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Abstract— The map building methods usually employed by
mobile robots are based on the assumption that an estimate
of the position of the robot can be obtained from odometry
readings. In this paper we propose three methods that build
a geometrical global map by integrating partial maps without
using any odometry information. We focus on the problem of
integrating a sequence of partial maps that specifies the order
in which the partial maps must be integrated. Experimental
results show the effectiveness of our approach in different types
of environments.

I. I NTRODUCTION

Several methods for allowing mobile robots to automatically
build geometrical maps of unknown environments have been
proposed [1], [2]. These methods often operate by incremen-
tally integrating a newly acquired partial map within an old
map on the basis of odometry information.

In this paper we present three methods that build a global
map of an environment by integrating partial maps without
usinganyodometry information. We concentrate our attention
on the problem of integrating asequenceS1, S2, . . . Sn of n
partial maps. The sequence defines the order in which the
partial maps must be integrated; namelyS1 has to be integrated
with S2, that in turn has to be integrated withS3, and so
on. The problem of integrating a sequence of partial maps is
exactly the problem addressed by the map building methods
presented in literature. The partial maps come in a sequence
because usually they are acquired by a mobile robot with
sensing operations performed in successive time instants. The
maps we consider in this paper are collection of segments.
No hypothesis is made about the environment to be mapped:
experiments demonstrate that our methods work well in regular
and scattered environments. We reduce the integration of a
sequence of partial maps to the iterated integration of two
partial maps. In particular, we exploit a functionMATCH that
matches two partial maps producing a map only on the basis
of the geometrical information contained in the partial maps
and without using any information that could be obtained from
odometry.

Map building without odometry information has the advan-
tage to be independent from the origin of the partial maps.
For example, it is indifferent if the partial maps are collected
during a single session of sensing operations or if they are
the result of different sensing operations interleaved by robot
repairing. With our approach, the robot does not need to be

placed in the same position it was before stopping in order to
resume the mapping task. This provides a possible solution to
the so-called “kidnapped robot” problem [3].

This paper is structured as follows. The next section dis-
cusses the main approaches to robot map building. Section III
describes theMATCH function. The three proposed methods
are introduced in Section IV and experimentally validated in
Section V. Finally, Section VI concludes the paper.

II. A PPROACHES TOMAP BUILDING

The map building techniques developed in the last two
decades usually refer to SLAM (Simultaneous Localization
and Map Building), namely to the problem of building a
map and, at the same time, estimating the pose of the
robot. Since odometric measurements are usually noisy [4],
robot localization cannot rely only on dead-reckoning, and a
probabilistic machinery is employed to localize the robot in
the map that is being constructed. A family of approaches
adopts Kalman filtering [1], [5], [6] in an incremental process
that estimates robot pose and positions of landmarks in the
map. This solution requires a large computational effort as
the number of features in the map grows and it also not
well suited to dynamic environments and to environments with
indistinguishable landmarks. Another probabilistic approach is
based on the Expectation-Maximization (EM) algorithm [2],
[7] and is usually employed to build grid-based maps. Robot
pose is tracked by a multimodal probability density function
which copes well with the correspondence problem of dis-
ambiguating uniform features of the environment and with
failure recovery. To alleviate the computational burden, im-
proved methods have been developed, including Montecarlo
localization [8] and particle filters [3].

In this paper we adopt an alternative way to reduce the com-
putational effort by employing geometric maps represented as
collections of points or line segments. They provide a compact
and easy-to-use (for example, to plan a path) representation of
the environment. This approach often uses odometry and scan
matching algorithms to estimate robot pose and to incremen-
tally build a global map of the environment. We review briefly
some of the methods that have been proposed.

The IDC (Iterative Dual Correspondence) [9] algorithm
performs well in randomly shaped environments containing
both rectilinear and irregular features. IDC is an iterative
procedure that aims at minimizing an error measure: it first



finds the correspondence between points in the reference
scan and points in the actual scan, then it performs a least
square minimization of the distances of the corresponding
points to calculate translation and rotation between the scans.
An initial position estimate to avoid erroneous alignments
is obtained from odometric information. The computational
effort of the IDC algorithm is high. IDC-Sector [10] reduces
the noise sensitivity of original IDC and copes with dynamic
environments.

The method presented in [11] deals with non-perpendicular
walls and builds segment maps. It uses a cross-correlation
algorithm (as in [12]) to estimate robot pose and to correct
the odometric information. It relies on the assumption of
straight walls environments and so it does not suit to scattered
environments.

The method proposed by [13] extracts segments from the
points acquired by a laser range scanner and uses a special
Center of Gravity representation for line segments to describe
their uncertainty. The method relies on odometer readings for
the initial estimates of the displacement vector. It matches
pairs of segments and computes their translation through least
square minimization, as in [9].

