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1. Introduction Set-valued mappings represent the most developed class of objects studied in
the framework of variational analysis. Various types of set-valued mappings arise in a considerable
number of models ranging from mathematical programs, through game theory and to control and
design problems. The most well known and widely used regularity property of set-valued mappings
is that of metric regularity [6, 17, 36, 45, 55, 59, 49, 20, 16, 33, 24, 47]. The term “metric regularity”
was coined by Borwein & Zhuang [7]. Metric regularity or its equivalent notions (openness or
covering at a linear rate or Aubin property of the inverse) is a central concept in modern variational
analysis. In particular, this property is used as a key ingredient in investigating the behavior of
the solution set of generalized equations associated to set-valued mappings.
According to the long history of metric regularity there is an abundant literature on conditions

ensuring this property. The roots of this notion go back to the classical Banach Open Mapping
Theorem (see, for instance [13], Theorem III.12.1) and its subsequent generalization to nonlinear
mappings known as Lyusternik and Graves Theorem([48, 25], see also [15, 18]). For a detailed
account on results on metric regularity as well as on its various applications, we refer the reader
to basic monographs and references, [2, 3, 5, 8, 6, 9, 7, 11, 12, 16, 19, 35, 36, 37, 40, 42, 43, 48, 49,
50, 52, 53, 30, 31, 54, 55, 56, 58], as well as to the references given therein.

Let X and Y be metric spaces endowed with metrics both denoted by d(·, ·). The open ball with
center x and radius r > 0 is denoted by B(x, r). For a given subset Ω of X, we denote by convΩ
and coneΩ the convex hull of Ω and the conical convex hull of Ω, respectively. We also use the
symbols w and w⋆ to indicate the weak and the weak⋆ topology, respectively, and w- lim and w⋆-
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lim represent the weak and the weak⋆ topological limits, respectively. IntΩ and clΩ are the interior

and the closure of Ω with respect to the norm topology, respectively; clwΩ stands for the closure

in the weak topology and clw
⋆

Ω is the closure in the weak⋆ topology of a given subset Ω⊂X⋆ in

the dual space. We also make use of the property, that for convex sets, the norm and the weak

closures coincide. Finally given a mapping f :X→ Y we note Imf for the range f.

Recall that a set-valued (multivalued) mappping F :X⇉ Y is a mapping which assigns to every

x ∈ X a subset (possibly empty) F (x) of Y . As usual, we use the notation gph F := {(x, y) ∈
X × Y : y ∈ F (x)} for the graph of F , Dom F := {x ∈X : F (x) 6= ∅} for the domain of F and

F−1 : Y ⇉X for the inverse of F . This inverse (which always exists) is defined by F−1(y) := {x ∈

X : y ∈F (x)}, y ∈ Y and satisfies

(x, y)∈ gph F ⇐⇒ (y,x)∈ gph F−1.

If C is a subset of X, we use the standard notation d(x,C) = infz∈C d(x, z), with the convention

that d(x,S) =+∞ whenever C is empty. We recall that a multifunction F is metrically regular at

(x0, y0) ∈ gph F with modulus τ > 0 if there exists a neighborhood B((x0, y0), ε) of (x0, y0) such

that

d(x,F−1(y))≤ τd(y,F (x)) for all (x, y)∈B((x0, y0), ε). (1)

The infimum of all moduli τ satisfying relation (1) is denoted by reg F (x̄, ȳ) ([19]). In the case

for example of a set-valued mapping F with a closed and convex graph, the Robinson-Ursescu

Theorem ([57] and [60]), says that F is metrically regular at (x0, y0), if and only if y0 is an interior

point to the range of F , i.e., to Dom F−1.

Recently, several generalized or weaker versions of metric regularity (restricted metric regularity

[53], calmness, subregularity) have been considered. Especially, Ioffe ([38]) introduced and studied a

natural extension of metric regularity called “relative metric regularity” which covers almost every

notions of metric regularity given in the literature. Roughly speaking, a mapping F is relatively

metrically regular relative to some subset V ⊆X ×Y if the metric regularity property is satisfied

at points belonging to V and near the reference point. An important special case of this relative

metric regularity concept is the notion of directional metric regularity introduced and studied by

Arutyunov, Avakov and Izmailov in [1]. This directional metric regularity is an extension of an

earlier concept used by Bonnans & Shapiro ([5]) to study sensitivity analysis.

Our main objective in this paper is to use the theory of error bounds to study directional metric

regularity of multifunctions. We develop the method used by the authors in [31, 33, 29] to char-

acterize relative metric regularity by using global/local slopes of a suitable lower semicontinuous

envelope type of the distance function to the images of set-valued mappings. A particular advan-

tage of this approach is to avoid the completeness of the image space that is not really necessary

in some important situations. These established characterizations permit to derive coderivative

conditions as well as stability results for directional metric regularity.

The remainder of this paper is organized as follows. In Section 2, we prove characterizations of

relative metric regularity of closed multifunctions on metric spaces by using global/local strong

slopes of suitable relative semicontinuous envelope of distance functions to the images of set-valued

mappings. Based on these characterizations, we derive in Section 3 coderivative criteria ensuring

directional metric regularity. In the final section, results on the perturbation stability of directional

metric regularity are reported.
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2. Characterizations of relative metric regularity Let X be a metric space. Let f :X→
R∪ {+∞} be a given function. As usual, domf := {x ∈X : f(x)<+∞} denotes the domain of f .
We set

S := {x∈X : f(x)≤ 0}. (2)

We use the symbol [f(x)]+ to denote max(f(x),0).We shall say that the system (2) admits a global
error bound if there exists a real c > 0 such that

d(x,S)≤ c
[

f(x)]+ for all x∈X. (3)

For x0 ∈ S, we shall say that the system (2) has a local error bound at x0, when there exist reals
c > 0 and ε > 0 such that relation (3) is satisfied for all x around x0, i.e., in an open ball B(x0, ε)
with center x0 and radius ε.

Since the first error bound result due to Hoffman ([26]), numerous characterizations and criteria
for error bounds in terms of various derivative-like objects have been established. [22, 23]. Stability
and some other properties of error bounds are examined in [27, 32, 33, 34, 46]. Several conditions
using subdifferential operators or directional derivatives and ensuring the error bound property in
Banach spaces have been established, for example, in [10, 41, 31]. Error bounds have been also
used in sensitivity analysis of linear programming/linear complementarity problem and also as
termination criteria for descent algorithms. Recently, Azé [2], Azé & Corvellec [4] have used the
so-called strong slope introduced by De Giorgi, Marino & Tosques in [14] to prove criteria for error
bounds in complete metric spaces.

Recall from [36]1 that the local and global strong slopes |∇f |(x); |Γf |(x) of a function f at
x∈ domf are the quantities defined by

|∇f |(x) = limsup
y→x, y 6=x

[f(x)− f(y)]+
d(x, y)

; |Γf |(x) = sup
y 6=x

[f(x)− f(y)]+
d(x, y)

(4)

For x /∈ domf, we set |∇f |(x) = |Γf |(x) =+∞.When f takes only negative values it coincides with

|∇f |⋄(x) := sup
y 6=x

[f(x)− f+(y)]+
d(y,x)

as defined in [28]. As pointed out by Ioffe [39, Poposition 3.8], when f is a convex function defined
on a Banach space, then

|∇f |(x) = sup
‖h‖≤1

(−|f ′(x;h)) = d(0, ∂f(x).

Trivially, one has |∇f |(x)≤ |Γf |(x), for all x∈X.

In the sequel, we will need the following result established by Ngai & Théra ([33]), which gives
an estimation via the global strong slope for the distance d(x̄, S) from a given point x̄ outside of
S to the set S in complete metric spaces.

Theorem 1. Let X be a complete metric space and let f :X→R∪{+∞} be a lower semicon-
tinuous function and x̄ /∈ S. Then, setting

m(x̄) := inf {|Γf |(x) : d(x, x̄)< d(x̄, S), f(x)≤ f(x̄)} , (5)

one has
m(x̄)d(x̄, S)≤ f(x̄). (6)

1 A. Ioffe was at your knowledge the first one to start using slopes and to advertise them in the optimization community.
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Let X be a metric space and let Y be a normed linear space. Consider a multifunction F :X⇉ Y .
Let us recall from ([1]) the definition of directional metric regularity.
Definition 1. Let F :X⇉ Y be a multifunction. Let (x0, y0) ∈ gph F and ȳ ∈ Y be given. F

is said to be directionally metrically regular at (x0, y0) in the direction ȳ with a modulus τ > 0 if
there exist ε > 0, δ > 0 such that

d(x,F−1(y))≤ τd(y,F (x)), (7)

for all (x, y)∈B(x0, ε)×B(y0, ε) satisfying

d(y,F (x))< ε and y ∈ F (x)+ coneB(ȳ, δ).

Here, coneB(ȳ, δ) stands for the conic hull of B(ȳ, δ), i.e., coneB(ȳ, δ) =
⋃

λ≥0

λB(ȳ, δ). The infinum

of all moduli τ in relation (7) is called the exact modulus of the metric regularity at (x0, y0) in
direction ȳ, and is denoted by reg ȳ F (x0, y0).

Note that if F is metrically regular at (x0, y0) ∈ gph F , then F is directionally metrically regular
in all directions ȳ ∈ Y. When ‖ȳ‖< δ, then directionally metric regularity coincides with the usual
metric regularity. The notion of directionally metric regularity is a special case of metric regularity
relative to a set V with gph F ⊆ V ⊆X × Y, introduced by Ioffe ([38]). For y ∈ Y, x ∈X, denote
by Vy := {x∈X : (x, y)∈ V } , Vx := {y ∈ Y : (x, y)∈ V } , and clVy for the closure of Vy.
Definition 2. Let X,Y be metric spaces. Let F :X⇉ Y be a multifunction and let (x0, y0)∈

gph F and fix a subset V ⊆X ×Y . F is said to be metrically regular relative to V at (x0, y0) with
a constant τ > 0 if there exist ε > 0 such that

d(x,F−1(y)∩ clVy)≤ τd(y,F (x)), for all (x, y)∈B((x0, y0), ε)∩V, d(y,F (x))< ε. (8)

The infinum of all moduli τ is called the exact modulus of metric regularity at (x0, y0) relative to
V, and denoted by reg V F (x0, y0).

