunity, in:
Proceedings of the Second international conference on Computational logistics, ICCL’11, Springer-
Verlag, Berlin, Heidelberg, 2011, pp. 101–113.

[21] Y. Qu, J. F. Bard, A GRASP with adaptive large neighborhood search for pickup and delivery
problems with transshipment, Computers & Operations Research 39 (10) (2012) 2439 – 2456.

[22] C. E. Cortés, M. Matamala, C. Contardo, The pickup and delivery problem with transfers: Formu-
lation and a branch-and-cut solution method, European Journal of Operational Research 200 (3)
(2010) 711–724.

[23] H. L. M. Kerivin, M. Lacroix, A. R. Mahjoub, A. Quilliot, The splittable pickup and delivery problem
with reloads, European Journal of Industrial Engineering 2 (2) (2008) 112–133.

[24] A. Fugenschuh, Solving a school bus scheduling problem with integer programming, European Jour-
nal of Operational Research 193 (3) (2009) 867–884.

[25] Y. Nakao, H. Nagamochi, Worst case analysis for pickup and delivery problems with transfer, IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences E91-A (9)
(2010) 2328–2334.

[26] R. Masson, S. Ropke, F. Lehuédé, O. Péton, A branch-and-cut-and-price for the pickup and delivery
problem with shuttles routes, European Journal of Operational Research (submitted).

[27] P. Shaw, Using constraint programming and local search methods to solve vehicle routing prob-
lems, in: Proceedings of the 4th International Conference on Principles and Practice of Constraint
Programming, 1998, pp. 417–431.

[28] D. Pisinger, S. Ropke, Large neighborhood search, in: M. Gendreau, J.-Y. Potvin (Eds.), Handbook
of Metaheuristics, Vol. 146 of International Series in Operations Research & Management Science,
Springer US, 2010, pp. 399–419.

[29] D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems, Computers & Operations
Research 34 (8) (2007) 2403 – 2435.

[30] S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows, Transportation Science 40 (2006) 455–472.

[31] J.-Y. Potvin, J.-M. Rousseau, A parallel route building algorithm for the vehicle routing and schedul-
ing problem with time windows, European Journal of Operational Research 66 (3) (1993) 331 – 340.

[32] M. Drexl, Synchronization in vehicle routing—a survey of VRPs with multiple synchronization con-
straints, Transportation Science 46 (3) (2012) 297–316.

[33] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial Intelligence 49 (1-3) (1991)
61–95.

[34] R. Shostak, Deciding linear inequalities by computing loop residues, Journal of the Association for
Computing Machinery 28 (1981) 769–779.

[35] B. V. Cherkassky, L. Georgiadis, A. V. Goldberg, R. E. Tarjan, R. F. Werneck, Shortest-path
feasibility algorithms: An experimental evaluation, Journal of Experimental Algorithmics 14 (2009)
2.7–2.37.

[36] R. E. Tarjan, Shortest paths, Tech. rep., AT&T Bell Laboratories, Murray Hill, NJ (1981).

[37] S. Ropke, J.-F. Cordeau, G. Laporte, Models and branch-and-cut algorithms for pickup and delivery
problems with time windows, Networks 49 (4) (2007) 258–272.

20

