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FIRST ORDER GLOBAL ASYMPTOTICS

FOR CALOGERO-SUTHERLAND GASES

DJALIL CHAFAÏ, NATHAEL GOZLAN, AND PIERRE-ANDRÉ ZITT

Abstract. We study a physical system of N interacting particles in Rd, d ≥ 1, subject to pair
repulsion and confined by an external field. We establish a large deviations principle for their
empirical distribution as N tends to infinity. In the case of Riesz interaction, including Coulomb
interaction in arbitrary dimension d > 2, the rate function is strictly convex and admits a unique
minimum, the equilibrium measure, characterized via its potential. It follows that almost surely,
the empirical distribution of the particles tends to this equilibrium measure as N tends to infinity.
In the more specific case of Coulomb interaction in dimension d > 2, and when the external field
is a convex or increasing function of the radius, then the equilibrium measure is supported in a
ring. With a quadratic external field, the equilibrium measure is uniform on a ball.

1. Introduction

We study in this work a physical system of N particles at positions x1, . . . , xN ∈ Rd, d ≥ 1,
with identical “charge” qN := 1/N , subject to a confining potential V : Rd → R coming from an
external field and acting on each particle, and to an interaction potential W : Rd×Rd → (−∞,+∞]
acting on each pair of particles. The function W is finite outside the diagonal and symmetric: for
all x, y ∈ Rd with x 6= y, we have W (x, y) = W (y, x) < ∞. The energy HN (x1, . . . , xN ) of the
configuration (x1, . . . , xN ) ∈ (Rd)N takes the form

HN (x1, . . . , xN ) :=

N∑

i=1

qNV (xi) +
∑

i<j

q2
NW (xi, xj)

=
1

N

N∑

i=1

V (xi) +
1

N2

∑

i<j

W (xi, xj)

=

∫

V (x) dµN (x) +
1

2

∫∫

6=

W (x, y) dµN (x) dµN (y) (1.1)

where µN := 1
N

∑N
i=1 δxi in the empirical measure of the particles, and where the subscript “6=”

indicates that the double integral is off-diagonal. The energy HN : (Rd)N → R ∪ {+∞} is a
quadratic form functional in the variable µN .

From now on, and unless otherwise stated, we denote by |·| the Euclidean norm of Rd and we
make the following additional assumptions:

(H1) The function W : Rd ×Rd → (−∞,+∞] is continuous on Rd ×Rd, symmetric, takes finite
values on R

d × R
d \ {(x, x);x ∈ R

d} and satisfies the following integrability condition: for
all compact subset K ⊂ Rd, the function

z ∈ R
d 7→ sup{W (x, y); |x− y| ≥ |z|, x, y ∈ K}

is locally Lebesgue-integrable on Rd;
(H2) The function V : Rd → R is continuous and such that lim|x|→+∞ V (x) = +∞ and

∫

Rd

exp (−V (x)) dx < ∞.
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(H3) There exists constants c ∈ R and εo ∈ (0, 1) such that for every x, y ∈ Rd,

W (x, y) ≥ c− εo(V (x) + V (y)).

Let (βN )N be a sequence of positive real numbers such that βN → +∞ as N → ∞. Under
(H2)-(H3), there exists an integer N0 depending on εo such that for any N ≥ N0, we have

ZN :=

∫

Rd

· · ·

∫

Rd

exp (−βNHN (x1, . . . , xN )) dx1 · · ·dxN < ∞,

so that we can define the Boltzmann-Gibbs probability measure PN on (Rd)N by

dPN (x1, . . . , xN ) :=
exp (−βNHN (x1, . . . , xN ))

ZN
dx1 · · · dxN . (1.2)

Following [23, Section 11.3.1] (see also [20, Section 9.6]), the model is of Calogero-Sutherland type,
and the density of PN takes the form

N∏

i=1

f1(xi)
∏

1≤i<j≤N

f2(xi, xj).

The law PN is the equilibrium distribution of a system of N interacting Brownian particles in Rd,
at inverse temperature βN , with equal individual “charge” 1/N , subject to a confining potential
V acting on each particle, and to an interaction potential W acting on each pair of particles,
see Section 1.5.10. Note that for βN = N2, the quantity βNHN can also be interpreted as the
distribution of a system of N particles living in Rd, with unit “charge”, subject to a confining
potential NV acting on each particle, and to an interaction potential W acting on each pair of
particles.

Our work is motivated by the following physical control problem: given the (internal) interaction
potential W , for instance a Coulomb potential, a target probability measure µ⋆ on Rd, for instance
the uniform law on the unit ball, and a cooling scheme βN → +∞, for instance βN = N2, can
we tune the (external) confinement potential V (associated to an external confinement field) such
that µN → µ⋆ as N → ∞? In this direction, we provide some partial answers in Theorem 1.1,
Theorem 1.2, Corollary 1.3, and Corollary 1.4 below. We also discuss several possible extensions
and related problems in Section 1.5.

Let M1(Rd) be the set of probability measures on Rd. The mean-field symmetries of the model
suggest to study, under the exchangeable measure PN , the behavior as N → ∞ of the empirical
measure µN , which is a random variable on M1(Rd). With this asymptotic analysis in mind, we
introduce the functional I : M1(Rd) → (−∞,+∞] given by

I(µ) :=
1

2

∫∫

(V (x) + V (y) +W (x, y)) dµ(x)dµ(y).

The assumptions (H2)-(H3) imply that the function under the integral is bounded from below,
so that the integral defining I makes sense in R ∪ {+∞} = (−∞,+∞]. If it is finite, then

∫
V dµ

and
∫∫

Wdµ2 both exist (see Lemma 2.2), so that

I(µ) =

∫

V dµ+
1

2

∫∫

Wdµ2.

The energy HN defined by (1.1) is “almost” given by I(µN ), where the infinite terms on the
diagonal are forgotten.

1.1. Large deviations principle. Theorem 1.1 below is our first main result. It is of topological
nature, inspired from the available results for logarithmic Coulomb gases in random matrix theory
[4, 5, 36, 25]. We equip M1(Rd) with the weak topology, defined by duality with bounded con-
tinuous functions. For any set A ⊂ M1(Rd) we denote by int(A), clo(A) the interior and closure
of A with respect to this topology. This topology can be metrized by the Fortet–Mourier distance
defined by (see [19]):

dFM(µ, ν) := sup
max(|f |∞,|f |Lip)≤1

{∫

f dµ−

∫

f dν

}

. (1.3)

To formulate the large deviations result we need to introduce the following additional technical
assumption:
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(H4) For all ν ∈ M1(Rd) such that I(ν) < +∞, there is a sequence (νn)n∈N of probability
measures, absolutely continuous with respect to Lebesgue, such that νn converges weakly
to ν and I(νn) → I(ν), when n → ∞.

It turns out that assumption (H4) is satisfied for a large class of potentials V,W , and several
examples are given in Proposition 2.8 and Theorem 1.2.

In all the paper, if (aN )N and (bN )N are non negative sequences, the notation aN ≫ bN means
that aN = bNcN , for some cN that goes to +∞ when N → ∞.

Theorem 1.1 (Large Deviations Principle). Suppose that

βN ≫ N log(N).

If (H1)-(H2)-(H3) are satisfied then

(1) I is lower semi-continuous and has compact level sets;
(2) Under (PN )N , the sequence (µN )N of random elements of M1(Rd) equipped with the weak

topology has the following asymptotic properties. For every Borel subset A of M1(Rd),

lim sup
N→∞

logZNPN (µN ∈ A)

βN
≤ − inf

µ∈clo(A)
I(µ)

and

lim inf
N→∞

logZNPN (µN ∈ A)

βN
≥ − inf{I(µ);µ ∈ int(A), µ ≪ Lebesgue}.

(3) Under the additional assumption (H4), the full Large Deviation Principle (LDP) at speed
βN holds with the rate function

I⋆ := I − inf
M1(Rd)

I.

More precisely, for all Borel set A ⊂ M1(Rd),

− inf
µ∈int(A)

I⋆(µ) ≤ lim inf
N→∞

logPN (µN ∈ A)

βN

≤ lim sup
N→∞

logPN (µN ∈ A)

βN
≤ − inf

µ∈clo(A)
I⋆(µ).

(4) Let Imin := {µ ∈ M1 : I⋆(µ) = 0} 6= ∅. If (H4) is satisfied and if (µN )N are constructed
on the same probability space, and if d stands for the Fortet–Mourier distance (1.3), then
we have, almost surely,

lim
N→∞

dFM(µN , Imin) = 0.

A careful reading of the proof of Theorem 1.2 indicates that if Imin = {µ⋆} is a singleton, and
if (H4) holds for ν = µ⋆, then µN → µ⋆ almost surely as N → ∞.

1.2. Link with Sanov theorem. If we setW = 0 then the particles become i.i.d. and PN becomes
a product measure η⊗N

N where ηN ∝ e−(βN /N)V . When βN = N then ηN ∝ e−V does not depend
on N , and we may denote it η. To provide perspective, recall that the classical Sanov theorem [17,
Theorem 6.2.10] for i.i.d. sequences means in our settings that if W = 0 and βN = N then (µN )N

satisfies to a large deviations principle on M1(Rd) at speed N and with good rate function

µ 7→ K(µ|η) :=

{∫
f log(f) dη if µ ≪ η, with f := dµ

dη ;

+∞ otherwise

(Kullback-Leibler relative entropy or free energy). This large deviations principle corresponds to
the convergence limN→∞ dFM(µN , η) = 0. Note that, if µ is absolutely continuous with respect to
Lebesgue measure with density function g, then K(µ|η) can be decomposed in two terms

K(µ|η) =

∫

V dµ−H(µ),

where H(µ) is the Boltzmann-Shannon “continuous” entropy H(µ) := −
∫
g(x) log(g(x)) dx; there-

fore at the speed βN = N , the energy factor
∫
V dµ and the Boltzmann-Shannon entropy factor

H(µ) both appear in the rate function. In contrast, note that Theorem 1.1 requires a higher
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inverse temperature βN ≫ N log(N). If we set W = 0 in Theorem 1.1, then PN becomes
a product measure, the particles are i.i.d. but their common law depends on N , the function
µ 7→ I∗(µ) =

∫
V dµ− inf V is affine, its minimizers Imin over M1(Rd) coincide with

MV := {µ ∈ M1(Rd) : supp(µ) ⊂ arg inf V },

and Theorem 1.1 boils down to a sort of Laplace principle, which corresponds to the convergence
limN→∞ dFM(µN ,MV ) = 0. It is worthwhile to notice that the main difficulty in Theorem 1.1 lies
in the fact that W can be infinite on the diagonal (short scale repulsion). If W is continuous and
bounded on Rd × Rd, then one may deduce the large deviations principle for (µN )N from the case
W = 0 by using the Laplace-Varadhan lemma [17, Theorem 4.3.1] (see also [4, Corollary 5.1]). To
complete the picture, let us mention that if βN = N and if W is bounded and continuous, then
the Laplace-Varadhan lemma and the Sanov theorem would yield to the conclusion that (µN )N

verifies a large deviations principle on M1(Rd) at speed N with rate function R − infM1(Rd) R
where the functional R is defined by

R(µ) := K(µ|η) +
1

2

∫∫

W (x, y) dµ(x)dµ(y)

= −H(µ) + I(µ);

once more, the Boltzmann-Shannon entropy factor H(µ) reappears at this rate.