In papers [33, 29], the lower semicontinuous envelope x 7→ ϕ(x, y) of the function x 7→ d(y,F (x))
for y ∈ Y i.e.,

ϕ(x, y) := lim inf
u→x

d(y,F (u)),

has been used to characterize metric regularity of F. Along with the relative metric regularity, we
define for each y ∈ Y the lower semicontinous envelope of the functions x 7→ d(y,F (x)) relative to
a set V ⊆X ×Y by setting

ϕV (x, y) :=

{

lim infVy∋u→x d(y,F (u)) if x∈ clVy

+∞ otherwise.
(9)

Obviously, for each y ∈ Y, the function ϕV (·, y) is lower semicontinuous.

For a given ȳ ∈ Y, directionally metric regularity in a given direction ȳ is exactly metric regularity
relative to V (ȳ, δ) (for some δ > 0):

V (ȳ, δ) := {(x, y) : y ∈F (x)+ coneB(ȳ, δ)}. (10)

In this case, the lower semicontinuous envelope function relative to V (δ, ȳ) is denoted simply by

ϕδ(x, y) := ϕV (δ,ȳ)(x, y). (11)

The following proposition permits to transfer equivalently relative metric regularity of F to the
error bound property of the function ϕV .
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Proposition 1. Let F : X ⇉ Y be a closed multifunction (i.e., its graph is closed) and let
(x0, y0)∈ gph F. For V ⊆X ×Y, the following statements holds.
(i) For all y ∈ Y, one has

F−1(y)∩ clVy = {x∈X : ϕV (x, y) = 0};

(ii) F is metrically regular relative to V at (x0, y0) with a modulus τ > 0 if and only if there exists
ε > 0 such that

d(x,F−1(y)∩ clVy)≤ τϕV (x, y) for all (x, y)∈B(x0, ε)×B(y0, ε) with d(y,F (x))< ε.

Proof. The proof follows straightforwardly from the definition. �

We establish in the next theorem characterizations of relative metric regularity by using the
local/global strong slopes.

Theorem 2. Let X be a complete metric space and Y be a metric space. Let F :X ⇉ Y is a
closed multifunction and let (x0, y0)∈ gph F and let V ⊆X ×Y. For a given τ ∈ (0,+∞), consider
the following statements.
(i) F is metrically regular relative to V at (x0, y0);
(ii) There exists δ > 0 such that

|ΓϕV (·, y)|(x)≥ τ−1 for all (x, y)∈
(

B(x0, δ)×B(y0, δ)
)

, x∈ clVy with d(y,F (x))∈ (0, δ); (12)

(iii) There exists δ > 0 such that

|∇ϕV (·, y)|(x)≥ τ−1 for all (x, y)∈
(

B(x0, δ)×B(y0, δ)
)

, x∈ clVy with d(y,F (x))∈ (0, δ); (13)

(iv) There exist δ > 0 such that

|∇ϕV (·, y)|(x)≥ τ−1 for all (x, y)∈
(

B(x0, δ)×B(y0, δ)
)

∩V with d(y,F (x))∈ (0, δ). (14)

Then, (i)⇔ (ii)⇐ (iii)⇒ (iv). In addition, if Y is a normed linear space; gph F ⊆ V ; Vx is convex
for any x near x0 and Vy is open for y near y0, then (i)⇒ (iv).

Proof. The implications (iii)⇒ (ii) and (iii)⇒ (iv) are obvious. For (i)⇒ (iii), assume that F
is metrically regular relative to V at (x0, y0) with modulus τ > 0.Then, there is δ > 0 such that

d(x,F−1(y))≤ τϕV (x, y) ∀(x, y)∈B(x0, δ)×B(y0, δ).

Let (x, y) ∈ B(x0, δ)×B(y0, δ) with ϕV (x, y) ∈ (0,+∞) be given. For any ε > 0, we can find u ∈
F−1(y) satisfying

d(x,u)≤ (τ + ε)ϕV (x, y).

Then, ϕV (u, y) = 0, u 6= x and therefore,

|ΓϕV (·, y)|(x)≥
ϕV (x, y)−ϕV (u, y)

d(x,u)
=
ϕV (x, y)

d(x,u)
≥ (τ + ε)−1.

Since ε > 0 is arbitrary, (ii) holds.
Let us prove (ii)⇒ (i). Suppose that (12) is satisfied for δ > 0. Let ε∈ (0, τ/2) be given, and let

α :=min
{

δ/2,
δ

2(τ + ε)
, δτ

}

.



Huynh and Théra: Directional metric regularity of multifunctions

6 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Let (x, y)∈B((x0, y0), α) with x∈ clVy, d(y,F (x))<α be given. Then,

ϕV (x, y)< inf
u∈X

ϕV (u, y)+α.

By virtue of the Ekeland variational principle [21] applied to the function x 7→ ϕV (x, y) on X, we
can find z ∈X satisfying d(x, z)≤α(τ +2ε) and ϕV (z, y)≤ ϕV (x, y)(<α) such that

ϕV (z, y)≤ ϕV (u, y)+
1

τ +2ε
d(u, z) for all u∈X.

Consequently, z ∈B(x0, δ) and

ϕV (z, y)−ϕV (u, y)≤
d(z,u)

τ +2ε
≤
d(z,u)

τ + ε
for all u∈X.

Therefore, by relation (12), we must have z ∈F−1(y)∩ clVy. Consequently,

B(x0,2ατ)∩F
−1(y)∩ clVy 6= ∅. (15)

Then for any z ∈X with d(x, z)< d(x,F−1(y)); ϕV (z, y)≤ϕV (x, y), one has:

d(z,x0)≤ d(z,x)+ d(x,x0)≤ d(x0, F
−1(y))+ 2d(x,x0)< 2ατ +2α≤ δ.

Thus, z ∈B(x0, δ) and z /∈F
−1(y). Therefore, according to (12), one has

m(x) := inf

{

|Γϕ(·, y)|(z) :
d(z,x)< d(x,F−1(y))
ϕV (z, y)≤ϕV (x, y)

}

>
1

τ + ε
.

By virtue of Theorem 1 and as ε > 0 is arbitrarily small, we obtain

d(x,F−1(y)∩Vy)≤ τϕV (x, y),

which proves (ii)⇒ (i).

To conclude the proof of the theorem, we need to show (i)⇒ (iv) provided Y is a normed linear
space; Vy is open for y near y0 and Vx is a convex set for x near x0. Let δ ∈ (0,1) be such that Vy

is open for all y ∈B(y0, δ); Vx is convex for all x∈B(x0, δ) and that

d(x,F−1(y))≤ τd(y,F (x)) ∀(x, y)∈
(

B(x̄,2δ)×B(ȳ,2δ)
)

∩V.

Let (x, y) ∈ (B(x̄, δ) × B(ȳ, δ)) ∩ V be given with F (x) 6= ∅; y /∈ F (x); d(y,F (x)) < δ. For any
ε∈ (0, δ/2), pick uε ∈B(x0, ε)∩Vy such that

d(uε, x)< ε
2ϕV (x, y); d(y,F (uε))≤ (1+ ε2)1/2ϕV (x, y). (16)

Take yε ∈F (uε) such that

d(y,F (uε))≤‖y− yε‖< (1+ ε2)1/2d(y,F (uε)).

Then, since u∈B(x0, δ), by the convexity of Vu,

(u, zε) ∈ V with zε := εy+(1− ε)yε.

Furthemore,

‖y− zε‖= (1− ε)‖y− yε‖< (1− ε)(1+ ε2)1/2d(y,F (uε))< d(y,F (uε))< (1+ ε)ϕV (x, y).
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Therefore, zε /∈ F (uε) and ‖zε − y0‖ ≤ ‖y− y0‖+ ‖y− zε‖< 2δ. Hence, we can select xε ∈ F
−1(zε)

such that
d(uε, xε)< (1+ ε)d(uε, F

−1(zε)) ≤ (1+ ε)τd(zε, F (uε))
≤ (1+ ε)ετ‖y− yε‖.

(17)

Consequently, limε→0+ d(x,xε) = 0. Hence, for ε > 0 sufficiently small, xε ∈ Vy, and one has the
following estimation

ϕV (x, y)−ϕV (xε, y) ≥
1

(1+ ε2)1/2
d(y,F (uε))− d(y,F (xε))

>

(

1

1+ ε2
− (1− ε)

)

‖y− yε‖

=
ε− ε2 + ε3

1+ ε2
‖y− yε‖.

(18)

By combining this relation and relations (16), (17), one obtains

ϕV (x, y)−ϕV (xε, y)

d(x,xε)
≥
ϕV (x, y)−ϕV (xε, y)

d(x,uε)+ d(uε, xε)
>

(ε− ε2+ ε3)‖y− yε‖

(1+ ε2)(ε2ϕV (x, y)+ (1+ ε)ετ‖y− yε‖)
.

Since limε→0+ ‖y− yε‖= limε→0+ d(y,F (uε)) =ϕV (x, y)> 0, then

|∇ϕV (·, y)|(x)≥ lim inf
ε→0+

ϕV (x, y)−ϕV (xε, y)

d(x,xε)
≥ τ−1,

which completes the proof. �

Theorem 2 yields the following exact formula for the relative metric regularity.

Corollary 1. Let X be a complete metric space and let Y be a metric space and let V ⊆X×Y
with gph F ⊆ V. Suppose that the multifunction F :X⇉ Y is closed and (x0, y0)∈ gphF . Then, one
has

1/regV F (x0, y0) = lim inf
(x,y)

ϕ
→(x0,y0)

y/∈F (x)
x∈clVy

|ΓϕV (·, y)|(x).