There are some attempts to build maps independently from
odometry. For example, [14] proposes to use a panoramic
range finder to build segment maps. It identifies segments
representing walls or other boundaries of the environment
and matches the scans taken from different positions without
relying on any additional source of information. This is accom-
plished by applying a dynamic programming algorithm to the
vertical lines of the map. The method operates in polygonal or
rectilinear environments, but does not work well in scattered
environments and it (implicitly) relies on small displacements
of the robot.

The method proposed in [15] extracts line segments from
laser range scanner readings and performs a matching between
the acquired partial map and a global map incrementally
built during the exploration. It first determines the heading
between the two maps by computing the histogram of the angle
differences and then adjusts the translation by overlapping the
line segments using least square minimization. The method
works for linear and static environments and for very small
displacements between the two maps; the method can also
perform a global search, but it becomes slower and prone to
errors, especially in environments with a lot of similarities.
The methods we propose in this paper are more general and
allow significant displacements between two successive partial
maps, provided that they have an overlap containing at least a
common geometrical feature.

III. SCAN MATCHING

We developed aMATCH function for matching two partial
maps composed of segments, which operates independently
of any odometry information. Hence, our method is exclu-
sively based on the geometrical information contained in the
partial maps. In particular, we consider angles between pairs
of segments in the partial maps as a sort of “geometrical

landmarks” on which the matching process is based. This
use of “local” geometrical features is significantly different
from other related works in map building that use “global”
geometrical features (e.g., those represented by an histogram
of angle differences).MATCH integrates two partial maps into
a third one. Let’s callS1 andS2 the two partial maps andS1,2

the resulting map.
The function operates in three major steps:

1) Determine the possible transformationsof S2 on S1.
This step firstly finds the angles between segments in
S1 and between segments inS2 and, secondly, finds
the possible transformations (namely, the rotations and
translations) that superimpose at least one angleα2 of
S2 to an (approximately) equal angleα1 of S1. Recall
that angles between pairs of segments in a partial map
are the geometrical landmarks we adopt.

2) Evaluate the transformationsto identify the best one. To
calculate the measure of a transformationt we transform
S2 on S1 (in the reference frame ofS1) according
to t (obtainingSt

2), then we calculate the approximate
length of the segments ofS1 that correspond to (namely,
match with) segments ofSt

2. Thus, the measure of a
transformation is the length of corresponding segments
that the transformation produces.

3) Apply the best transformation and fuse the segments.
Once the best transformation̄t has been found, the third
and last step ofMATCH transforms the second partial
map S2 in the reference frame ofS1 according tot̄
obtaining S t̄

2. The map that constitutes the output of
MATCH is then obtained by fusing the segments ofS1

with the segments ofS t̄
2. The main idea behind the

fusion of segments is that a set of matching segments
is substituted in the final map by a single polyline. We
iteratively build a sequence of approximating polylines
P0, P1, . . . that converges to the polylineP that ade-
quately approximates (and substitutes in the resulting
map) a set of matching segments. The polylineP0 is
composed of a single segment connecting the pair of
farthest points of the matching segments. Given the poly-
line Pn−1, call s the (matching) segment at maximum
distance from its corresponding (closest) segments̄ in
Pn−1. If the distance betweens and s̄ is less than the
acceptable error, thenPn−1 is the final approximation
P . Otherwise,s substitutes̄s in Pn−1 ands is connected
to the two closest segments inPn−1 to obtain the new
polyline Pn.

For example,S1,2 = MATCH(S1, S2) is the map obtained
from the integration ofS1 and S2. It is important to note
that all the maps are composed of segments. Furthermore, the
reference frame ofS1,2 coincides with the reference frame of
S1, sincet̄ is a transformation that brings the reference frame
of S2 in the reference frame ofS1.

The main advantage ofMATCH is that, since it is not
based on odometry information, it is applicable indifferently
to situations in which the two partial maps are scans that have



been perceived by the same robot at different time instants and
to situations in which the two partial maps are the result of
mapping activity of two robots. Obviously, in this second case,
the partial maps could contain a larger number of segments
and the computational time increases.

IV. T HE PROPOSEDMETHODS

In this section, we describe three proposed methods
(schematically shown in Fig. 1) for integrating a sequence
S1, S2, . . . Sn of n partial maps by repeatedly callingMATCH.

S1 S3 SnS2

S1,2,…,n

S1,2,3

S1,2

...

S1 S3 SnS2

Sn-1,nS2,3S1,2

...
S1,2,3

S1,2,…,n

level 0

level 1

level n

S1 S3 SnS2

Sn-1,nS2,3S1,2 ...