1.3. Equilibrium measure. Our second main result, expressed in Theorem 1.2 and Corollary 1.3
below is of differential nature. It is based on an instance of the general Gauss problem in potential
theory [45, 46]. It concerns special choices of V and W for which I⋆ achieves its minimum 0 for a
unique and explicit µ⋆ ∈ M1(Rd). Recall that the Coulomb interactions correspond to the choice
W (x, y) = k∆(x − y) where k∆ is the Coulomb kernel (opposite in sign to the Newton kernel)
defined on Rd, d ≥ 1, by

k∆(x) :=







−|x| if d = 1,

log 1
|x| if d = 2,

1
|x|d−2 if d ≥ 3.

(1.4)

This is, up to a multiplicative constant, the fundamental solution1 of the Laplace equation. In
other words, denoting ∆ := ∂2

x1
+ · · · + ∂2

xd
the Laplacian, we have, in a weak sense, in the space

of Schwartz-Sobolev distributions D′(Rd),

− c∆k∆ = δ0 with c :=







1
2 if d = 1,
1

2π if d = 2,
1

d(d−2)ωd
if d ≥ 3,

(1.5)

where ωd := πd/2

Γ(1+d/2) is the volume of the unit ball of Rd. Our notation is motivated by the

fact that −∆ is a nonnegative operator. The case of Coulomb interactions in dimension d = 2 is
known as “logarithmic potential with external field” and is widely studied in the literature: see
[27, 39, 3, 25]. To focus on novelty, we will not study the Coulomb kernel for d ≤ 2. We refer to
[32, 21, 31, 13, 1, 41] and references therein for the Coulomb case in dimension d = 1, to [4, 3, 25] to
the Coulomb case in dimension d = 2 with support restriction on a line, to [5, 36, 27, 25, 39, 40, 44]
for the Coulomb case in dimension d = 2. We also refer to [7] for the asymptotic analysis in terms
of large deviations of Coulomb determinantal point processes on compact manifolds of arbitrary
dimension.

The asymptotic analysis of µN asN → ∞ for Coulomb interactions in dimension d ≥ 3 motivates
our next result, which is stated for the more general Riesz interactions in dimension d ≥ 1. The
Riesz interactions correspond to the choice W (x, y) = k∆α

(x− y) where k∆α
, 0 < α < d, d ≥ 1, is

the Riesz kernel defined on Rd, by

k∆α
(x) :=

1

|x|d−α
. (1.6)

1There is no boundary conditions here, and thus the term “Green function” is not appropriate.
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Up to a multiplicative constant, this is the fundamental solution of a fractional Laplace equation
(which is the true Laplace equation (1.5) when α = 2), namely

− cα∆αk∆α
= F−1(1) = δ0 with cα :=

πα− d
2

4π2

Γ(d−α
2 )

Γ(α
2 )

, (1.7)

where the Fourier transform F and the fractional Laplacian ∆α are given by

F(k∆α
)(ξ) :=

∫

Rd

e2iπξ·x k∆α
(x) dx =

1

cα4π2|ξ|α
and ∆αf := −4π2F−1(|ξ|αF(f)).

Note that ∆2 = ∆ while ∆α is a non-local integro-differential operator when α 6= 2. When d ≥ 3
and α = 2 then Riesz interactions coincide with Coulomb interactions and the constants match.
Beware that our notations differ slightly from the ones of [30, p. 44]. Several aspects of the Gauss
problem in the Riesz case are studied in [18, 45, 46].

In the Riesz case, 0 < α < d, one associates to any probability measure µ on Rd a function
Uµ

α : Rd 7→ [0,+∞] called the potential of µ as follows

Uµ
α (x) :=

∫

k∆α
(x− y) dµ(y), ∀x ∈ R

d.

We refer to Section 3 for a review of basic definitions from potential theory. In particular, one
defines there a notion of capacity of sets, and a property is said to hold quasi everywhere if it holds
outside a set of zero capacity. The following theorem is essentially the analogue in Rd of a result
of Dragnev and Saff on spheres [18].

Theorem 1.2 (Riesz gases). Suppose that W is the Riesz kernel W (x, y) = k∆α
(x− y). Then:

(1) The functional I is strictly convex;
(2) (H1)-(H2)-(H3)-(H4) are satisfied and Theorem 1.1 applies;
(3) There exists a unique µ⋆ ∈ M1(Rd) such that

I(µ⋆) = inf
µ∈M1(Rd)

I(µ);

(4) If we define (µN )N on a unique probability space (for a sequence βN ≫ N log(N)) then
with probability one,

lim
N→∞

µN = µ⋆.

If we denote by C⋆ the real number

C⋆ =

∫

(Uµ⋆
α + V )dµ⋆ = J(µ⋆) +

∫

V dµ⋆,

then the following additional properties hold:

(5) The minimizer µ⋆ has compact support, and satisfies

Uµ⋆
α (x) + V (x) ≥ C⋆ quasi everywhere, (1.8)

Uµ⋆
α (x) + V (x) = C⋆ for all x ∈ supp(µ⋆). (1.9)

(6) If a compactly supported measure µ creates a potential Uµ
α such that, for some constant

C ∈ R,

Uµ
α (x) + V (x) = C on supp(µ), (1.10)

Uµ
α + V ≥ C quasi everywhere, (1.11)

then C = C⋆ and µ = µ⋆. The same is true under the weaker assumptions:

Uµ
α (x) + V (x) ≤ C on supp(µ), (1.12)

Uµ
α + V ≥ C q.e on supp(µ⋆). (1.13)

(7) If α ≤ 2, for any measure µ, the following “converse” to (1.12), (1.13) holds:

sup
supp(µ)

(Uµ
α + V ) ≥ C⋆, (1.14)

” inf
supp(µ⋆)

” (Uµ
α (x) + V (x)) ≤ C⋆, (1.15)

where the ” inf ” means that the infimum is taken quasi-everywhere.
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The constant C⋆ is called the “modified Robin constant”, see e.g. [39], where the properties (1.8-
1.9) and the characterization (1.10-1.11) are established for the logarithmic potential in dimension
2. The minimizer µ⋆ is called the equilibrium measure.

Corollary 1.3 (Equilibrium of Coulomb gases with radial external fields in dimension ≥ 3).
Suppose that for a fixed real parameter β > 0, and for every x, y ∈ Rd, d ≥ 3,

V (x) = v(|x|) and W (x, y) = βk∆(x− y),

where v is two times differentiable. Denote by dσr the Lebesgue measure on the sphere of radius r,
and let σd be the total mass of dσ1. Let w(r) = rd−1v′(r), and suppose either that v is convex, or
that w is increasing. Define two radii r0 < R0 by:

r0 = inf {r > 0; v′(r) > 0} and w(R0) = β(d− 2).

Then the equilibrium measure µ⋆ is supported on the ring {x; |x| ∈ [r0, R0]}, and is absolutely
continuous with respect to Lebesgue measure:

dµ(r) = M(r) dσrdr where M(r) =
w′(r)

β(d− 2)σdrd−1
1[r0,R0](r).

In particular, when v(t) = t2 then µ⋆ is the uniform distribution on the centered ball of radius

(

β
d− 2

2

) 1
d

.

The result provided by Corollary 1.3 on Coulomb gases with radial external fields can be found
for instance in [34, Proposition 2.13]. It follows quickly from the Gauss averaging principle and the
characterization (1.10-1.11). For the sake of completeness, we give a (short) proof in Section 4.3.
By using Theorem 1.2 with α = 2 together with Corollary 1.3, we obtain that the empirical
measure of a Coulomb gas with quadratic external field in dimension d ≥ 3 tends almost surely to
the uniform distribution on a ball when N → ∞. This phenomenon is the analogue in arbitrary
dimension d ≥ 3 of the well known result in dimension d = 2 for the logarithmic potential with
quadratic radial external field (where the uniform law on the disc or “circular law” appears as a
limit for the Complex Ginibre Ensemble, see for instance [5, 36]). The study of the equilibrium
measure for Coulomb interaction with non radially symmetric external fields was initiated recently
in dimension d = 2 by Bleher and Kuijlaars in a beautiful work [9] by using orthogonal polynomials.

The following proposition shows that in the Riesz case, it is possible to construct a good con-
finement potential V so that the equilibrium measure is prescribed in advance.