Moreover, if in addition, Y is a normed linear space; Vx is convex for any x near x0 and Vy is
open for y near y0, then

1/regV F (x0, y0)≤ lim inf
(x,y)

ϕ,V
→ (x0,y0)

y/∈F (x)

|∇ϕV (·, y)|(x).

The notation (x, y)
ϕ,V
→ (x0, y0) means that (x, y)→ (x0, y0) with ϕ(x, y)→ 0 and (x, y)∈ V.

Proof. It follows directly from Theorem 2. �

We next introduce the partial notion of relative metric regularity for a parametric set-valued
mapping. Let X,Y be metric spaces and let P be a topological space. Given a set-valued mapping
F :X ×P ⇉ Y , we consider the implicit multifunction: S : Y ×P ⇉ Y defined by

S(y, p) := {x∈X : y ∈ F (x, p)}. (19)

Let x0 ∈ S(y0, p0) and a set V : gph F ⊆ V ⊆X ×P ×Y be given.
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Definition 3. The set-valued mapping F is said to be metrically regular uniformly in p rela-
tively to V at ((x0, p0), y0) with a modulus τ > 0, if there exist ε > 0 and a neighborhood W of p0
such that

d(x,S(y, p))≤ τd(y,F (x, p)), for all (x, y, p)∈
(

B((x0, y0)ε)×W
)

∩V ; d(y,F (x, p))< ε. (20)

The infinum of all moduli τ is called the exact modulus of the metric regularity of F uniformly in
p at (x0, y0) relative to V and is denoted by reg V F (x0, p0, y0).

Denote by
V(x,p) := {y ∈ Y : (x, p, y)∈ V }, for (x, p)∈X ×P ;

V(y,p) := {x∈X : (x, p, y)∈ V }, for (y, p)∈ Y ×P.

For each (y, p) ∈ Y × P , the lower semicontinuous envelope relative to V of the function: x 7→
d(y,F (x, p)) is defined by

ϕV (x, y, p) :=

{

lim infu→x,u∈V(y,p)
d(y,F (u,p)) if x∈ clV(y,p)

+∞ otherwise.
(21)

Similarly to Theorem 2, one has

Theorem 3. Let X be a complete metric space, Y be a metric space and P be a topological
space. Let F :X × P ⇉ Y be a set-valued mapping and let ((x0, p0), y0) ∈ gph F ; V ⊆X ×P × Y ;
τ ∈ (0,+∞) be given. Suppose that for any p near p̄, the set-valued mapping x⇉ F (x, p) is a closed
multifunction. Then, among the following statements, one has (i)⇔ (ii)⇐ (iii)⇒ (iv). Moreover,
if Y is a normed linear space; V(x,p) is convex for any (x, p) near (x0, p0) and V(y,p) is open for
(y, p) near (y0, p0), then (i)⇒ (iv).
(i) F is metrically regular relative to V uniformly in p at ((x0, p0), y0);
(ii) There exist δ, γ > 0 and a neighborhood W of p0 such that

|ΓϕV (·, y, p)|(x)≥ τ−1 for all (x, p, y)∈
(

B(x0, δ)×W ×B(y0, δ)
)

, x∈ clV (y, p)
with d(y,F (x, p))∈ (0, γ); (22)

(iii) There exist δ, γ > 0 and a neighborhood W of p0 such that

|∇ϕV (·, y, p)|(x)≥ τ−1 for all (x, p, y)∈
(

B(x0, δ)×W ×B(y0, δ)
)

, x∈ clV (y, p)
with d(y,F (x, p))∈ (0, γ); (23)

(iv) There exist δ, γ > 0 and a neighborhood W of p0 such that

|∇ϕV (·, y, p)|(x)≥ τ−1 for all (x, p, y)∈
(

B(x0, δ)×W ×B(y0, δ)
)

∩V
with d(y,F (x, p))∈ (0, γ). (24)

Proof. The proof being similar to the one of Theorem 2, we omit it. �

3. Coderivative characterizations of directional metric regularity For the usual met-
ric regularity, sufficient conditions in terms of coderivatives have been given by various authors,
for instance, in [3, 43, 49, 31]. In this section, we establish a characterization of directional metric
regularity using the Fréchet subdifferential in Asplund spaces, i.e., Banach spaces for which every
convex continuous function is generically Fréchet differentiable. There are many equivalent descrip-
tions of Asplund spaces, which can be found, e.g., in [49] and its bibliography. In particular, any
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reflexive space is Asplund, as well as each Banach space such that if each of its separable subspaces
has a separable dual.
In order to formulate in this section some coderivative characterizations of directional metric

regularity, we require some more definitions. Let X be a Banach space. Consider now an extended-
real-valued function f : X → R ∪ {+∞}. The Fréchet subdifferential of f at x̄ ∈ Dom f is given
as

∂f(x̄) =

{

x∗ ∈X∗ : lim inf
x→x̄, x 6=x̄

f(x)− f(x̄)−〈x∗, x− x̄〉

‖x− x̄‖
≥ 0

}

.

For convenience of the reader, we would like to mention that the terminology regular subdifferential
instead of Fréchet subdifferential is also popular due to its use in Rockafellar and Wets [59]. Every
element of the Fréchet subdifferential is termed as a Fréchet (regular) subgradient. If x̄ is a point
where f(x̄) = ∞, then we set ∂f(x̄) = ∅. In fact one can show that an element x∗ is a Fréchet
subgradient of f at x̄ iff

f(x)≥ f(x̄)+ 〈x∗, x− x̄〉+ o(‖x− x̄‖) where lim
x→x̄

o(‖x− x̄‖)

‖x− x̄‖
= 0.

It is well-known that the Fréchet subdifferential satisfies a fuzzy sum rule on Asplund spaces (see
[49, Theorem 2.33]). More precisely, if X is an Asplund space and f1, f2 :X → R∪{∞} are such
that f1 is Lipschitz continuous around x∈Dom f1∩Dom f2 and f2 is lower semicontinuous around
x, then for any γ > 0 one has

∂(f1 + f2)(x)⊂
⋃

{∂f1(x1)+ ∂f2(x2) | xi ∈ x+ γBX , |fi(xi)− fi(x)| ≤ γ, i=1,2}+ γBX∗ . (25)

For a nonempty closed set C ⊆ X, denote by δC the indicator function associatedwith C (i.e.
δC(x) = 0, when x∈C and δC(x) =∞ otherwise). The Fréchet normal cone to C at x̄ is denoted
by N(C, x̄). It is a closed and convex object in X∗ which is defined as ∂δC(x̄). Equivalently a vector
x∗ ∈X∗ is a Fréchet normal to C at x̄ if

〈x∗, x− x̄〉 ≤ o(‖x− x̄‖), ∀x∈C,

where limx→x̄

o(‖x− x̄‖)

‖x− x̄‖
= 0. Let F : X ⇉ Y be a set-valued map and (x, y) ∈ gph F. Then the

Fréchet coderivative at (x, y) is the set-valued map D∗F (x, y) : Y ∗ ⇉X∗ given by

D∗F (x, y)(y∗) :=
{

x∗ ∈X∗ | (x∗,−y∗)∈N(gph F, (x, y))
}

.

This notion is recognized as a powerful tool of variational analysis when applied to problems of
optimization and control (see [49, 51, 44], and the references therein).
In the proof of the main result, we will use the following particular version of Theorem 2 for

directional metric regularity.

Theorem 4. Let X be a complete metric space and Y be a normed space. Let F :X⇉ Y be a
closed multifunction (i.e., its graph is closed) and fix (x0, y0)∈ gph F and V ⊆X ×Y. For a given
τ ∈ (0,+∞), then among the following statements, one has (i)⇔ (ii)⇐ (iii).
(i) F is metrically regular in the direction ȳ at (x0, y0);
(ii) There exists δ > 0 such that

|ΓϕV (ȳ,δ)(·, y)|(x)≥ τ−1 for all (x, y)∈
(

B(x0, δ)×B(y0, δ)
)

,
x∈ clV (ȳ, δ) with d(y,F (x))∈ (0, δ); (26)
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(iii) There exist δ > 0 such that

|∇ϕV (ȳ,δ)(·, y)|(x)≥ τ−1 for all (x, y)∈
(

B(x0, δ)×B(y0, δ)
)

x∈ clV (ȳ, δ) with d(y,F (x))∈ (0, δ).
(27)

Denote by SY ∗ the unit sphere in the dual space Y ∗ of Y, and by d∗ the metric associated with the
dual norm on X∗. For given ȳ ∈ Y and δ > 0, denote by

CY ∗(ȳ, δ) := {y∗ ∈ Y ∗ : |〈y∗, ȳ〉| ≤ δ} and SY ∗(ȳ, δ) := {y∗ ∈ Y ∗ : ‖y∗‖ ≤ 1+ δ, 〈y∗, ȳ〉 ≤ δ}, (28)

and
T (ȳ, δ) := {(y∗1 , y

∗
2)∈ SY ∗(ȳ, δ)×CY ∗(ȳ, δ) : ‖y∗1 + y∗2‖= 1}. (29)

For a given multifunction F :X⇉ Y, we associate the multifunction G :X⇉ Y ×Y defined by

G(x) =F (x)×F (x), x∈X.

Recall also that a multifunction F :X ⇉ Y is said to be pseudo-Lipschitz ( or Lipschitz-like or
satisfying the Aubin property) around (x0, y0) ∈ gph F if there exist constants L, δ > 0 such that

F (x)∩B(y0, δ)⊆F (x′)+L‖x−x′‖BY , for all x,x′ ∈B(x0, δ).

It is well known that F is pseudo-Lipschitz around (x0, y0) if and only if the function d(·, F (·)) :
X ×Y →R is Lipschitz near (x0, y0), (see for instance [56, Theorem 1.142]).

A coderivative characterization of directional metric regularity is initiated in the following the-
orem, which is the main result of this section.