S1,2,3

S1,2,…,n

Fig. 1. The schematic representation of the sequential (top), tree (middle),
and pivot (bottom) methods

A. Sequential Method

The simplest method is thesequentialmethod. It operates
as follows. The first two partial maps in the sequence are
integrated, the obtained map then is grown by sequentially
integrating the third partial map, the fourth partial map, and
so on. Hence,S1 is integrated withS2 to obtain S1,2, S1,2

is integrated withS3 to obtainS1,2,3, and so on. Eventually,
the final mapS1,2,...,n is constructed. In order to integraten
partial maps, the sequential method requiresn − 1 calls to
the MATCH function. A problem with the sequential method
is that, as the process goes on,MATCH is applied to a partial
map that grows larger and larger (it contains more and more
segments). This will cause difficulties in the integration ofSi

with large i, sinceSi could match with different parts of the
larger map, as illustrated in Fig. 2.

B. Tree Method

To overcome the above problem, the integration of a small
partial map with a large partial map should be avoided. This is
the idea underlying thetree method, which works as follows.
Each partial map of the initial sequence is integrated with
the successive partial map of the sequence to obtain a new

Fig. 2. An incorrect transformation (in the circle) of a small partial map
over a large partial map.

sequenceS1,2, S2,3, . . . , Sn−1,n of n− 1 partial maps. Then,
each partial map of this new sequence is integrated with the
successive one to obtain a new sequenceS1,2,3, S2,3,4, . . . ,
Sn−2,n−1,n of n−2 partial maps. The process continues until
a single final mapS1,2,...,n is produced. The tree method
always integrates partial maps of the same size, since they
approximately contain the same number of segments. The
number of calls toMATCH required by the tree method to
integrate a sequence ofn partial maps isn(n − 1)/2. Note
also that, while it is quite obvious that the sequential method
can be applied in an on-line fashion (i.e., while the robot is
moving), the most natural implementation of the tree method
is off-line, since it is not straightforward to devise an on-
line algorithm implementing the three methods that requires
constant time (asn grows) to update the tree. To speed up
the tree method we have developed an heuristic that, given
a sequence of partial maps at any level of the tree (let us
suppose at level0 for simplicity), attempts to integrate the
partial mapsSi andSi+2; if the integration succeeds, the final
result Si,i+2 represents the same map that would have been
obtained with three integrations:Si with Si+1 to obtainSi,i+1,
Si+1 with Si+2 to obtainSi+1,i+2, andSi,i+1 with Si+1,i+2

to obtain Si,i+1,i+2. Moreover, the number of partial maps
in the new sequence is reduced by one unit, becauseSi,i+2

substitutes bothSi,i+1 and Si+1,i+2. This heuristic finds its
natural applicability when the partial mapsSi and Si+2 are
already the result of a number of integrations performed by the
tree method and their common part is significant. For example,
in the sequence produced at the level3 of the tree technique
the first (S1,2,3,4) and the third (S3,4,5,6) partial maps have a
significant common part, since approximately half of the two
partial maps overlaps.

A problem that arises with the tree method is related to
the fact that the integration of two partial maps performed
by MATCH can leave “spurious” segments, namely segments
that correspond to the same part of the real environment but
that are not fused together in the final map. This problem



is exacerbated in the tree method since the same parts of the
partial maps are repeatedly fused together. For example, Fig. 3
shows a portion of a map with spurious segments that have
not been fused together but that represent the same part of the
environment.

1m

Fig. 3. Spurious segments that have not been fused together.

C. Pivot Method

To avoid the problems of the sequential and tree methods,
we devised thepivot method that combines the best features of
the two above methods. This method starts as the tree method
and constructs a sequenceS1,2, S2,3, . . . , Sn−1,n of n − 1
partial maps starting from the initial sequence. At this point,
we note thatS2 is part of bothS1,2 and S2,3 and that the
transformation̄t1,2 used to integrateS1 and S2 provides the
position and orientation of the reference frame ofS2 in the
reference frame ofS1,2. It is therefore possible to transform
S2,3 according tot̄1,2 and fuse the segments of the partial
mapsS1,2 andS

t̄1,2

2,3 to obtainS1,2,3. In a similar way,S1,2,3,4

can be obtained fromS1,2,3 andS3,4 by applying to the latter
the transformation̄t2,3 and fusing the segments ofS1,2,3 and
S

t̄2,3

3,4 . Iterating this process, from the sequenceS1,2, S2,3, . . . ,
Sn−1,n the final mapS1,2,...,n is obtained. The pivot method
integrates partial maps of the same size, like the tree method,
and requiresn−1 calls toMATCH function, like the sequential
method. (In addition it requiresn − 2 executions of the not-
so-expensive step 3 ofMATCH.) The pivot method is also
naturally implementable in an on-line system. The problem of
spurious segments is reduced but not completely eliminated
by the pivot method; a way to further reduce this problem is
to fuse notS1,2 and S

t̄1,2

2,3 , but S1,2 and S
t̄1,3

3 , where t̄1,3 is
the composition of̄t1,2 and t̄2,3.