Corollary 1.4 (Riesz gases: external field for prescribed equilibrium measure). Let 0 < α < d,
d ≥ 1, and W (x, y) := k∆α

. Let µ⋆ be a probability measure with a compactly supported density
f⋆ ∈ Lp(Rd) for some p > d/α. Define the confinement potential

V (x) := −Uµ⋆
α (x) + [|x|2 −R]+, x ∈ R

d,

where Uµ⋆
α is the Riesz potential created by µ⋆ and R > 0 is such that supp(µ⋆) ⊂ B(0, R). Then

the couple of functions (V,W ) satisfy (H1)-(H2)-(H3)-(H4) and the functional

µ ∈ M1(Rd) 7→ I(µ) :=

∫

V dµ+
1

2

∫∫

k∆α
(x − y) dµ(x)dµ(y) ∈ R ∪ {+∞}

admits µ⋆ as unique minimizer. In particular, the probability µ⋆ is the almost sure limit of the
sequence (µN )N (constructed on the same probability space), as soon as βN ≫ N log(N).

1.4. Outline of the article. In the remainder of this introduction (Section 1.5), we give several
comments on our results, their links with different domains, and possible directions for further
research. Section 2 provides the proof of Theorem 1.1 (large deviations principle). Section 4
provides the proof of Theorem 1.2, Corollary 1.3, and Corollary 1.4. These proofs rely on several
concepts and tools from Potential Theory, which we recall synthetically and discuss in Section 3
for the sake of clarity and completeness.

1.5. Comments, possible extensions and related topics.
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1.5.1. Non-compactly supported equilibrium measures. The assumptions made on the external field
V in theorems 1.1 and 1.2 explain why the equilibrium measure µ⋆ is compactly supported. If one
allows a weaker behavior of V at infinity, then one may produce equilibrium measures µ⋆ which
are not compactly supported (and may even be heavy tailed). This requires to adapt some of the
arguments, and one may use compactification as in [25]. This might allow to extend Corollary 1.4
beyond the compactly supported case.

1.5.2. Equilibrium measure for Riesz interaction with radial external field. To the knowledge of the
authors, the computation of the equilibrium measure for Riesz interactions with radial external
field, beyond the more specific Coulomb case of Corollary 1.3, is an open problem, due to the lack
of the Gauss averaging principle when α 6= 2.

1.5.3. Beyond the Riesz and Coulomb interactions. Theorem 1.2 concerns the minimization of
the Riesz interaction potential with an external field V , and includes the Coulomb interaction
if d ≥ 3. In classical Physics, the problem of minimization of the Coulomb interaction energy
with an external field is known as the Gauss variational problem [45, 46]. Beyond the Riesz and
Coulomb potentials, the driving structural idea behind Theorem 1.2 is that if W is of the form
W (x, y) = kD(x− y) where kD is the fundamental solution of an equation ∂t −D = 0 where D is
a local differential operator, and if V is super-harmonic for D, i.e. DV ≥ 0, then the density of µ⋆

is roughly given by DV up to support constraints. This can be easily understood formally with
Lagrange multipliers. The limiting measure µ⋆ depends on V and W , and is thus non-universal in
general.

1.5.4. Second order asymptotic analysis. The asymptotic analysis of µN − µ⋆ as N → ∞ is a
natural problem, which can be studied on various classes of tests functions. It is well known that
a repulsive interaction may affect dramatically the speed of convergence, and make it dependent
over the regularity of the test function. In another direction, one may take βN = βN2 and study
the low temperature regime β → ∞ at fixed N . In the Coulomb case, this leads to Fekete points.
We refer to [40, 12, 41, 8] for the analysis of the second order when both β → ∞ and N → ∞. In
the one-dimensional case, another type of local universality inside the limiting support is available
in [24].

1.5.5. Edge behavior. Suppose that V is radially symmetric and that µ⋆ is supported in the centered
ball of radius r, like in Corollary 1.3. Then one may ask if the radius of the particle system
max1≤k≤n |xk| converges to the edge r of the limiting support as N → ∞. This is not provided
by the weak convergence of µN . The next question is the fluctuation. In the two-dimensional
Coulomb case, a universality result is available for a class of external fields in [15].

1.5.6. Topology. It is known that the weak topology can be upgraded to a Wasserstein topology
in the classical Sanov theorem for empirical measures of i.i.d. sequences, see [43], provided that
tails are strong exponentially integrable. It is then quite natural to ask about such an upgrade for
Theorem 1.1.

1.5.7. Connection to random matrices. Our initial inspiration came, when writing the survey [11],
from the role played by the logarithmic potential in the analysis of the Ginibre ensemble. When

d = 2, βN = N2, V (x) = |x|2 and W (x, y) = βk∆(x − y) = β log 1
|x−y| with β = 2 then PN is the

law of the (complex) eigenvalues of the complex Ginibre ensemble:

dPN (x) = Z−1
N e−N

∑N

i=1
|xi|2 ∏

i<j

|xi − xj |2dx.

(here R2 ≡ C and PN is the law of the eigenvalues of a random N ×N matrix with i.i.d. complex
Gaussian entries of covariance 1

2N I2). For a non-quadratic V , we may see PN as the law of the
spectrum of random normal matrices such as the ones studied in [2]. On the other hand, in the

case where d = 1 and V (x) = |x|2 and W (x, y) = β log 1
|x−y| with β > 0 then

dPN (x) = Z−1
N e−N

∑N

i=1
|xi|2 ∏

i<j

|xi − xj |β dx.

This is known as the β-Ensemble in Random Matrix Theory. For β = 1, we recover the law of the
eigenvalues of the Gaussian Orthogonal Ensemble (GOE) of random symmetric matrices, while for
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β = 2, we recover the law of the eigenvalues of the Gaussian Unitary Ensemble (GUE) of random
Hermitian matrices. It is worthwhile to notice that − log |·| is the Coulomb potential in dimension
d = 2, and not in dimension d = 1. For this reason, we may interpret the eigenvalues of GOE/GUE
as being a system of charged particles in dimension d = 2, experiencing Coulomb repulsion and an
external quadratic field, but constrained to stay on the real axis. We believe this type of support
constraint can be incorporated in our initial model, at the price of a bit heavier notations and
analysis.

1.5.8. Simulation problem and numerical approximation of the equilibrium measure. It is natural
to ask about the best way to simulate the probability measure PN . A pure rejection algorithm is
too naive. Some exact algorithms are available in the determinantal case d = 2 and W (x, y) =
−2 log |x− y|, see [28, Algorithm 18] and [42]. One may prefer to use a non exact algorithm such
as a Hastings-Metropolis algorithm. One may also use an Euler scheme to simulate a stochastic
process for which PN is invariant, or use a Metropolis adjusted Langevin approach (MALA) [37].
In this context, a very natural way to approximate numerically the equilibrium measure µ⋆ is to
use a simulated annealing stochastic algorithm.

1.5.9. More general energies. One may study more general energies with many bodies interactions,
of the form, for some prescribed symmetric Wk : (Rd)k 7→ R, 1 ≤ k ≤ K, K ≥ 1,

HN (x1, . . . , xN ) =
K∑

k=1

∑

i1<···<ik

N−kWk(xi1 , . . . , xik
).

This leads to the following candidate for the asymptotic first order global energy functional:

µ 7→
K∑

k=1

2−k

∫

· · ·

∫

W (x1, . . . , xk) dµ(x1) · · ·dµ(xk).

1.5.10. Stochastic processes. Under general assumptions on V and W , see for instance [38], the
law PN is the invariant probability measure of a well defined (the absence of explosion comes from
the assumptions on V and W ) reversible Markov diffusion process (Xt)t∈R+

with state space

{
x ∈ (Rd)N : HN (x) < ∞

}
=






x ∈ (Rd)N :

∑

i<j

W (xi, xj) < ∞






,

solution of the system of Kolmogorov stochastic differential equations

dXt =

√

2
αN

βN
dBt − αN ∇HN (Xt) dt

where (Bt)t≥0 is a standard Brownian motion on (Rd)N , and where αN > 0 is an arbitrary

scale parameter (natural choices being αN = 1 and αN = βN). The law PN is the equilibrium
distribution of a system of N interacting Brownian particles (X1,t)t≥0, . . . , (XN,t)t≥0 in R

d at

inverse temperature βN , with equal individual “charge” qN := 1/N , subject to a confining potential
αNV acting on each particle and to an interaction potential αNW acting on each pair of particles,
and one can rewrite the stochastic differential equation above as the system of coupled stochastic
differential equations (1 ≤ i ≤ N)

dXi,t =

√

2
αN

βN
dBi,t − qNαN ∇V (Xi,t) −

∑

j 6=i

q2
NαN ∇1W (Xi,t, Xj,t) dt

where (B
(1)
t )t≥0, . . . , (B

(N)
t )t≥0 are i.i.d. standard Brownian motions on Rd. From a partial dif-

ferential equations point of view, the probability measure PN is the steady state solution of the
Fokker-Planck evolution equation ∂t − L = 0 where L is the elliptic Markov diffusion operator
(second order linear differential operator without constant term)

L :=
αN

βN
(∆ − βN ∇HN · ∇),

acting as Lf = αN

βN
(∆f − 〈βN ∇HN ,∇f〉). This self-adjoint operator in L2(PN ) is the infinitesimal

generator of the Markov semigroup (Pt)t≥0, Pt(f)(x) := E(f(Xt)|X0 = x). Let us take αN = βN
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for convenience. In the case where V (x) = |x|2 and W ≡ 0 (no interaction) then PN is a standard
Gaussian law N (0, IdN ) on (Rd)N and (Xt)t≥0 is an Ornstein-Uhlenbeck Gaussian process; while

in the case where d = 1 and V (x) = |x|2 and W (x, y) = −β log |x− y| of some fixed parameter
β > 0 then PN is the law of the spectrum of a β-Ensemble of random matrices and (Xt)t≥0 is a so

called Dyson Brownian motion [3]. If µN,t is the law of Xt then EµN,t → EµN weakly as t → ∞.
The study of the dynamic aspects is an interesting problem connected to McKean-Vlasov models
[14, 22, 33].

1.5.11. Calogero-(Moser-)Sutherland Schrödinger operators. Let us keep the notations used above.
We define UN := βNHN and we take βN = N2 for simplicity. Let us consider the isometry
Θ : L2(PN ) → L2(dx) defined by

Θ(f)(x) := f(x)

√

dPN (x)

dx
= f(x)e− 1

2 (UN (x)+log(ZN )).