Theorem 5. Let X,Y be Asplund spaces. Let F : X ⇉ Y be a closed multifunction and
(x0, y0) ∈ gph F be given. Let F be pseudo-Lipschitz around (x0, y0). Suppose that F has convex
values around x0, i.e., F (x) is convex for all x near x0. If

lim inf
(x,y1,y2)

G
→(x0,y0,y0)

δ↓0+

d∗(0,D
∗G(x, y1, y2)(T (ȳ, δ)))>m> 0, (30)

then F is directionally metrically regular in the direction ȳ with modulus τ ≤m−1 at (x0, y0).The

notation (x, y1, y2)
G
→ (x0, y0, y0) means that (x, y1, y2)→ (x0, y0, y0) with (x, y1, y2) ∈ gph G.

The following lemmata are needed in the proof of Theorem 5.

Lemma 1. Let F :X ⇉ Y be a multifunction with convex values for x near x0 and (x0, y0) ∈
gph F. Then for any ȳ ∈ Y, δ1, δ2> 0, there exist η, δ > 0 such that for all x∈B(x0, η), one has

(

F (x)+ coneB(ȳ, δ)
)

∩B(y0, η)∩{y ∈ Y : d(y,F (x))<η} ⊆F (x)∩B(y0, δ1)+ coneB(ȳ, δ2). (31)

Proof. Let ȳ ∈ Y, δ1, δ2 be given. If ‖ȳ‖< δ2 then the conclusion holds trivially. Suppose ‖ȳ‖ ≥ δ2.
Take δ= δ2/2 and ε ∈ (0, δ1/2) sufficiently small such that

ε(‖ȳ‖+ δ2/2)

δ1 − 2ε
< δ2/2.

Let η ∈ (0, ε/2) such that F (x) is convex for all x ∈ B(x0, η) and let now x ∈ B(x0, η) and y ∈
(

F (x)+ coneB(ȳ, δ))∩B(y0, η) with d(y,F (x))< ε/2 be given. Then, there exist z, v ∈ F (x) such
that

y= z+λ(ȳ+ δu), for λ≥ 0, u∈ Y ‖u‖ ≤ 1; ‖y− v‖< ε/2.
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If z ∈B(y0, δ1) then the proof is over. Otherwise, one has

λ(‖ȳ‖+ δ)≥‖y− z‖ ≥ ‖z− y0‖−‖y− y0‖ ≥ δ1 − η > δ1 − ε.

By setting

t :=
δ1 − 2ε

δ1 − ε
, w := tz+(1− t)v ∈F (x),

one has

‖w− y0‖ ≤ t‖z− v‖+ ‖v− y0‖ ≤ tλ‖y+ δu‖+ t‖y− v‖+ ‖v− y0‖< δ1 − 2ε/2+ ε< δ1

and,
(1− t)‖y− v‖

tλ
<
ε(‖ȳ‖+ δ)

δ1 − 2ε
< δ2/2.

Thus,

y−w= tλ

(

ȳ+ δu+(1− t)
y− v

tλ

)

∈ coneB(ȳ, δ2),

which implies that y ∈F (x)∩B(y0, δ1)+ coneB(ȳ, δ2). �

Associated with the multifunction F, for given ε > 0, (x0, y0) ∈ gph F, we define the localization
of F by

F(x0,y0,ε)(x) :=

{

F (x)∩ B̄(y0, δ0) if x∈ B̄(x0, ε)
∅ otherwise.

(32)

Note that, by definition, one has

D∗F (x, y) =D∗F(x0,y0,ε)(x, y) ∀(x, y)∈ gph F ∩ (B(x0, ε)×B(y0, ε)). (33)

The preceding lemma implies obviously the next corollary.

Corollary 2. Let F :X⇉ Y be a multifunction with convex values for x near x0 and (x0, y0)∈
gph F. Then the two following conditions are equivalent:

1. F is directionally metrically regular in the direction ȳ;
2. For any ε > 0, F(x0,y0,ε) is directionally metrically in the direction ȳ.

Lemma 2. Let C ⊆ Y be a nonempty convex cone. One has

N(C,z)⊆{z∗ ∈ Y ∗ : 〈z∗, z〉= 0}, for all z ∈C.

Proof. Let z ∈C be given. Then λz ∈C for all λ> 0. Hence, for z∗ ∈N(C,z), one has

〈z∗, λz− z〉 ≤ 0 ∀λ> 0.

Thus, 〈z∗, z〉= 0. �

Given a multifunction F :X⇉ Y , ȳ ∈ Y, for y ∈ Y and δ > 0, we define the set V(y, δ)⊆X × Y
by

V(y, δ) := {(x, z)∈X ×Y : y ∈F (x)+ z, z ∈ cone B̄(ȳ, δ)}. (34)
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Lemma 3. Let X,Y be Asplund spaces and let F :X⇉ Y be a closed multifunction with convex
values for x near x0, and (x0, y0)∈ gph F, ȳ ∈ Y be given. We suppose by assumption that

lim
(x,y)

F
→(x0,y0)

δ↓0+

d∗(0,D
∗F (x, y)(CY ∗(ȳ, δ)∩SY ∗))> 0. (35)

Then there exist κ > 0, ε > 0, δ0 > 0 such that for all δ ∈ (0, δ0), for any (x, y) ∈ B((x0, y0), ε), z ∈
cone B̄(ȳ, δ), with d(y,F (x))∈ (0, ε0) and y− z ∈F (x)∩ B̄(y0, ε), we can find η > 0 such that

d((x′, z′),V(y, δ))≤ τd(y,F (x′)+ z′) for all (x′, z′)∈B((x, z), η), z′ ∈ cone B̄(ȳ, δ). (36)

Proof. Since (35), then there exists δ0 ∈ (0,1) such that

inf
(x,y)∈gph F∩B((x0,y0),δ0)

d∗(0,D
∗F (x, y)(CY ∗(ȳ, δ0)∩SY ∗)) :=m> 0. (37)

Let Φ :X ×Y ⇉ Y be a multifunction defined by

Φ(x, z) :=

{

F (x)+ z if z ∈ cone B̄(ȳ, δ),
∅ otherwise.

Then Φ is a closed multifunction, and by a direct calculation, for (x, z, y) ∈ gph Φ, one has

D∗Φ(x, z, y)(y∗) =
{

(x∗, y∗ + z∗) ∈X∗ ×Y ∗ : x∗ ∈D∗F (x, y− z)(y∗), z∗ ∈N(cone B̄(ȳ, δ), z)
}

.
(38)

Then, V(y, δ) = Φ−1(y). Let ε, δ ∈ (0, δ0/2) with (1 + δ + |ȳ|)δ < δ0. Let (x, y) ∈ B((x0, y0), ε), z ∈
cone B̄(ȳ, δ) with d(y,F (x))∈ (0, ε); y−z ∈ F (x)∩ B̄(y0, ε) be given. Take η =min{δ,‖z‖}> 0, and
(x′, z′, y′)∈ gph Φ∩B((x, z, y), η), (x∗,w∗)∈D∗Φ(x′, z′)(y∗) with ‖y∗‖= 1. Then x∗ ∈D∗F (x′, y′ −
z′)(y∗); w∗ = y∗ + z∗ with some z∗ ∈ N(cone B̄(ȳ, δ), z′). Since N(cone B̄(ȳ, δ), z′) ⊆ {z∗ ∈ Y ∗ :
〈z∗, z′〉= 0}, then |〈z∗, ȳ〉| ≤ δ‖z∗‖. If ‖w∗‖< δ, then ‖z∗‖< 1+ δ, and moreover,

|〈y∗, ȳ〉| ≤ |〈z∗, ȳ〉|+ δ‖ȳ‖ ≤ (1+ δ+ ‖ȳ‖)δ < δ0.

Hence, y∗ ∈CY ∗(ȳ, δ0)∩SY ∗ . Since (x, y−z)∈B((x0, y0), ε), (x
′, z′, y′)∈ gph Φ∩B((x, z, y), η), then

(x′, y′ − z′)∈B((x0, y0), δ0) Therefore, from (37), we obtain ‖x∗‖ ≥m. Therefore,

lim inf
(x′,z′,y′)→Φ(x,z,y)

d∗(0,D
∗Φ(x′, z′, y′)(SY ∗))≥min{m,δ}.

Thanks to the standard coderivative characterization of metric regularity for closed multifunctions
(see, e.g., [3, 36]), we conclude that Φ is metrically regular around (x, z, y). Thus, there exists η > 0
such that

d((x′, z′),V(y, δ))≤ τd(y,Φ(x′, z′)) = τd(y,F (x′)+z′) for all (x′, z′) ∈B((x, z), η), z′ ∈ cone B̄(ȳ, δ).

So the lemma is proved . �

The next lemma is a penalty result which is similar to the one by Clarke ([11]).

Lemma 4. Let C be a subset of a metric space X and let x0 ∈C and ε > 0. Then for a function
f :X→R∪{+∞} which is Lipschitz on B(x0,2ε) with constant L> 0, one has

f ∗ := inf
{

f(x) : x∈C ∩B(x0,2ε)}≤ inf
{

f(x)+ td(x,C) : x∈B(x0, ε)
}

,

whenever t≥L.
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Proof. For any x ∈B(x0, ε), pick a sequence {zn}n∈N ⊆C with limk→∞ d(x, zk) = d(x,C). Then
zk ∈B(x0,2ε) when k is sufficiently large. Therefore,

f ∗ ≤ f(zk)≤ f(x)+Ld(x, zk)→ f(x)+Ld(x,C). �

Proof of Theorem 5. By the assumption, there is δ0 ∈ (0,1) such that

inf
(x,y1,y2)∈gph G∩B((x0,y0,y0),2δ0)

d∗(0,D
∗G(x, y1, y2)(T (ȳ, δ0)))≥m+ δ0. (39)

According to Corollary 2 and relation (33), by considering the localization F(x0,y0,δ0) instead of F,
without any loss of generality, we can assume that

F (x)⊆ B̄(y0, δ0) for all x∈ B̄(x0, δ0).

Note that for all (x, y1)∈ gph F, y∗1 ∈ Y
∗, one has

D∗G(x, y1, y1)((y
∗
1,0)) =D∗F (x, y1)(T (y

∗
1)).