V. EXPERIMENTAL RESULTS

The methods we described have been validated using a
Robuter mobile platform equipped with a SICK LMS200
laser range scanner mounted in the front of the robot at a
height of approximately50 cm. For the purposes of these
experiments we chose to acquire scans with angular resolution
of 1 degree and with angular range of180 degrees. Each scan
obtained by the laser range scanner has been processed to
find a set of segments that approximate the points returned by
the sensor, according to the algorithm described in [16]. The
three methods and theMATCH function have been coded in

ANSI C++ employing the LEDA libraries4.2 [17] for two-
dimensional geometry and they have been run on a1GHz
Pentium III processor with Linux SuSe8.0.

The scans of the experimental sequence have been acquired
in different environments (forming a loop about40m long)
by driving the robot manually and without recording any
odometric information. We started from a laboratory, a very
scattered environment, then we crossed a narrow hallway with
rectilinear walls to enter a department hall, a large open
space with long perpendicular walls, and finally we closed
the loop re-entering the laboratory (see the dashed path in
Fig. 6). The experimental sequence (Table I) is composed of29
scansS1, S2, . . . , S29. The correctness of integrations has been
determined by visually evaluating the starting partial maps
and the final map with respect to the real environment. The
integration of this sequence of partial maps has been done off-
line to test and compare all the three methods presented above.
We integrated the sequence using the three methods separately.
In all the three methods, problems arose when integrating
the sub-sequence fromS25 to S27 which represents the hall
(Fig. 4). Here, due to a drastic rotation (about100 degrees) of
the robot in such an open and large environment, the partial
maps have only one or two segments in common thusMATCH

cannot integrate them. In order to close the loop and complete
the experiments these partial maps were manually integrated
together in all the three methods.

TABLE I

EXPERIMENTAL SEQUENCE OF PARTIAL MAPS.

Environment Partial maps N
1

l
2

Laboratory S1 − S7, S28 − S29 38.1 259.3
Hallway S8 − S22 19.3 366.3

Hall S23 − S27 15.6 607

Total S1 − S29 24.53 374.5
1 average number of segments.
2 average length (inmillim ) of segments.

Fig. 5 shows the final map (composed of278 segments)
obtained with the sequential method. The sequential method
could not integrate all the partial maps in order to close the
loop: the method suddenly failed when we tried to integrate
S21 (Fig. 5). It is evident thatS21 has only a few short
segments in common with the rest of the map. Furthermore,
as already discussed, when the global map grows during the
sequential integration, the scan matching becomes computa-
tionally very difficult because the large number of segments
requires a high effort for evaluating the possible transforma-
tions. For example, the integration ofS17 (composed of28
segments) withS1,2,...,16 (composed of247 segments) takes
5.17s.

Fig. 6 shows the final map (composed of519 segments)
obtained with the tree method. We applied the standard tree
method until level3 of the tree, then we applied the heuristic
presented in Section IV-B to speed up the process. As we
went down in the tree, the size of the maps grew larger and
larger and the execution ofMATCH slowed down. For example,
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Fig. 4. Three partial maps (from left to right:S25, S26, andS27) representing the hall.

1m

1m

Fig. 5. The final map obtained with the sequential method (left) and partial mapS21 (right).

the integration of two partial maps (composed of108 and103
segments) at level3 of the tree requires12.8s. Furthermore, as
already noted, when we integrate large-sized maps with many
redundant spurious segments that represent the same part of
the environment, the resulting maps are more noisy because of
the error introduced when attempting to integrate maps with
many overlapping segments.

Fig. 7 shows the final maps obtained with the pivot method.
The map on the left is composed of441 segments and has
been built by fusing the partial mapSi−1,i with S

t̄i−1,i

i,i+1
, while

the map on the right is composed of358 segments and has
been built by fusing the partial mapSi−1,i with S

t̄i−1,i+1

i+1
.

The second map presents fewer spurious segments and appears
more “clean”.

VI. CONCLUSIONS

In this paper we have presented and experimentally eval-
uated three methods for integrating a sequence of partial
maps composed of segments in order to build the map of an
environment. The pivot method has demonstrated to be the
most effective method among those considered.

In future research we aim at generalizing the methods
presented here for integrating a set ofn partial maps without
knowing the order in which they have to be integrated. These
generalized methods could provide an elegant solution to the
problem of multirobot mapping since they, in principle, will
work both when partial maps are acquired by a single robot in
different time instants and when they are acquired by different
mobile robots in different locations.
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