The differential operator S := −ΘLΘ−1 is a Schrödinger operator:

S := −ΘLΘ−1 = −∆ + Q, Q :=
1

4
|∇UN |2 −

1

2
∆UN

which acts as Sf = −∆f + Qf . The operator S is self-adjoint in L2(dx). Being isometrically
conjugated, the operators −L and S have the same spectrum, and their eigenspaces are isometric.
In the case where V (x) = |x|2 and W ≡ 0 (no interactions), we find that and Q = 1

2 (1 − V ),
and S is a harmonic oscillator. On the other hand, following [23, Proposition 11.3.1], in the case
d = 1 and W (x, y) = − log |x− y| (Coulomb interaction), then S is a Calogero-(Moser-)Sutherland
Schrödinger operator:

S = −∆ − E0 +
1

4

N∑

i=1

x2
i −

1

2

∑

1≤i<j≤N

1

(xi − xj)2
, E0 :=

N

2
+
N(N − 1)

2
.

More examples are given in [23, Proposition 11.3.2], related to classical ensembles of random
matrices. The study of the spectrum and eigenfunctions of such operators is a wide subject,
connected to Dunkl operators. These models attracted some attention due to the fact that for
several natural choices of the potentials V,W , they are exactly solvable (or integrable). We refer
to [23, Section 11.3.1], [20, Section 9.6], [16, Section 2.7] and references therein.

2. Proof of the large deviations principle — Theorem 1.1

The proof of Theorem 1.1 is split is several steps.

2.1. A standard reduction. To prove Theorem 1.1, we will use the following standard reduction
(see for instance [17, Chapter 4]).

Proposition 2.1 (Standard reduction). Let (QN )N∈N∗ be a sequence of probability measures on
some Polish space (X , d), (ZN )N∈N∗ and (εN )N∈N∗ two sequences of positive numbers with εN → 0
and I : X → R ∪ {+∞} be a function bounded from below.

(1) Suppose that the sequence (QN)N∈N∗ satisfies the following conditions
(a) The sequence (ZNQN )N∈N∗ is exponentially tight: for all L ≥ 0 there exists a compact

set KL ⊂ X such that

lim sup
N→∞

εN logZNQN(X \KL) ≤ −L.

(b) For all x ∈ X ,

lim
r→0

lim sup
N→∞

εN logZNQN (B(x, r)) ≤ −I(x).

Then the sequence (ZNQN )N∈N∗ satisfies the following large deviation upper bound: for
all Borel set A ⊂ X , it holds

lim sup
N→∞

εN logZNQN (A) ≤ − inf {I(µ;µ ∈ clo(A))}. (2.1)
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(2) If in addition (ZNQN )N∈N∗ satisfies the following large deviation lower bound: for all
Borel set A ⊂ X ,

− inf{I(x);x ∈ int(A)} ≤ lim inf
N→∞

εN logZNQN (A), (2.2)

then (QN )N∈N∗ satisfies the full Large Deviation Principle with speed εN and rate function
I⋆ = I − infx∈X I(x), namely for all Borel set A ⊂ X ,

− inf{I⋆(x);x ∈ int(A)} ≤ lim inf
N→∞

εN logQN(A)

≤ lim sup
N→∞

εN logQN(A) ≤ − inf {I⋆(x);x ∈ clo(A)}.

Proof. Let us begin by (1). Let δ > 0; by assumption, for any x ∈ X , there is ηx > 0 such that

lim sup
N→∞

εN logZNQN (B(x, ηx)) ≤ −I(x) + δ.

If F ⊂ X is compact, there is a finite family (xi)1≤i≤m of points of F such that F ⊂ ∪m
i=1B(xi, ηxi ).

Therefore,

lim sup
N→∞

εN logZNQN (F ) ≤ lim sup
N→∞

εN log

(
N∑

i=1

ZNQN (B(xi, ηxi ))

)

= max
1≤i≤m

lim sup
N→∞

εN log (ZNQN (B(xi, ηxi )))

≤ max
1≤i≤m

−I(xi) + δ ≤ − inf
F

I + δ.

Letting δ → 0 yields to (2.1) for A = F compact.
Now if F is an arbitrary closed set, then for all L > 0, since F ∩ KL is compact, it holds

lim sup
N→∞

εN logZNQN (F )

≤ max

(

lim sup
N→∞

εN logZNQN(F ∩KL), lim sup
N→∞

εN logZNQN(Kc
L)

)

≤ max(− inf
F ∩KL

I; −L).

Letting L → ∞ shows that (2.1) is true for arbitrary closed sets F . Since A ⊂ clo(A), the upper
bound (2.1) holds for arbitrary Borel sets A.

To prove (2), take A = X in (2.2) and (2.1) to get:

lim
N→∞

εN log(ZN ) = − inf I ∈ R.

Subtracting this to (2.2) and (2.1) gives the large deviations principle with rate function I⋆. �

In our context, X = M1(Rd) is equipped with the Fortet–Mourier distance (1.3).

2.2. Properties of the rate function. In the following lemma, we prove different properties of
the rate function I⋆ including those announced in Theorem 1.1, point (1).

Lemma 2.2 (Properties of the rate function). Under Assumptions (H1)-(H2)-(H3),

(1) I⋆ is well defined;
(2) I⋆(µ) < ∞ implies

∫
|V | dµ < ∞ and

∫∫
|W | dµ2 < ∞;

(3) I⋆(µ) < ∞ for any compactly supported probability µ with a bounded density with respect
to Lebesgue;

(4) I⋆ is a good rate function (i.e. the levels sets {I⋆ ≤ k} are compact).

Proof. Let us define ϕ : Rd × Rd → (−∞,+∞] by ϕ(x, y) := 1
2 (V (x) + V (y) +W (x, y)).

(1) Since V is continuous and V (x) → ∞ as |x| → ∞ thanks to (H2), the function V is
bounded from below. Using (H3) it follows that ϕ is bounded from below. The functional
I⋆ is thus well defined with values in [0,∞].

(2) Assume that I(µ) =
∫∫

ϕdµ2 < ∞. Since V is bounded from below, [V ]− ∈ L1(µ). From
(H3) and the definition of ϕ,

2ϕ(x, y) = V (x) + V (y) +W (x, y) ≥ c+ (1 − ε0)(V (x) + V (y)).
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Therefore

(1 − ε0)([V ]+(x) + [V ]+(y)) ≤ 2ϕ(x, y) − c+ (1 − ε0)([V ]−(x) + [V ]−(y)),

so [V ]+ ∈ L1(µ), and
∫

|V | dµ < ∞. Since

c− ε0V (x) − ε0V (y) ≤ W (x, y) ≤ 2ϕ(x, y) − V (x) − V (y), (2.3)

this implies that W ∈ L1(µ2).
(3) It is clearly enough to prove that W is locally Lebesgue integrable on Rd × Rd. Let K be

a compact of Rd; according to (H2) and (H3) the function W is bounded from below on
K ×K. On the other hand, letting

αK(z) = sup{W (x, y); |z − y| ≥ |z|, x, y ∈ K},

we have W (x, y) ≤ αK(x− y), for all x, y ∈ K. Assumption (H1) then easily implies that
(x, y) 7→ αK(x− y) is integrable on K ×K.

(4) According to the monotone convergence theorem,

I = sup
n∈N

In, In(µ) :=

∫∫

min(ϕ(x, y);n) dµ(x)dµ(y).

The functions min(ϕ, n) being bounded and continuous, it follows that the functionals
In are continuous for the weak topology (see for instance [17, Lemma 7.3.12]). Being a
supremum of continuous functions, I is lower semi-continuous. Set b⋆ = inf ϕ; we have, for
every µ ∈ M1(Rd), L > 0,

I(µ) − b⋆ =

∫∫

(ϕ(x, y) − b⋆) dµ(x)dµ(y)

≥

∫∫

1|x|>L,|y|>L(ϕ(x, y) − b⋆) dµ(x)dµ(y)

≥ (bL − b⋆)µ(|x| > L)2,

where bL := inf |x|>L,|y|>Lϕ(x, y). According to (H2) and (H3), we see that bL → +∞ as
L → +∞. Therefore, there exists L⋆ > 0 such that bL > b⋆ for every L > L⋆. We get then
for every real number r ≥ b⋆,

{µ ∈ M1(Rd) : I(µ) ≤ r} ⊂

{

µ ∈ M1(Rd) : µ(|x| > L) ≤

√

r − b⋆

bL − b⋆
, L > L⋆

}

.

Since bL → +∞ as L → +∞, the subset of M1(Rd) in the right hand side is tight, and the
Prohorov theorem implies then that it is relatively compact for the topology of M1(Rd).
Since I is lower semi-continuous, the set {I ≤ r} is also closed, which completes the proof.

�

2.3. Proof of the upper bound. For all N ≥ 1, one denotes by QN the law of µN = 1
N

∑N
i=1 δxi

under the probability PN defined by (1.2): QN is an element of M1(M1(Rd)).

Lemma 2.3 (Exponential tightness). If βN ≫ N then, under Assumptions (H2)-(H3), the
sequence of measures (ZNQN )N is exponentially tight: for all L ≥ 0 there exists a compact set
KL ⊂ M1(Rd) such that

lim sup
N→∞

logZNQN

(
M1(Rd) \KL

)

βN
≤ −L. (2.4)

Proof. For any L ≥ 0, let L′ := L−c/2
1−εo

and set KL := {µ ∈ M1(Rd);
∫
V dµ ≤ L′}. Since (H2)

holds, V (x) → ∞ when |x| → +∞ and V is continuous. By Prohorov’s theorem on tightness this
implies that KL is compact in M1(Rd).