Hence, (30) implies obviously (35). Therefore, according to Lemma 3, there is κ> 0 such that for all
δ ∈ (0, δ0), for any (x, y)∈B((x0, y0), δ0), z ∈ cone B̄(ȳ, δ), with d(y,F (x))∈ (0, δ0) and y−z ∈F (x)
(we may choose the same δ0 as above), we can find γ ∈ (0, δ0/2) such that

d((x′, z′),V(y, δ))≤ τd(y,F (x′)+ z′) for all (x′, z′)∈B((x, z), γ), z′ ∈ cone B̄(ȳ, δ), (40)

where V(y, δ) is defined by (34). Since F is pseudo-Lipschitz around x0, there is δ0 > 0 (we can
assume it is the same than the previous one) and L> 0 such that

F (x′)∩ B̄(y0, δ0)⊆ F (x)+L‖x−x′‖BY ∀x,x′ ∈B((x0, y0), δ0). (41)

Moreover, the function d(·, F (·)) :X×Y →R is Lipschitz around (x0, y0) as recalled above, say, on
B((x0, y0), δ0), with a Lipschitz modulus equal to L. By virtue of Theorem 4, it suffices to show
that one has |∇ϕδ(·, y)|(x)>m for any (x, y)∈

(

B(x0, δ)×B(y0, δ)
)

x∈ clVy(ȳ, δ) with d(y,F (x))∈
(0, δ). Remind that, V (ȳ, δ), Vy(ȳ, δ), ϕδ(·, y) are defined by (10), (11), respectively. Indeed, let
(x, y) ∈B(x0, δ)×B(y0, δ), x ∈ clV (ȳ, δ) with d(y,F (x))∈ (0, δ) be given. Set |∇ϕδ(·, y)|(x) := α.
Since d(y,F (·)) is Lipschitz on B(x0, δ0), then

ϕδ(x
′, y) = d(y,F (x′)) ∀x′ ∈B(x0, δ0)∩ clVy(ȳ, δ).

By the definition of the strong slope, for each ε∈ (0, δ), there is η ∈ (0, ε) with

2η+ ε <min{γ/2, εd(y,F (x))} and 1− (α+ ε+2)η > 0

such that
d(y,F (x′))≥ (1− ε)d(y,F (x))∀x′ ∈B(x,4η)

and that

d(y,F (x))≤ d(y,F (x′))+ (m+ ε)‖x′ −x‖ for all x′ ∈ B̄(x,3η)∩ clVy(ȳ, δ).

Take u∈B(x, η2/4)∩Vy(ȳ, δ), v ∈ F (u) such that ‖y− v‖ ≤ d(y,F (x))+ η2/4. Then,

‖y− v‖ ≤ d(y,F (x′))+ (α+ ε)‖x′ −x‖+ η2/4 ∀x′ ∈ B̄(u,2η)∩ clVy(ȳ, δ).
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Consequently,

‖y− v‖ ≤ d(y,F (x′))+ (α+ ε)‖x′ −u‖+(α+ ε+1)η2/4 ∀(x′, z′)∈
(

B̄(u,2η)×Y
)

∩V(ȳ, δ). (42)

Let z ∈ coneB(ȳ, δ) such that y− z ∈F (u). Then,

‖z‖ ≥ d(y,F (u))≥ (1− ε)d(y,F (x))> 0.

Hence, by virtue of relation (41), there exists a neighborhood of u, say B(u,2η) such that

y ∈F (u)∩B(y0, δ0)+ z ⊆F (u′)+ ‖u−u′‖BY + z
⊆F (u′)+ coneB(ȳ, δ0) for all u′ ∈B(u,2η).

(43)

Since the function d(y,F (·)) is Lipschitz on B(x0, δ0), then from relation (42), according to Lemma
4, it follows that there is t > 0 such that

‖y−v‖ ≤ d(y,F (x′))+(α+ε)‖x′−u‖+td((x′, z′),V(ȳ, δ))+(α+ε+1)η2/4 ∀(x′, z′)∈ B̄(u, η)×B̄(z, η).

Moreover, by (40), one obtains

‖y− v‖ ≤ d(y,F (x′))+ (α+ ε)‖x′ −u‖+ tκd(y,F (x′)+ z′)+ (α+ ε+1)η2/4
for all(x′, z′) ∈ B̄(u, η)× B̄(z, η), z′ ∈ cone B̄(ȳ, δ).

Thus, setting G(x) := F (x)×F (x), x∈X, we derive

‖y− v‖ ≤ ‖y−w1‖+ (α+ ε)‖x′ −u‖+ tκ‖y−w2 − z′‖+
+δgph G(x

′,w1,w2)+ δcone B̄(ȳ,δ)(z
′)+ (α+ ε+1)η2/4

for all(x′,w1,w2, z
′)∈ B̄(u, η)×Y ×Y × B̄(z, η), z′ ∈ cone B̄(ȳ, δ).

Next, applying the Ekeland variational principle to the function

(x′,w1,w2, z
′) 7→ψ(x′,w1,w2, z

′) := ‖y−w1‖+(α+ ε)‖x′ −u‖+ tκ‖y−w2 − z′‖+
+δgph G(x

′,w1,w2)+ δcone B̄(ȳ,δ)(z
′)

on B̄(u, η) × Y × Y × B̄(z, η), we can select (u1, v1, v2, z1) ∈ (u, v, y − z, z) + η
4
BX×Y×Y×Y with

(u1, v1, v2)∈ gph G, z1 ∈ cone B̄(ȳ, δ) such that

‖y− v1‖+ τκ‖y− v2 − z1‖ ≤ ‖y− v‖(≤ d(y,F (x))+ η2/4); (44)

and
ψ(u1, v1, v2, z1)≤ψ(x′,w1,w2, z

′)+ (α+ ε+1)η‖(x′,w1,w2, z
′)− (u1, v1, v2, z1)‖

for all (x′,w1,w2, z
′)∈ B̄(u, η)×Y ×Y × B̄(z, η). Thus,

0∈ ∂(ψ+(α+ ε+1)η‖ ·−(u1, v1, v2, z1)‖)(u1, v1, v2, z1).

According to the fuzzy sum rule, we can find

v3 ∈B(v1, η); v4 ∈B(v2, η);

(u2,w1,w2)∈B(u1, η)×B(v1, η×B(v2, η)∩ gph G; z2, z3 ∈B(z, η);

v∗3 ∈ ∂‖y− ·‖(v3); (u
∗
2,−w

∗
1 ,−w

∗
2) ∈N(gph G, (u2,w1,w2));

(v∗4 , z
∗
3)∈ tκ‖y− ·− ·‖(v4, z3); z

∗
2 ∈N(cone B̄(ȳ, δ), z2),
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satisfying
‖v∗3 −w∗

1‖< (α+ ε+2)η; ‖v∗4 −w∗
2‖< (m+ ε+2)η;

‖z∗3 + z∗2‖< (m+ ε+2)η; ‖u∗
2‖ ≤α+ ε+(α+ ε+2)η.

(45)

Since v∗3 ∈ ∂‖y − ·‖(v3) (note that ‖y − v3‖ ≥ ‖y − v‖ − ‖v3 − v‖ ≥ d(y,F (x))− ε− 2η > 0), then
‖v∗3‖= 1 and 〈v∗3 , v3 − y〉 = ‖y − v3‖. Thus, ‖w

∗
1‖ ≤ 1 + (α+ ε+ 2)η, and the first relation of (45)

follows that

〈w∗
1 ,w1 − y〉 ≥ 〈v∗3 , v3 − y〉− (α+ ε+2)η‖v3 − y‖− 2η= (1− (α+ ε+2)η)‖v3 − y‖− 2η.

As η≤ εd(y,F (x))≤ εd(y,F (u))/(1− ε) for all u∈B(x, η), one obtains

〈w∗
1 ,w1 − y〉 ≥ (1− ε1)‖w1 − y‖, (46)

where
ε1 := (α+ ε+2)η− 2(α+ ε+2)ηε(1− ε)−1− 2ε(1− ε)−1.

On the other hand, since F (u2) is convex and w∗
1 ∈−N(F (u2),w1), then by relation (63), there is

w′
1 ∈ F (u2) such that y−w′

1 ∈ coneB(ȳ, δ0). Therefore

〈w∗
1 , y−w′

1〉= 〈w∗
1 , y−w′

1〉+ 〈w∗
1 ,w1 −w′

1〉< 0.

Consequently,
〈w∗

1 , ȳ〉 ≤ δ0‖w
∗
1‖/2≤ δ0(1+ (α+ ε+2)η)/2. (47)

Next, since (v∗4 , z
∗
3)∈ tκ‖y− ·− ·‖(v4, z3), then v

∗
4 = z∗3 and ‖z∗3‖ ≤ tκ. Hence from (45), one has

‖w∗
2 − z∗2‖ ≤ ‖w∗

2 − v∗4‖+ ‖z∗2 − z∗3‖ ≤ 2(α+ ε+2)η.

As z∗2 ∈N(cone B̄(ȳ, δ), z2), with z2 6= 0, then 〈z∗2 , z2〉= 0. Therefore,

|〈w∗
2 , z2〉| ≤ 2(α+ ε+2)η‖z2‖< .

As z2 ∈ cone B̄(ȳ, δ), one obtains

|〈w∗
2 , ȳ〉| ≤ 2(α+ ε+2)η+ δ. (48)

Moreover,
|〈w∗

2 ,w2 − y〉| ≤ |〈z∗2 ,w2 − y− z2〉|+ |〈z∗2 −w∗
2 ,w2 − y〉| ≤ ε2‖w1 − y‖,

where
ε2 =

(

(tκ+2(α+ ε+2)+2(α+ ε+2)(‖y0‖+2δ0 +2η)
)

ε(1− ε)−1.

The second inequality of the preceding relation follows from

‖z∗2‖ ≤ ‖z∗3‖+ ‖z∗2 − z∗3‖ ≤ tκ+(α+ ε+2),

and
‖w2 − y‖ ≤ ‖w2 − v2‖+ ‖v2 − (y− z)‖+ ‖z‖< 2η+2δ0+ ‖y0‖.

Hence, by using the convexity of F (u2), and w
∗
2 ∈−N(F (u2),w2)

〈w∗
2 ,w1 − y〉= 〈w∗

2 ,w1 −w2〉+ 〈w∗
2 ,w2 − y〉 ≥−ε2‖w1 − y‖. (49)

From relations (51) and (49), one derives that

〈w∗
1 +w∗

2 ,w1 − y〉 ≥ (1− ε1− ε2)‖w1 − y‖. (50)
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Consequently, ‖w∗
1 +w∗

2‖ ≥ 1− ε1 − ε2.

Set

y∗1 =
w∗

1

‖w∗
1 +w∗

2‖
; y∗2 =

w∗
2

‖w∗
1 +w∗

2‖
and x∗ =

u∗
2

‖w∗
1 +w∗

2‖
.

From relations (47), (48), (50), one has

〈y∗1 , ȳ〉 ≤ δ0‖y
∗
1‖ ≤

δ0(1+ (α+ ε+2)η)

2(1− ε1− ε2)
;

〈y∗2 , ȳ〉 ≤
2(α+ ε+2)η+ δ

1− ε1 − ε2
;

x∗ ∈D∗G(u2,w1,w2)(y
∗
1, y

∗
2); ‖y∗1 + y∗2‖= 1.

As ε1, ε2 go to 0 as ε, η → 0, then y∗1 ∈ SY ∗(ȳ, δ) and y∗2 ∈ CY ∗(ȳ, δ). Thus (y∗1 , y
∗
2) ∈ T (ȳ, δ). As

(u2,w1,w2)∈B((x0, y0, y0), δ0), according to (45), one obtains

α+ δ0 ≤‖x∗‖= ‖u∗
2‖/‖w

∗
1 +w∗

2‖ ≤
α+ ε+(α+ ε+2)η

1− ε1 − ε2
. (51)

As ε, η, ε1, ε2 are arbitrary small, we obtain m+ δ0 ≤α and the proof is complete. �

Condition (30) is also a necessary condition for directional metric regularity in Banach spaces
as showed in the next proposition.

Proposition 2. Let X,Y be Banach spaces and let F : X ⇉ Y be a closed multifunction,
(x0, y0) ∈ gph F and ȳ ∈ Y. Suppose that F has convex values for x near x0. If F is metrically
regular in the direction ȳ ∈ Y at (x0, y0), then

lim inf
(x,y1,y2)

G
→(x0,y0,y0)

δ↓0+

d∗(0,D
∗G(x, y1, y2)(T (ȳ, δ)))> 0..

Proof. Assume that F is metrically regular in the direction ȳ ∈ Y, i.e., there exist τ > 0, δ > 0, ε >
0 such that

d(x,F−1(y))≤ τd(y,F (x)) for all (x, y)∈B(x0, ε)×B(y0, ε); y ∈F (x)+ coneB(ȳ, δ). (52)

For γ ∈ (0, δ), let (x, y1, y2) ∈ gphG ∩ B(x0, ε/2) × B(y0, ε/2) × B(y0, ε/2); (y
∗
1 , y

∗
2) ∈ T (ȳ, γ) and

x∗ ∈D∗G(x, y1, y2)(y
∗
1, y2). For any α ∈ (0,1), there exists β ∈ (0, ε/2) such that

〈x∗, u−x〉− 〈y∗1 , v1 − y1〉+ 〈y∗2 , v2 − y2〉 ≤ ε(‖u−x‖+ ‖v1 − y1‖+ ‖v2 − y2‖), (53)

for all (u, v1, v2) ∈ gphG∩B((x, y1, y2), β).

For δ1 ∈ (0, δ), take w ∈BY such that 〈y∗2 , ȳ+ δw〉 ≤ γ − δ1. Since (52), for all sufficiently small
t > 0, we can find u∈ F−1(y2 + t(ȳ+ δw)) such that

‖x−u‖ ≤ (1+α)τd(y2 + t(ȳ+ δw), F (x))≤ (1+α)t‖ȳ+ δu‖<β.

Since y∗1 ∈−N(F (x), y1) and F (x) is convex, then 〈y∗1 , y2 − y1〉 ≥ 0. Therefore, by taking v1 = v2 =
y2 + t(ȳ+ δw) into account in (53), one obtains

(1+α)τt‖ȳ+ δu‖‖x∗‖ ≥ 〈x∗, x−u〉 ≥ 〈y∗1 + y∗2 , v− y2〉+ 〈y∗1 , y2 − y1〉
≥ t(δ1− γ)−αt‖ȳ+ δu‖((1+α)τ +1).
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As α> 0, δ1 ∈ (0, δ) are arbitrary, one has

‖x∗‖ ≥
δ− γ

τ‖ȳ+ δu‖
≥

δ− γ

τ(‖ȳ‖+ δ)
.

Thus,

lim inf
(x,y1,y2)

G
→(x0,y0,y0)

γ→0+

d∗(0,D
∗G(x, y1, y2)(T (ȳ, γ)))≥

δ

τ(‖ȳ‖+ δ)
> 0.

The proof is complete. �

Combining this proposition and Theorem 5, one has

Theorem 6. Let X,Y be Asplund spaces. Suppose F :X ⇉ Y be a closed multifunction and
(x0, y0) ∈ gph F such that F has convex values around x0. Suppose further that F is pseudo-
Lipschitz around (x0, y0). Then, F is metrically regular in direction ȳ ∈ Y at (x0, y0) if and only
if

lim inf
(x,y1,y2)

G
→(x0,y0,y0)

δ↓0+

d∗(0,D
∗G(x, y1, y2)(T (ȳ, δ)))> 0.

Recall that the Mordukhovich limiting coderative of F denoted by D∗
MF (x, y) : Y ∗ ⇉X∗ is defined

by

D∗
MF (x, y)(y∗) := lim inf

u,v)
F
→(x,y)

v∗
w∗

→y∗

D∗F (u, v)(v∗) =











x∗ ∈X∗ :

(xn, yn)
F
→ (x, y)

x∗
n ∈D

∗F (xn, yn)(y
∗
n)

y∗n
w∗

→ y∗, x∗
n

w∗

→ x∗











. (54)

Let us now recall the notion of partial sequential normal compactness (PSNC, in short, see [49,
page 76]). A multifunction F :X⇉ Y is partially sequentially normally compact at (x̄, ȳ) ∈ gph F ,
iff, for any sequences {(xk, yk, x

⋆
k, y

⋆
k)}n∈N ⊂ gph F ×X⋆ ×Y ⋆ satisfying

(xk, yk)→ (x̄, ȳ), x⋆
k ∈D

⋆
MF (xk, yk)(y

⋆
k), x

⋆
k

w⋆

→ 0,‖y⋆k‖→ 0,

one has ‖x⋆
k‖→ 0 as k→∞.

Remark 1. Condition (PSNC) at (x̄, ȳ) ∈ gph F is satisfied if X is finite dimensional, or F is
pseudo-Lipschitz around that point.

The next corollary that follows directly from the preceding theorem, gives a point-based condition
for directional metric regularity.

Corollary 3. Under the assumptions of Theorem 6, suppose further that G−1 is PSNC at
(x0, y0, y0). Then F is metrically regular in the direction ȳ ∈ Y at (x0, y0) if and only if

d∗(0,D
∗
MG(x0, y0, y0)(T (ȳ,0)))> 0.

With an analogous proof, we obtain the following parametric version of Theorem 5 .

Theorem 7. Let X,Y be Asplund spaces and P be a topological space. Let F :X ×P ⇉ Y be
a set-valued mapping and let ((x0, p0), y0)∈ gph F. Suppose the following conditions are satisfied:
(a) For any p near p̄, the set-valued mapping x⇉ F (x, p) is a closed multifunction;
(b) For (x, p) near (x0, p0), F (x, p) is convex;
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(c) F (·, p) is pseudo-Lipschitz uniformly in p around (x0, p0).

Then, for ȳ ∈ Y, F is directionally metrically regular in direction ȳ uniformly in p at (x0, p0, y0) if
and only if

lim inf
(x,p,y1,y2)

G
→(x0,p0,y0,y0)

δ↓0+

d∗(0,D
∗Gp(x, y1, y2)(T (ȳ, δ)))> 0, (55)

where,
G(x, p) =Gp(x) := F (x, p)×F (x, p), (x, p)∈X ×P,

We next consider a special case of F (x, p) := f(x, p)−K := fp(x)−K, here, K ⊆ Y is a nonempty
closed convex subset. f : X × P → Y is a (locally) continuous mapping around a given point
(x0, p0)∈X×P with f(x0, p0)∈K, and f(·, p) is Lipschitz uniformly in p near (x0, p0). Obviously,
for this case, assumptions (a), (b), (c) of Theorem 7 are satisfied as well. Moreover, by setting
gp := (fp, fp) :X→ Y ×Y, one has

D∗Gp(x, y1, y2)(y
∗) =

{

D∗gp(x)(y
∗) if f(x, p)− yi ∈K, y

∗
i ∈N(K,f(x, p)− yi), i= 1,2

∅ otherwise,

where, we use the usual notations: fp(x) := f(x, p); D∗fp(x)(y
∗) := D∗fp(x, f(x, p))(y

∗). Hence,
Theorem 7 yields the following corollary.

Corollary 4. Let X,Y be Asplund spaces and P be a topological space. Let K ⊆ Y be a
nonempty closed convex subset and let f : X × P → Y be a locally continuous mapping around
(x0, p0) ∈X × P with k0 := f(x0, p0) ∈Q. Suppose further that f(·, p) is Lipschitz uniformly in p
near (x0, p0). If for ȳ ∈ Y,

lim inf
(x,p,k1,k2)→(x0,p0,k0,k0)

δ↓0+

d∗(0,D
∗fp(x)(T (ȳ, δ))∩ (N(K,k1)×N(K,k2)))>m> 0, (56)

then the mapping F (x, p) := f(x, p)−K, (x, p)∈X ×P is directionally metrically regular in direc-
tion ȳ uniformly in p, with modulus τ =m−1 at (x0, p0), i.e., there exist ε > 0, δ > 0 and a neigh-
borhood W of p0such that

d(x,S(y, p))≤ τd(f(x, p)− y,K) for all (x, p,0)∈B(x0, ε)×W ×B(0, ε),

with y ∈ f(x, p)−K+coneB(ȳ, δ).