It remains to check (2.4). Let us consider the law νV ∈ M1(Rd) defined by

dνV (x) :=
e−V (x)

CV
dx, CV :=

∫

e−V (x) dx > 0. (2.5)
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Using (2.3) to bound W from below, we get

ZNQN

(∫

V dµN > L′

)

=

∫

(Rd)N

1{∫
V dµN >L′

} exp

(

−
βN

2

∫∫

6=

W dµ2
N − βN

∫

V dµN

)

dx

≤

∫

(Rd)N

1{∫
V dµN >L′

} exp

(

−
βN

2

∫∫

6=

(c− εo(V (x) + V (y))) dµ2
N − βN

∫

V dµN

)

dx

=

∫

(Rd)N

1{∫
V dµN >L′

} exp

(

−
βN

2
c
N − 1

N
− βN

(

1 − εo
N − 1

N

)∫

V dµN

)

dx

= CN
V

∫

(Rd)N

1{∫
V dµN >L′

} exp

(

−
βN

2
c
N − 1

N
−

(

βN

(

1 − εo
N − 1

N

)

−N

)∫

V dµN

)

dν⊗N
V (x).

Now, if N is large enough, then βN

(
1 − εo

N−1
N

)
≥ N , so that

ZNQN

(∫

V dµN > L′

)

≤ CN
V exp

(

−
βN

2
c
N − 1

N

)

exp

(

−

(

βN

(

1 − εo
N − 1

N

)

−N

)

L′

)

.

Therefore, when N is large enough, using the fact that βN ≫ N ,

logZNQN

(∫
V dµN > L′

)

βN
≤
N logCV

βN
−

1

2
c
N − 1

N
−

((

1 − εo
N − 1

N

)

−
N

βN

)

L′

= −
1

2
c− (1 − εo)L′ + oN→∞(1)

= −L+ oN→∞(1).

This implies (2.4) and concludes the proof. �

Proposition 2.4 (Upper bound). If βN ≫ N then, under Assumptions (H2)-(H3), for all r ≥ 0,
for all µ ∈ M1(Rd),

lim
r→0

lim sup
N→+∞

logZNQN (B(µ, r))

βN
≤ −I(µ),

where the ball B(µ, r) is defined for the Fortet–Mourier distance (1.3).

Proof. In contrast with the proof of Lemma 2.3, our objective now is to keep enough empirical
terms inside the exponential in order to get I(µ) at the limit. Introduce ϕ(x, y) = 1

2 (W (x, y) +

V (x) + V (y)), x, y ∈ Rd. According to (H3), it holds

ϕ(x, y) ≥
c

2
+

1 − εo

2
(V (x) + V (y)), ∀x, y ∈ R

d, (2.6)

for some c ∈ R and εo ∈ (0, 1). Define λN = N2

(1−εo)(N−1) and let us bound the function HN from

below using (2.6) at the third line: for all n ∈ N, it holds

βNHN (x) = βN

(
1

2

∫∫

6=

W dµ2
N +

∫

V dµN

)

= βN

(∫∫

6=

ϕdµ2
N +

1

N

∫

V dµN

)

≥ (βN − λN )

∫∫

6=

ϕdµ2
N + λN

∫∫

6=

ϕdµ2
N +

βN

N
min V

≥ (βN − λN )

∫∫

6=

ϕdµ2
N + λN

(N − 1)c

2N
+N

∫

V dµN +
βN

N
min V

≥ (βN − λN )

∫∫

ϕ ∧ n dµ2
N − (βN − λN )

n

N
+ λN

(N − 1)c

2N
+N

∫

V dµN +
βN

N
min V

= (βN − λN )

∫∫

ϕ ∧ n dµ2
N +N

∫

V dµN + o(βN ),

since βN ≫ N and λN = O(N).
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Denoting by In(ν) =
∫∫

ϕ ∧ n dν2, ν ∈ M1(Rd), and using the preceding lower bound, we see

that for every µ ∈ M1(Rd), r ≥ 0 and N ≫ 1, we have

ZNQN (B(µ, r)) =

∫

(Rd)N

1B(µ,r)(µN ) exp (−βNHN (x)) dx

≤ eo(βN )

∫

(Rd)N

1B(µ,r)(µN ) exp (−(βN − λN )In(µN ))
N∏

i=1

e−V (xi)dx

= CN
V e

o(βN )

∫

(Rd)N

1B(µ,r)(µN ) exp (−(βN − λN )In(µN )) dνN
V

≤ CN
V e

o(βN )e−(βN −λN ) infν∈B(µ,r) In(ν),

where the definition of νV is given by (2.5).
Therefore, since βN ≫ N and λN = O(N),

lim sup
N→+∞

logZNQN (B(µ, r))

βN
≤ − inf

ν∈B(µ,r)
In(ν).

Since ϕ ∧ n is bounded continuous, the functional In is continuous for the weak topology. As a
result, it holds

lim
r→0

inf
ν∈B(µ,r)

In(ν) = In(µ).

Finally, the monotone convergence theorem implies that supn≥1 In(µ) = I(µ), which ends the
proof. �

Using this Proposition, Lemma 2.3 and the first point of Proposition 2.1, we get the upper
bound of Theorem 1.1, point (2).

2.4. The lower bound and the full LDP. In what follows, we denote by |A| the Lebesgue
measure of a Borel set A ⊂ Rn.

Proposition 2.5 (Lower bound for regular probabilities). Under the assumptions (H1)-(H2)-
(H3), if βN ≫ N log(N), then for all probability measure µ on Rd supported in a box B =
∏d

i=1[ai, bi], ai, bi ∈ R, with a density h with respect to the Lebesgue measure such that, for some
δ > 0, δ ≤ h ≤ δ−1 on B, it holds

lim inf
N→∞

logZNQN(B(µ, r))

βN
≥ −I(µ), ∀r ≥ 0,

where B(µ, r) is the open ball of radius r centered at µ for the Fortet–Mourier distance (1.3).

If B is the box
∏

[ak, bk] in Rd, let l(B) and L(B) be the minimum (resp. maximum) edge
length:

l(B) = min
k

(bk − ak), L(B) = max
k

(bk − ak)

We admit for a moment the following result:

Lemma 2.6 (Existence of nice partitions). For all d and all δ > 0 there exists a constant C(d, δ)
such that the following holds. For any box B, any integer n, and any measure µ with a density h
w.r.t. Lebesgue measure, if δ ≤ h ≤ δ−1, then there exists a partition (B1, B2 . . . Bn) of B in n
sub-boxes, such that:

(1) B is split in equal parts: for all i, µ(Bi) = 1
nµ(B) ;

(2) The edge lengths of the Bi are controlled:

1

C(d, δ)n1/d
l(B) ≤ l(Bi) ≤ L(Bi) ≤

C(d, δ)

n1/d
L(B).

Proof of Proposition 2.5. For each N we apply Lemma 2.6 to obtain a partition of B in N boxes
BN

1 , . . .BN
N . Let dN be the maximum diameter of the boxes: by the lemma, since µ(B) = 1,

c1

N1/d
≤ l(BN

i ) and dN ≤
c2

N1/d
,

where c1 and c2 only depend on B, d and δ.
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Note that, for all 1-Lipschitz function f with ‖f‖∞ ≤ 1, if xi ∈ BN
i for all i ≤ N , since

µ(Bi) = 1/N we have:
∣
∣
∣
∣
∣

1

N

N∑

i=1

f(xi) −

∫

f dµ

∣
∣
∣
∣
∣

≤
N∑

i=1

∫

BN
i

|f(x) − f(xi)| dµ(x)

≤ dN .

If N is large enough, dN ≤ r, which implies that
{

(x1, . . . xn) ∈ BN
1 × · · · ×BN

N

}
⊂ {µN ∈ B(µ, r)}.

Let us denote by CN
i ⊂ BN

i the box obtained from BN
i by an homothetic transformation of center

the center of BN
i and ratio (say) 1/2. It holds,

ZNQN(B(µ, r)) ≥ exp



−
βN

N

N∑

i=1

max
CN

i

V −
βN

N2

∑

i<j

max
CN

i
×CN

j

W





N∏

i=1

|CN
i |.

Since
∣
∣CN

i

∣
∣ ≥ (l(Bi

N )/2)d ≥ c3/N for some absolute constant c3, we have

log
∏N

i=1 |CN
i |

βN
≥
N log(c3)

βN
−
N log(N)

βN
−→

N→∞
0

thus we conclude that

lim inf
N→+∞

log (ZNQN (B(µ, r)))

βN
≥ − lim sup

N→∞

1

N

N∑

i=1

max
CN

i

V − lim sup
N→∞

1

N2

∑

i<j

max
CN

i
×CN

j

W.

For all N , consider the locally constants functions VN : B → R and WN : B × B → R defined by

∀x ∈ BN
i , VN (x) := max

CN
i

V and ∀(x, y) ∈ BN
i ×BN

j , WN (x, y) := max
CN

i
×CN

j

W.

Since µ(BN
i ) = 1/N , it holds

1

N

N∑

i=1

max
CN

i

V =

∫

B

VN (x) dµ(x) and
1

N2

∑

i<j

max
CN

i
×CN

j

W =
1

2

∫

x 6=y

WN (x, y) dµ(x)dµ(y).

The uniform continuity of V on B immediately implies that VN converges uniformly to V , and so
∫

VN dµ →

∫

V dµ.

For the same reason WN converges uniformly to W on

(B × B) ∩ {(x, y) ∈ R
d × R

d; |x− y| ≥ u},

for all u > 0. According to (H2) and (H3), the function W is bounded from below on B ×B. It
follows that the functions WN are bounded from below by some constant independent on N . To
apply the dominated convergence theorem it remains to bound WN from above by some integrable
function. Let

αB(u) := sup
|x−y|≥u

W (x, y),

so that W (x, y) ≤ αB(|x− y|). Obviously

max
(x,y)∈BN

i
×BN

j

|x− y| ≤ 2dN + min
(x,y)∈CN

i
×CN

j

|x− y|.

By construction, since i 6= j, we have

min
(x,y)∈CN

i
×CN

j

|x− y| ≥
1

4
(l(BN

i ) + l(BN
j )) ≥

c1

4
N−1/d ≥

c1

4c2
dN .

Therefore, there is an absolute constant c4 such that

min
(x,y)∈CN

i
×CN

j

|x− y| ≥ c4 max
(x,y)∈BN

i
×BN

j

|x− y|.