In particular, one has

d(x,S(p))≤ τd(f(x, p),K) for all (x, p)∈B(x0, ε)×W,

with f(x, p)∈K − coneB(ȳ, δ). Here,

S(y, p) = {x∈X : f(x, p)− y ∈K}, S(p) := {x∈X : f(x, p)∈K}.

Remark 2. Note that if K is sequentially normally compact at k̄, i.e., for all sequences
(kn)n∈N ⊆K, (k∗n)n∈N with k∗n ∈N(K,kn),

kn → k̄ k∗n
w∗

→ 0 ⇐⇒ ‖k∗n‖→ 0,

and P is a metric space, then instead of (56), the following point-based condition

d∗(0,D
∗
limgp0(x0)(T (ȳ,0)∩ (N(K,k0)×N(K,k0)))> 0, (57)
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is also a sufficient condition for directional metric regularity at ȳ, uniformly in p of F (x, p) :=
f(x, p)−K at (x0, p0). Here, D

∗
limgp0(x0) denotes the sequential limiting subdifferential of D∗gp(x) :

D∗
limgp0(x0)(y

∗
1 , y

∗
2) := lim inf

(x,p)→(x0,p0)

(z∗1 ,z
∗

2)
w∗

→ (y∗1 ,y
∗

2)

D∗gp(x)(z
∗
1 , z

∗
2), y

∗
1 , y

∗
2 ∈ Y

∗.

Corollary 5. With the assumptions of Corollary 4, suppose further that f is Fréchet differ-
ential with respect to x near (x0, p0), and its derivative with respect to x is continuous at (x0, p0).
Then, the mapping F (x, p) := f(x, p) − K, (x, p) ∈ X × P is directionally metrically regular in
direction ȳ uniformly in p if and only if

lim inf
(k1,k2)→k0

δ↓0+

d∗(0, g
′∗
x (x0, p0)(T (ȳ, δ)∩ (N(K,k1)×N(K,k2)))>m> 0. (58)

Here, f ′∗
x (x, p) stands for the adjoint operator of f ′

x(x, p) Moreover, if K is normally sequentially
compact, then (58) is equivalent to

d∗(0, g
′∗
x (x0, p0)(T (ȳ,0)∩ (N(K,k0)×N(K,k0)))> 0. (59)

Proof. For the sufficiently part, suppose that

lim inf
(k1,k2)→(k0,k0)

δ↓0+

d∗(0, g
′∗
x (x0, p0)(T (ȳ, δ))∩N(K,k1)×N(K,k2))>m> 0.

Since f ′
x is continuous at (x0, p0), for any ε > 0, there exist δ > 0 and a neighborhoodW of p0 such

that
‖g′x(x, p)− g′x(x0, p0)‖< ε for all (x, p)∈B(x0, ε)×W.

Therefore, for all δ > 0,
‖g′x(x, p)(y

∗
1, y

∗
2)− g′x(x0, p0)(y

∗
1, y2)‖< ε,

for all (x, p)∈B(x0, ε)×W, k1, k2 ∈B(k0, ε), (y
∗
1 , y

∗
2)∈ T (ȳ, δ)∩ (N(K,k1)×N(K,k2)).

Consequently,

lim inf
(x,p,k1,k2)→(x0,p0,k0,k0)

δ↓0+

d∗(0, g
′∗
x (x, p)(T (ȳ, δ)∩ (N(K,k1)×N(K,k2)))

= lim inf
k→k0
δ↓0+

d∗(0, g
′∗
x (x0, p0)(T (ȳ, δ)∩ (N(K,k1)×N(K,k2)))>m> 0

.

The conclusion follows from Corollary 4. The proof of the necessary part is analogous to the one
of Proposition 2. The equivalence between (58) and (59) follows from Remark 2. �

Corollary 5 subsumes the following result, established by Arutyunov, Avakov and Izmailov in
[1].

Corollary 6. ([1], Theorem 2.3) With the assumptions of Corollary 5, if

cone{ȳ}∩ Int (f(x0, p0)+ Imf ′(x0, p0)−K) 6= ∅, (60)

then the mapping F (x, p) := f(x, p)−K, (x, p)∈X ×P, is directionally metrically regular in direc-
tion ȳ uniformly in p at (x0, p0).
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Proof. It suffices to show that (60) implies (58). Indeed, assume (60) holds, and assume to con-
trary that (58) fails to be hold. Then, there exist sequences (δn)n∈N with δn ↓ 0; (k

1
n)n∈N, (k

2
n)n∈N ⊆

K, kin → k0 = f(x0, p0) (i= 1,2), (y1∗n )n∈N, (y
2∗
n )n∈N with (y1∗n , y

2∗
n )∈ T (ȳ, δn)∩ [N(K,k1n)×N(K,k2n)]

and (x∗
n)n∈N ⊆X∗ such that

x∗
n = (y1∗n + y2∗n ) ◦ f ′

x(x0, p0); ‖x∗
n‖→ 0.

By (60), there exist λ≥ 0, such that

0∈ Int(f(x0, p0)+ Imf ′(x0, p0)−K)−λȳ. (61)

Set Cnm := nf ′(x0, p0)(B(0,1))+m(f(x0, p0)−K−λȳ), n∈N. Then,
⋃∞

n,m=1Cnm = Y. According
to the Baire theorem, at least one of the clC ′

nms has a nonempty interior. Therefore, consider
y ∈ Y, α> 0 and ε > 0 such that

B(y, ε)⊆ cl(f ′(x0, p0)(B(0, α))+ f(x0, p0)−K−λȳ).

On the other hand, from (61), there are t, r > 0 such that

−ty ∈ f ′(x0, p0)(B(0, α))+ r(f(x0, p0)−K −λȳ).

Hence,

B(0, tε)⊆−ty+B(ty, tε)⊆ cl((1+ t)f ′(x0, p0)(B(0, α))+ (t+ r)(f(x0, p0)−K −λȳ).

Equivalently, for γ := tε/(t+ r), β := (1+ t)α/(t+ r),

B(λȳ, γ)⊆ cl(f ′(x0, p0)(B(0, β))+ f(x0, p0)−K). (62)

For each n, let un ∈BX be chosen such that 〈y1∗n + y2∗n , un〉<−1/2. Since (y1∗n , y
2∗
n ) ∈ T (ȳ, δn), then

limsup
n→∞

〈y1∗n + y2∗n , λȳ+ γun〉 ≤−γ/2.

On the other hand, by (62), for each n, we can find xn ∈B(0, β), zn ∈K such that

‖λȳ+ γun − (k0+ f ′
x(x0, p0)(xn)− zn)‖< 1/n.

Since yi∗n ∈N(K,kin) (i=1,2); ‖x∗
n‖→ 0; (xn) is bounded, and k

i
n → k0, one has

limsup
n→∞

〈y1∗n + y2∗n , λȳ+ γun〉= limsup
n→∞

(〈y1∗n + y2∗n , k0 − zn〉+ 〈x∗
n, xn〉)≥ 0,

a contradiction. �

From Theorem 5, we can derive directly the following result due to Ioffe ([38]) on directional
metric regularity of a closed convex multifunction for the case in which the convex multifunction
under consideration is assumed to be pseudo-Lipschitz.

Corollary 7. ([38], Proposition 15) Let X,Y be Banach spaces and F :X ⇉ Y be a closed
convex multifunction and let (x0, y0) ∈ gph F and ȳ ∈ Y. Suppose that x0 ∈ IntF−1(Y ). Then F is
directionally metrically regular in direction ȳ at (x0, y0) if and only if

cone{ȳ}∩ Int(F (X)− y0) 6= ∅. (63)
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Proof. For the sufficiency part, under the assumption x0 ∈ IntF−1(Y ), according to the
Robinson-Ursescu Theorem ([57], [60]), then F is pseudo-Lipschitz near x0. By virtue of Theorem
5, we only need to show that

lim inf
(x,y1,y2)

G
→(x0,y0,y0)

δ↓0+

d∗(0,D
∗G(x, y1, y2)(T (ȳ, δ)))> 0. (64)

By (63), there is some λ ≥ 0 such that 0 ∈ Int(F (X)− y0 − λȳ). Then, by the convexity of the
multifunction F,

∞
⋃

n,m=1

(F (B(x0, n))−m(y0−λȳ)) = Y.

Thanks to the Baire Category Theorem, similarly to the proof of Corollary 6, we can find γ > 0,
β > 0 such that

B(λȳ, γ)⊆ cl(F (B(x0, β))− y0). (65)

Let (xn, y
1
n, y

2
n) ∈ gph G; (x∗

n)n∈N, (y
1∗
n )n∈N, (y

2∗
n )n∈N, (δn)n∈N such that

(xn, y
1
n, y

2
n)→ (x0, y0, y0); δn ↓ 0

+; x∗
n ∈D

∗F (xn, y
1
n, y

2
n)(y

1∗
n , y

2∗
n ); (y1∗n , y

2∗
n )∈ T (ȳ, δn).

For each n, take un ∈BY such that 〈y1∗n + y2∗n , un〉<−1+ δn. Then,

〈y1∗n + y2∗n , λȳ+ γun〉< δn − (1− δn)γ.

On the other hand, by (65), we can select zn ∈B(x0, β); vn ∈ F (zn) such that

‖λȳ+ γun − (vn − y0)‖< δn.

Therefore,
〈y1∗n + y2∗n , vn − y0〉< 〈y1∗n + y2∗n , λȳ+ γun〉+ δn < 2δn − (1− δn)γ.

Since (x∗
n,−y

1∗
n ,−y

2∗
n ) ∈N(gph G, (xn, y

1
n, y

2
n)), then

lim inf
n→∞

(〈x∗
n, zn −xn〉− 〈y1∗n + y2∗n , vn − y0〉)≤ 0.