Since the function αB is non-increasing, it holds

max
CN

i
×CN

j

αB(|x− y|) ≤ min
(x,y)∈BN

i
×BN

j

αB(c4|x− y|).
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We conclude from this that WN (x, y) ≤ αB(c4|x− y|), x 6= y. It follows from Assumption (H1)
that the function αB(c4|x− y|) is integrable on B×B with respect to Lebesgue. Since the density
of µ with respect to Lebesgue is bounded from above this function is integrable on B × B with
respect to µ2. Applying the dominated convergence theorem, we conclude that

lim inf
N→∞

log (ZNQN (B(µ, r)))

βN
≥ −

∫

V (x) dµ(x) −
1

2

∫∫

W (x, y) dµ(x)dµ(y)

= −I(µ). �

Let us now prove that “nice” partitions exist.

Proof of Lemma 2.6. The proof is an induction on the dimension d.
Base case. Let d = 1, and suppose that B = [a0, b0]. Since µ has a density, there exists

“quantiles” a0 = q0 < q1 . . . < qn = b0 such that

∀1 ≤ i ≤ n, µ([qi−1, qi]) =
1

n
µ(B).

In this simple case l(B) = L(B) = b0 − a0, and l(Bi) = L(Bi) = (qi − qi−1). The boundedness
assumption on h implies that

δ(qi − qi−1) ≤ µ([qi−1, qi]) ≤
1

δ
(qi − qi−1)

δ(b0 − a0) ≤ µ(B) ≤
1

δ
(b0 − a0),

and the claim holds for d = 1 with C(1, δ) = 1/δ2.
Induction step. Suppose that the statement holds for a dimension d−1. Let B = [a0, b0]×B′

be a box in dimension d (where B′ is a (d − 1)-dimensional box). Let µ0 be the first marginal of
µ (this is a measure on [a0, b0] ⊂ R).

Let b = ⌊n1/d⌋ be the integer part of n1/d, and let b0 = 1/
(
21/d − 1

)
. If b ≤ b0, we reason as

in the base case, on the one-dimensional measure µ0, to find a partition of B in n slices of mass
µ(B)/n. Since the number of slices is less than the constant (b0 + 1)d, the edge length is controlled
as needed.

If b > b0, we look for a decomposition of n as a sum of b integers ni, each as close to n(d−1)/d

as possible: the idea is to cut B along the first dimension in b slices, and to apply the induction
hypothesis to cut the slice i in ni parts.

To this end, decompose the integer n in base b:

∃α0, α1, . . . αd ∈ {0, . . . b− 1}d+1, n =

d∑

k=0

αkb
k.

The condition b > b0 guarantees that b+ 1 < 21/db, which implies that αd = 1. Therefore:

∃α0, α1, . . . αd−1 ∈ {0, . . . b− 1}d, n = bd +

d−1∑

k=0

αkb
k.

Writing αk =
∑b

i=1 1{i≤αk} we get

n =
b∑

i=1

(

bd−1 +
d−1∑

k=0

1{i≤αk}b
k

)

=
b∑

i=1

ni,

where ni = bd−1 +
∑d−1

k=0 1{i≤αk}b
k. From this expression, we get the bound bd−1 ≤ ni ≤ (bd −

1)/(b− 1). Since k − 1 ≥ k/2 whenever k ≥ 2, using the inequalities b ≤ n1/d and b ≥ n1/d − 1 ≥
1
2n

1/d, we get
1

2d−1
n(d−1)/d ≤ ni ≤ 2n(d−1)/d.

Now let us cut B along its first dimension. Recall that µ0 is the first marginal of µ. By continuity
there exist quantiles a0 = q0 < q1 < . . . qb = b0 such that

∀1 ≤ i ≤ b, µ1([qi−1, qi]) = µ([qi−1, qi] ×B′) =
ni

n
µ(B).
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We apply the induction hypothesis separately for each 1 ≤ i ≤ b, to the (d − 1)-dimensional box
B′, with the measure

µi(·) = µ([qi−1, qi] × · )

and the integer ni to obtain a decomposition B′ =
⋃ni

j=1 B
′
i,j such that:

(1) the edge lengths B′
i,j are controlled,

(2) µi(B
′
i,j) = 1

ni
µi(B

′).

Finally, for all 1 ≤ i ≤ b and all 1 ≤ j ≤ ni, let

Bi,j = [qi−1, qi] ×B′
i,j .

Let us check that the partition B =
⋃

i

⋃

j Bi,j satisfies the requirements. By definition,

µ(Bi,j) = µi(B
′
i,j) =

1

ni
µi(B

′) =
1

n
µ(B),

so the first requirement is met. To control the edge lengths, first remark that

l(B) = min(b0 − a0, l(B
′)) L(B) = max(b0 − a0, L(B′))

l(Bi,j) = min(qi − qi−1, l(B
′
i,j)) L(Bi,j) = max(qi − qi−1, L(B′

i,j)).

By the induction hypothesis, the bounds on ni and the fact that L(B′) ≤ L(B) we get:

L(B′
i,j) ≤

C(d− 1, δ)

n
1/(d−1)
i

L(B′)

≤
2C(d− 1, δ)

n1/d
L(B).

On the other hand, reasoning as in the proof of the base case,

(qi − qi−1)|B′| ≤
1

δ

ni

n
µ(B)

µ(B) ≤
1

δ
(b0 − a0)|B′|

so

(qi − qi−1) ≤ (b0 − a0)δ−2ni

n
≤ L(B)

2δ−2

n1/d
.

Therefore L(Bi,j) ≤ C(d, δ)n−1/dL(B). The proof of the lower bound on l(Bi,j) follows the same
lines and is omitted. This concludes the induction step, and the lemma is proved. �

Corollary 2.7 (Lower bound). Under the assumptions (H1)-(H2)-(H3), if βN ≫ N log(N),
then for all A ⊂ M1(Rd), it holds

lim inf
N→∞

logZNQN (A)

βN
≥ − inf{I(η); η ∈ int(A), η ≪ Lebesgue}.

Proof. Let A ⊂ M1(Rd) be a Borel set and let η ∈ int(A) be absolutely continuous with respect
to Lebesgue with density h and such that I(η) < +∞. For some sequence (εn)n≥1 converging to
0, let us define, for all n ≥ 1,

ηn := (1 − εn)νn + εnλn,

where dνn(x) = 1
Cn

min(h(x);n)1[−n;n]d(x) dx and dλn(x) = 1
(2n)d 1[−n;n]d(x) dx, where the nor-

malizing constant Cn → 1, when n → +∞.
According to point (3) of Lemma 2.2, we see that

I(νn) < ∞, I(λn) < ∞,

∫∫

ϕ(x, y) dνn(x)dλn(y) < ∞

where ϕ(x, y) := 1
2 (V (x) + V (y) +W (x, y)) (this function takes its values in (−∞,+∞] and is

bounded from below thanks to (H3), see the proof of Lemma 2.2). It holds

I(ηn) = (1 − εn)2I(νn) + 2εn(1 − εn)

∫∫

ϕ(x, y) dνn(x)dλn(y) + ε2
nI(λn).

Choose εn converging to 0 sufficiently fast so that the last two terms above converge to 0 when
n → ∞. According to point (1) of Lemma 2.2, V ∈ L1(µ) and W ∈ L1(µ2); it follows then easily



FIRST ORDER GLOBAL ASYMPTOTICS FOR CALOGERO-SUTHERLAND GASES 17

from the dominated convergence theorem that I(νn) → I(η) when n → ∞ and that ηn converges
to η for the weak topology.

Let r > 0 be such that B(η, 2r) ⊂ A ; for all n large enough, B(ηn, r) ⊂ B(η, 2r) ⊂ A. Since ηn

satisfies the assumptions of Proposition 2.5, we conclude that for n large enough

lim inf
N→∞

logZNQN (A)

βN
≥ lim inf

N→∞

logZNQN(B(ηn, r))

βN
≥ −I(ηn).

Letting n → ∞ and optimizing over {η ∈ A, η ≪ Lebesgue} gives the conclusion. �

End of the proof of Theorem 1.1. The properties of I⋆ and the upper bound in point (2) are already
known. The lower bound of point (2) is given by Corollary 2.7.

To prove point (3), let A ⊂ M1(Rd) be some Borel set and take µ ∈ int(A). According
to Assumption (H4), there exists a sequence of absolutely continuous probability measures νn

converging weakly to µ and such that I(νn) → I(µ), when n → ∞. For all n large enough, νn ∈ A
so applying Corollary 2.7, we conclude that

lim inf
N→∞

logZNQN (A)

βN
≥ −I(νn).

Letting n → ∞ and then optimizing over µ ∈ int(A) we arrive at

lim inf
N→∞

logZNQN (A)

βN
≥ − inf{I(µ);µ ∈ int(A)}.

According to point (2) of Proposition 2.1, we conclude that QN obeys the full LDP. �

2.5. Proof of the almost-sure convergence. Let us establish the last part of Theorem 1.1. First
note that since I⋆ has compact sublevel sets and is bounded from below, I⋆ attains is infimum, so
Imin is not empty. For an arbitrary fixed real ε > 0, consider the complement of the ε-neighborhood
of Imin for the Fortet–Mourier distance:

Aε := (Imin)c
ε := {µ ∈ M1 : dFM(µ, Imin) > ε}.

Since I is lower semi-continuous, cε := infµ∈Aε I(µ) > 0, thus P(µN ∈ Aε) ≤ exp(−βNcε), by the
upper bound of the full large deviation principle. By the first Borel–Cantelli lemma, it follows that
almost surely, limN→∞ dFM(µN , Imin) = 0.

2.6. Sufficient conditions for (H4). The following proposition gives several sufficient conditions
under which assumption (H4) holds true. Even if some of these conditions are quite general, it is
an open problem to find an even more general and natural condition. One may possibly find some
inspiration in [10].

Proposition 2.8 (Sufficient conditions for (H4)). Let V : Rd → R and W : Rd ×Rd → (−∞,+∞]
be symmetric, finite on Rd × Rd \ {(x, x);x ∈ Rd} and such that (H2) and (H3) hold true.
Assumption (H4) holds in each of the following cases:

(1) W is finite and continuous on Rd × Rd.
(2) For all x ∈ Rd, the function y 7→ W (x, y) is super harmonic, i.e. W satisfies

W (x, y) ≥
1

|B(y, r)|

∫

B(y,r)

W (x, z) dz, ∀r > 0,

where |B(y, r)| denotes the Lebesgue measure of the ball of center y and radius r.
(3) The function W is such that W (x+a, y+a) = W (x, y) for all x, y, a ∈ R

d and the function
J defined by

J(µ) =

∫∫

W (x, y) dµ(x)dµ(y) (2.7)

is convex on the set of compactly supported probability measures.

Proof. Let µ ∈ M1(Rd) be such that I(µ) < ∞. Recall that, according to point (1) of Lemma 2.2,
under the assumptions (H2) - (H3), the condition I(µ) < ∞ implies that

∫

|V | dµ < +∞ and

∫∫

|W | dµ2 < +∞.

Moreover, it follows follows from (H2) and (H3) that W is bounded from below on every compact,
and so the definition (2.7) of J(µ) makes sense if µ is compactly supported.
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For all R > 0, let us define µR as the normalized restriction of µ to [−R;R]d. Using the
dominated convergence theorem and point (1) of Lemma 2.2, it is not hard to see that µR converges
weakly to µ and that I(µR) → I(µ) when R → +∞. To regularize µR, we consider µR,ε =
Law(XR + εU), ε ≤ 1, where XR is distributed according to µR and U is uniformly distributed
on the Euclidean unit ball B1 of Rd. It is clear that µR,ε has a density with respect to Lebesgue.
Moreover, µR,ε → µR, when ε → 0. Indeed, if f : Rd → R is continuous, it is bounded on
[−R;R]d +B1, and it follows that

∫

f dµR,ε = E[f(XR + εU)] →
ε→0

E[f(XR)],

This applies in particular to f = V . Now let us show in each cases that J(µR,ε) converges to
J(µR), when ε goes to 0. Let us write

J(µR,ε) = E[W (XR + εU, YR + εV )],

where XR, YR, U, V are independent and such that YR
(d)
= XR and V

(d)
= U .

(1) If W is finite and continuous on Rd ×Rd, then using the boundedness of W on ([−R;R]d +
B1) × ([−R;R]d +B1), it follows that J(µR,ε) → J(µR) when ε → 0.

(2) If W is super harmonic, then Wε(x, y) := EU,V [W (x + εU, y + εV )] ≤ W (x, y) for all x, y.
Moreover, it follows from the continuity of W outside the diagonal that, for all x 6= y,
Wε(x, y) → W (x, y) when ε → 0. Since I(µ) < +∞, µ does not have atoms and so the
diagonal is of measure 0 for µ2. It follows from the dominated convergence theorem that
J(µR,ε) → J(µR) as ε → 0.

(3) Denoting by µx
R the law of XR + x, we see that µR,ε = EU [µεU

R ]. Therefore, the convexity
of J yields to

J(µR,ε) ≤ EU [J(µεU
R )] = EU

[∫∫

W (x + εU, y + εU) dµR(x)dµR(y)

]

= J(µR),

where the last equality comes from the property W (x + a, y + a) = W (x, y). On the
other hand, Fatou’s lemma implies that lim infε→0 J(µR,ε) ≥ J(µR). Therefore J(µR,ε) →
J(µR), when ε goes to 0.

We conclude from the above discussion that for any δ > 0, it is possible to choose R sufficiently
large and then ε sufficiently small so that dFM(µR,ε, µ) ≤ δ and |I(µR,ε)−I(µ)| ≤ δ. This completes
the proof. �

3. Tools from Potential Theory

In this section, we recall results from Potential Theory that will prove useful when we discuss
the proof of Theorem 1.2 and Corollary 1.3. There are many textbooks on Potential Theory, with
different point of views; our main source is [30], where the Riesz case is well-developed.

In this section, and unless otherwise stated, we set kα := k∆α
and we take W (x, y) := kα(x−y),

0 < α < d, d ≥ 1. We denote respectively by M1 ⊂ M∞ ⊂ M+ ⊂ M± the sets of probability
measures, of positive measures integrating kα(·)1|·|>1, of positive measures, and of signed measures

on R
d.

3.1. Potentials and interaction energy. We benefit from the constant sign of the Riesz kernel:
kα ≥ 0, contrary to the Coulomb kernel in dimension d = 2 and its logarithm. Following [30,
p. 58], the potential of µ ∈ M+ is the function Uµ

α : Rd → [0,∞] defined for every x ∈ Rd by

Uµ
α (x) :=

∫

W (x, y) dµ(y) =

∫

kα(x− y) dµ(y). (3.1)

Note that Uµ
α (x) = ∞ if µ has a Dirac mass at point x. By using the Fubini theorem, for

every µ ∈ M+, we have Uµ
α < ∞ Lebesgue almost everywhere iff µ ∈ M∞. This explains

actually the condition 0 < α < d taken in the Riesz potential, which is related to polar coordinates
(dx = rd−1 drdσd). In fact if µ ∈ M∞ then Uµ

α is a locally Lebesgue integrable function. Moreover,
as Schwartz distributions, we have Uµ

α = kα ∗ µ and, with the notations of (1.7),

−cα∆αU
µ
α = (−cα∆αkα) ∗ µ = µ.
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The interaction energy is the quadratic functional Jα : M+ 7→ [0,∞] defined by

Jα(µ) :=

∫∫

W (x, y) dµ(x)dµ(y) =

∫

Uµ
α dµ.

Note that Jα(µ) = ∞ if µ has a Dirac mass, and in particular Jα(µN ) = ∞.

In the Coulomb case where α = 2, we have c2J2(µ) = −
∫
Uµ

2 ∆Uµ
2 dx =

∫
|∇Uµ

2 |
2
dx. The

quantity ∇Uµ
2 is the (electric) field generated by the (Coulomb) potential Uµ

2 and this explains the
term “carré-du-champ” (“square of the field” in French) used for J2(µ).

Lemma 3.1 (Positivity and convexity on M+).

• For every µ ∈ M+ we have Jα(µ) ≥ 0 with equality iff µ = 0;
• Jα : M+ 7→ [0,∞] is strictly convex: for every µ, ν ∈ E+ with µ 6= ν, we have

∀t ∈ (0, 1), Jα(tµ+ (1 − t)ν) < tJα(µ) + (1 − t)Jα(ν);

• Eα,+ := {µ ∈ M+ : Jα(µ) < ∞} is a convex cone.

We recall that in classical Harmonic Analysis, a function K : R × R → R is called a positive
definite kernel when

∑n
i=1 xiK(xi, xj)x̄j ≥ 0 for every n ≥ 1 and every x ∈ C

n. If this holds only
when x1 + · · · + xn = 0, the kernel is said to be weakly positive definite. The famous Bochner
theorem states that a kernel is positive definite if and only if it is the Fourier transform of a
finite Borel measure. The famous Schoenberg theorem states for every f : R+ → R+, the kernel

(x, y) 7→ f(|x− y|2) is positive definite on Rd for every d ≥ 1 if and only if f is the Laplace
transform of a finite Borel measure on R+. The famous Bernstein theorem states that if f : R → R

is continuous and C∞((0,∞)) then f is the Laplace transform of a finite Borel measure on R+ if
and only if f is completely monotone: (−1)nf (n) ≥ 0 for every n ≥ 0. For all these notions, we
refer to [6, 29].

The proof of Lemma 3.1 is short and self-contained. It relies on the fact that the convexity of the
functional is equivalent to the fact that W is a weakly positive definite kernel, which is typically the
case when W is a mixture of shifted Gaussian kernels, which are the most useful weakly positive
definite kernels. For example this works if for some arbitrary measurable α, β : R → R and Borel
measure η, and every x, y ∈ Rd,

W (x, y) = w(|x− y|) =

∫ ∞

0

(

e−α2(t)|x−y|2

+ β(t)
)

dη(t).

The shift β can be < 0, which allows non positive definite kernels such as the logarithmic kernel
(note that the Riesz kernel is positive definite). The method is used for the logarithmic kernel in
[4, Proof of Property 2.1 (4)] with the following mixture:

log
1

|x− y|
=

∫ ∞

0

1

2t

(

e−
|x−y|2

2t − e− 1
2t

)

dt.

This kernel has a sign change and a double singularity near zero and infinity, which can be circum-
vented by using a cutoff. Alternatively, one may proceed by regularization and use the Bernstein
theorem with the completely monotone function f(t) = (ε+ t)−β , β, ε > 0, and then the Schoen-
berg theorem, see e.g. [35]. For instance, for the logarithmic kernel, the following representation is
used in [27, Chapter 5]:

log
1

ε+ |x− y|
=

∫ ∞

0

(
1

ε+ 1 + |x− y|
−

1

1 + t

)

dt.

Finally, let us mention that for the Riesz kernel, yet another short proof of Lemma 3.1, based on
the formula kα = ckα/2 ∗ kα/2, can be found in [30, Theorem 1.15 p. 79].

Proof of Lemma 3.1. Set β := d− α. We start from the identity,

Γ(1 + α) = c1+α

∫ ∞

0

tαe−ct dt, c > 0, α > −1.

Taking c = |x− y|2 and 1 + α = β/2, we get, for every x, y ∈ Rd,

kα(x − y) =

∫ ∞

0

f(t) e−t|x−y|2

dt, where f(t) :=
tβ/2−1

Γ(β/2)
.
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Now for every µ ∈ M+ such that Jα(µ) < ∞,

Jα(µ) =

∫ ∞

0

f(t)

(∫∫

e−t|x−y|2

dµ(x)dµ(y)

)

dt.

Expressing the Gaussian kernel as the Fourier transform of a Gaussian kernel, we get, by writing
ei〈x−y,w〉 = ei〈x,w〉e−i〈y,w〉 and using the Fubini theorem,

∫∫

e−t|x−y|2

dµ(x)dµ(y) = (4πt)−d/2

∫∫ (∫

Rd

ei〈x−y,w〉e
1

4t |w|2

dw

)

dµ(x)dµ(y)

= (4πt)−d/2

∫

Rd

∣
∣
∣
∣

∫

ei〈x,w〉 dµ(x)

∣
∣
∣
∣

2

︸ ︷︷ ︸

Kw(µ)

e− 1
4t |w|2

dw.