Consequently,

lim inf
n→∞

‖x∗
n‖‖zn −xn‖ ≥ lim inf

n→∞
〈y1∗n + y2∗n , vn − y0〉 ≥ (1− δn)γ− 2δn.

By letting n→∞, one obtains lim infn→∞ ‖x∗
n‖ ≥ γ/α, which shows (64).

Suppose now that there exist τ > 0, δ > 0 such that

d(x,F−1(y))≤ τd(y,F (x)) for all (x, y)∈B(x0, δ)×B(y0, δ), y ∈ F (x)+ coneB(ȳ, δ).

In particular, one has

F−1(y) 6= ∅ for all y ∈B(y0, ε)∩ (y0+coneB(ȳ, δ)).

Let ε > 0 α> 0 be sufficiently small such that ε < δλ and ‖λȳ‖+ ε < δ. Then, for all u∈BY

z := y0 +λȳ+ εu∈B(y0, δ)∩ (y0+coneB(ȳ, δ)).

Hence, F−1(z) 6= ∅. It follows that B(λȳ, ε)⊆F (X)− y0, and the proof is complete. �
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4. Robustness of directional metric regularity The characterizations of directional met-
ric regularity established in Theorem 4, enable us to derive the following result on the stability of
directional metric regularity under perturbation. This result has been first obtained in [1] under
the inner semicontinuity assumption. Then, when the image space Y is a Banach space, Ioffe in
[38] has extended this stability result (without the inner semicontinuityassumption) with estimates
sharper than the one in [1]. Here, based on the mentioned characterizations, we prove this result
for which, the completeness of Y is not necessary.

Theorem 8. Let X be a complete metric space and Y be a normed space. Let F :X ⇉ Y be
a closed multifunction and (x0, y0) ∈ gph F. Suppose that F is metrically regular with a modulus
τ > 0 in the direction ȳ ∈ Y, i.e., there exist ε > 0, δ > 0 such that

d(x,F−1(y))≤ τd(y,F (x)) for all (x, y)∈B((x0, y0), ε)∩V (ȳ, δ) with d(y,F (x))< ε. (66)

Let a mapping g :X→ Y be locally Lipschitz around x0 with a Lipschitz constant L> 0. Then F +g
is metrically regular in the direction ȳ at (x0, y0 + g(x0)) with

regȳ(F + g)(x0, y0 + g(x0))≤

(

1− γ

τ(1+ γ)
−L

)−1

,

provided

α ∈ (0,1), γ :=
α‖ȳ‖

‖ȳ‖+ δ(1−α)
; L<

δ(1−α)α

τ((1+α)‖ȳ‖+ δ(1−α))
.

Proof. Let ε, δ, γ,α,L as in Theorem 8. Let g :X→ Y be Lipschitz with constant L on B(x0, ε).
To simplify the notations, denote by

VF (δ) := {(x, y) : y ∈ F (x)+ coneB(ȳ, δ)}; V(F+g)(δ) := {(x, y) : y ∈F (x)+ g(x)+ coneB(ȳ, δ)};

VF,y(δ) := {x∈X : y ∈F (x)+coneB(ȳ, δ)}; VF+g,y(δ) := {x∈X : y ∈F (x)+g(x)+coneB(ȳ, δ)},

and ϕVF
(x, y), (resp. ϕVF+g

(x, y)) the lower semicontinuous envelope relative to VF (resp. VF+g) of
F (resp. F + g). Obviously,

ϕVF+g
(x, y) =ϕVF

(x, y− g(x)), for all (x, y)∈X ×Y.

According to Theorem 4 (ii), it suffices to prove that

|ΓϕVF+g
(·, y)|(x)≥

(

1− γ

τ(1+ γ)
−L

)

, (67)

whenever

(x, y)∈B((x0, y0 + g(x0), η) satisfies x∈ clVF+g,y(ρ); d(y,F (x)+ g(x))< η, (68)

where ρ := δ(1−α) and η=min{ε/(L+2), ε/(8τ)}.

Let x, y be as in (68). Then select sequences (λn)n∈N, (zn)n∈N, (xn))n∈N satisfying λn > 0, zn ∈
BX , (xn)→ x and such that

y− g(xn)∈ F (xn)+λn(ȳ+ ρzn), lim
n→∞

d(y,F (xn)+ g(xn)) = ϕVF+g(ρ)(x, y). (69)

Note that since (xn) tends to x and x∈B(x0, η), then for n large we have

d(y,F (xn)+ g(xn))< η. (70)
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Setting
tn := αϕVF+g(ρ)(xn, y)/(‖ȳ‖+ ρ), (71)

we observe that
tn‖ȳ‖<ϕVF+g(ρ)(xn, y)< η, (72)

and
d(y,F (xn)+ g(xn))≤ λn‖ȳ+ ρzn‖ ≤ λn(‖ȳ‖+ ρ) for some zn with |zn‖= 1.

This yields,

tn(‖ȳ‖+ ρ)/α≤ϕVF+g(ρ)(xn, y)≤ d(y,F (xn)+ g(xn))≤ λn(‖ȳ‖+ ρ).

Consequently,
tn/λn ≤α. (73)

Observe also that
λn(ȳ+ ρzn)− tnȳ

= (λn − tn)ȳ+λnρzn
= (λn − tn)(ȳ+

λnρ
λn−tn

zn).

According to (73)
λn − tn
λn

= 1−
tn
λn

≥ 1−α

and therefore
λn

λn − tn
ρ≤

ρ

1−α
= δ.

Hence, λn(ȳ+ ρzn)− tnȳ ∈ coneB(ȳ, ε) and thanks to (69), this yields

y− g(xn)− tnȳ ∈F (xn)+ coneB(ȳ, δ). (74)

Moreover,

‖y− g(xn)− tnȳ− y0‖ ≤ ‖y− g(x0)− y0‖+ ‖g(xn)− g(x0)‖+ tn‖ȳ‖< (2+L)η= ε; (75)

and combining 70) and (72) we also have

d(y− g(xn)− tnȳ, F (xn))≤ d(y− g(xn), F (xn))+ tn‖ȳ‖< 2η <
2ε

L+2
< ε. (76)

From (75) and (76) we deduce that
• y− g(xn)− tnȳ ∈B(y0, ε);
• d(y− g(xn)− tnȳ, F (xn))< ε;
• (xn, y− g(xn)− tnȳ)∈ VF (δ).

Hence according to Proposition 4 (ii) we have

d(xn, F
−1(y− g(xn)− tnȳ))
< τϕVF (ρ)

(xn, y− g(xn)− tnȳ)

≤ τ(ϕVF+g(ρ)(xn, y)+ tn‖ȳ‖)

= τtn

(

(1+α)‖ȳ‖+ ρ
)

α
thanks to (71). (77)

Using the fact that tn‖ȳ‖<η and ϕVF+g(ρ)(xn, y)≤ d(y− g(xn), F (xn)< η, we obtain

d(xn, F
−1(y− g(xn)− tnȳ)< 2τη.
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By the choice of η, we derive d(xn, F
−1(y− g(xn)− tnȳ)< ε/2, and therefore for any r ∈ (0,1), the

existence of some un ∈F
−1(y− g(xn)− tn) such that

d(xn, un)< τ(1+ r)tn((1+α)‖ȳ‖+ ρ)/α < ε/2.

Since (xn)→ x∈B(x0, η), for n sufficiently large we have d(xn, x0)≤ d(xn, x)+d(x,x0)< ε/2+η <
ε, so that un ∈B(x0, ε). Since un ∈ F−1(y− g(xn)− tnȳ)∩B(x0, ε) and by the Lipschitz property
of g on B(x0, ε) :

‖g(un)− g(xn)‖≤Ld(un, xn),

then

y ∈F (un)+ g(xn)+ tnȳ ⊆F (un)+ g(un)+ tn

(

ȳ+L
d(un, xn)

tn
BY

)

.

By the definition of L, for r sufficiently small, one obtains

y ∈F (un)+ g(un)+ coneB(ȳ, ρ).

Therefore,
ϕVF+g(ρ)(un, y)≤ d(y− g(un), F (un))≤ tn‖ȳ‖+Ld(xn, un). (78)

As tn‖ȳ‖ ≤ αϕVF+g(ρ)(xn, y) with α∈ (0,1), it follows that lim infn→∞ d(xn, un)> 0. Therefore, one
has

lim inf
n→∞

ϕVF+g(ρ)(x, y)ϕVF+g(ρ)(un, y)

d(x,un)

= lim inf
n→∞

ϕVF+g(ρ)(xn, y)−ϕVF+g(ρ)(un, y)

d(xn, un)

≥ lim inf
n→∞

tn(‖ȳ‖+ ρ)/α− tn‖ȳ‖

tn((1+ r)(‖ȳ‖+ ρ)/α+ tn‖ȳ‖
−L

=
(‖ȳ‖+ ρ)/α−‖ȳ‖

((1+ r)(‖ȳ‖+ ρ)/α+ ‖ȳ‖
−L.

As r > 0 is arbitrary small, one obtains

|ΓϕVF+g(ρ)(·, y)|(x)≥
1− γ

τ(1+ γ)
−L,

which completes the proof. �
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[2] Azé., D. 2003. A survey on error bounds for lower semicontinuous functions. Proceedings of 2003
MODE-SMAI Conference, ESAIM Proc., vol. 13. EDP Sci., Les Ulis, 1–17.
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Huynh and Théra: Directional metric regularity of multifunctions

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 25

[5] Bonnans, J. F., A. Shapiro. 2000. Perturbation analysis of optimization problems . Springer Series in
Operations Research, Springer-Verlag, New York.

[6] Borwein, J. M., Q.J. Zhu. 2005. Techniques of Variational Analysis . CMS Books in Mathemat-
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[33] Huynh, V.N., M. Théra. 2008. Error bounds in metric spaces and application to the perturbation
stability of metric regularity. SIAM J. Optim. 19(1) 1–20.
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