Now Kw is clearly convex since for every µ, ν ∈ M1(Rd) and every t ∈ (0, 1),

tKw(µ) + (1 − t)Kw(ν) −Kw(tµ+ (1 − t)ν)

t(1 − t)
= Kw(µ− ν) =

∣
∣
∣
∣

∫

ei〈x,w〉 d(µ− ν)(x)

∣
∣
∣
∣

2

≥ 0.

It follows then that Jα is also convex as a conic combination of convex function. Let us establish
now the strict convexity of Jα. Let us suppose that µ, ν ∈ M1(Rd) with Jα(µ) < ∞ and Jα(ν) < ∞
and tJα(µ) + (1 − t)Jα(ν) = Jα(tµ+ (1 − t)ν) for some t ∈ (0, 1). Then

Jα(µ− ν) =
tJα(µ) + (1 − t)Jα(ν) − Jα(tµ+ (1 − t)ν)

t(1 − t)
= 0.

Arguing as before, we find

0 = Jα(µ− ν) =

∫ ∞

0

f(t)

[

(4πt)−d/2

∫

Rd

Kw(µ− ν) e− 1
4t |w|2

dw

]

dt.

Hence, for every t > 0 (a single t > 0 suffices in what follows)
∫

Rd

Kw(µ− ν) e− 1
4t |w|2

dw = 0.

Thus, the Fourier transform of µ− ν vanishes almost everywhere, and therefore µ = ν.
Finally, Eα,+ is clearly a cone, and its convexity comes from the convexity of Jα. �

Following [30, p. 62], for any µ = µ+ − µ− ∈ M± such that µ± ∈ M∞, we have U
µ±
α < ∞

Lebesgue almost everywhere, and we may define for Lebesgue almost every x

Uµ
α (x) := Uµ+

α (x) − Uµ−
α (x) ∈ (−∞,+∞).

Following [30, p. 77], for every µ = µ+ − µ− ∈ M± such that µ± ∈ M∞ and
∫

Uµ+
α dµ− < ∞ and

∫

Uµ−
α dµ+ < ∞,

we may define Jα(µ) ∈ (−∞,+∞] as (thanks to the Fubini theorem)

Jα(µ) :=

∫

Uµ
α dµ =

∫

Uµ+
α dµ+ +

∫

Uµ−
α dµ− −

∫

Uµ+
α dµ− −

∫

Uµ−
α dµ+.

More generally, for every µ1, µ2 ∈ M± such that µ1±, µ2± ∈ M∞ and
∫

Uµ1±
α dµ2∓ < ∞

we may define Jα(µ1, µ2) ∈ (−∞,+∞] by

Jα(µ1, µ2) :=

∫

Uµ1
α dµ2 =

∫

Uµ1+
α dµ2+ +

∫

Uµ1−
α dµ2− −

∫

Uµ1+
α dµ2− −

∫

Uµ1−
α dµ2+.

Following [30, p. 78], since kα is symmetric, then the reciprocity law holds:

Jα(µ1, µ2) = Jα(µ2, µ1) i.e.

∫

Uµ1
α dµ2 =

∫

Uµ2
α dµ1.

Let Eα be the set of elements of M± for which Jα makes sense and is finite. As pointed out by
N.S. Landkof [30] in his preface, a very nice idea going back to H. Cartan consists in seeing Jα
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as a Hilbert structure on Eα. This idea is simply captured by the following lemma, which is the
analogue of Lemma 3.1 for signed measures of finite energy.

Lemma 3.2 (Properties of (Eα, Jα)).

• Jα is lower semi-continuous on Eα for the vague topology (i.e. with respect to continuous
functions with compact support);

• Eα is a vector space and (µ1, µ2) 7→ Jα(µ1, µ2) defines a scalar product on Eα.

In particular for every µ ∈ Eα, we have Jα(µ) = Jα(µ, µ) ≥ 0 with equality iff µ = 0; and moreover,
Jα : Eα 7→ (−∞,∞) is strictly convex: for every µ, ν ∈ Eα with µ 6= ν,

∀t ∈ (0, 1),
tJα(µ) + (1 − t)Jα(ν) − Jα(tµ+ (1 − t)ν)

t(1 − t)
= Jα(µ− ν) > 0.

Proof. The lower semi-continuity for the vague convergence follows from the fact that kα ≥ 0,
see [30, p. 78]. The vector space nature of Eα is immediate from its definition. The bilinearity of
(µ1, µ2) 7→ Jα(µ1, µ2) is immediate. By reasoning as in the proof of Lemma 3.1, we get Jα(µ, µ) ≥ 0
for every µ ∈ Eα, with equality iff µ = 0. �

Following [30, Theorem 1.18 and 1.19 p. 90], for this pre-Hilbertian topology, it can be shown
that Eα,+ is complete while Eα is not complete if α > 1, and that Jα is not continuous for the
vague topology.

3.2. Capacity and “approximately/quasi everywhere”. The notion of capacity is central
in Potential Theory. We just need basic facts on zero-capacity sets. Once more we follow the
presentation of Landkof ([30, Chapter II.1]), to which we refer for additional details, references
and proofs.

For any compact set K consider the minimization problem

Wα(K) = inf{Jα(ν); ν ∈ M1 ∩ Eα, supp(ν) ⊂ K}.

The boundedness of K implies that Wα(K) ∈ (0,∞]. Its inverse Cα(K) is called the capacity of
the compact set K. The capacity of K is zero if and only if there is no measure of finite energy
supported in K.

On general sets on can define an “inner capacity” and an “outer capacity” by

Cα(A) = sup{Cα(K),K ⊂ A,K compact},

Cα(A) = inf{Cα(O), A ⊂ O,O open}.

It can be shown (see [30, Theorem 2.8]) that if A is a Borel set, these two quantities coincide — A
is said to be “capacitable” and the common value is called the capacity of A.

A property P (x) is said to hold “approximately everywhere” if the set A of x such that P (x)
is false, has zero inner capacity, and “quasi-everywhere” if it has zero outer capacity. For many
“reasonable” P (x), the set A is Borel and the two notions coincide. The following result ([30,
Theorem 2.1 & 2.2]) shows that, for such “reasonable” properties, “quasi-everywhere” means “ν-
almost surely, for all measure ν of finite energy”.

Theorem 3.3 (Zero capacity Borel sets). A Borel set A has zero capacity if and only if, for
any measure ν of finite energy, ν(A) = 0. In particular, if Cα(A) > 0, A has a positive inner
capacity, and there exists a compact K ⊂ A and a probability measure ν of finite energy such that
supp(ν) ⊂ K.

3.3. The Gauss averaging principle. In the classical Coulombian case (α = 2), we will need
the following result, known as Gauss’ averaging principle. In Rd, for all r > 0, let σr be the surface
measure on the sphere ∂B(0, r); its total mass is σdr

d−1 where σd is the surface of the unit sphere.

Theorem 3.4 (Gauss’ Averaging Principle). In R
d,

1

rd−1σd

∫

∂B(0,r)

1

|x− y|d−2
dσr(y) =

{
1

rd−2 if |x| < r
1

|x|d−2 if |x| > r.

This result can be found in [26], Lemma 1.6.1 p. 21.
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4. Proof of the properties of the minimizing measure

The proof of Theorem 1.2 is decomposed in two steps. We begin by proving the existence,
uniqueness and the support properties of µ⋆ in Section 4.1. The characterization of µ⋆ is proved
in Section 4.2.

Recall that, for a probability measure µ, we have defined

I(µ) =
1

2
Jα(µ) +

∫

V dµ.

In this section we consider the following minimization problem:

P : inf {I(µ), µ ∈ M1}. (4.1)

4.1. Existence, uniqueness and compactness of the support. The existence of a minimizer
for P is clear since we have already seen that I has compact level sets.

Since I(µ) < ∞ implies that µ ∈ Eα and
∫
V dµ < ∞, the problem P is equivalent to

Pα : inf
{
I(µ), µ ∈ M1 ∩ Eα such that V ∈ L1(µ)

}
(4.2)

in that they have the same values and the same minimizers. Let us call p the common value.
Suppose µ and ν are two measures in M1 ∩ Eα such that V ∈ L1(µ) ∩L1(ν). Let ψ : t ∈ [0, 1] 7→

[0,∞) by

ψ(t) : = I((1 − t)µ+ tν) (4.3)

=
1

2
Jα((1 − t)µ+ tν) + (1 − t)

∫

V dµ+ t

∫

V dν.

By Lemma 3.2, ψ is strictly convex if µ 6= ν. If µ and ν minimize I, then they are in M1 ∩ Eα,
so ψ is well-defined, and since ψ(0) = I(µ) = I(ν) = ψ(1), µ must be equal to ν. Therefore the
minimizer µ⋆ is unique.

Let us now prove that µ⋆ has compact support. This result also holds in dimension 2 with the
logarithmic potential, see [39, Theorem 1.3, p. 27]. To this end, let us define, for any compact K,
a new minimization problem:

PK : inf {I(µ), µ ∈ M1 ∩ Eα, supp(µ) ⊂ K},

and let pK be the value of PK .

Lemma 4.1 (Reduction to restricted optimization problem). Let K be a compact set, and suppose
that V (x) ≥ 2p+3 when x /∈ K, where p is the common value of P, Pα (defined by (4.1) and (4.2)).
Then the problems P and PK are equivalent: their values p and pK are equal, the minimizer exists
and is the same. In particular, the minimizer µ⋆ of the original problem P satisfies supp(µ⋆) ⊂ K.

Proof. Suppose µ is such that I(µ) ≤ p + 1. We will prove that, if µ(K) < 1, we can find a
µK , supported in K such that I(µK) < I(µ). This clearly implies that the two values pK and p
coincide. Since we know that the minimizer µ⋆ of the original problem exists, this also proves that
it must be supported in K.

Let us now construct µK as the renormalized restriction of µ to K. First, remark that µ(K)
cannot be zero, since

p+ 1 ≥ I(µ) ≥ (1 − µ(K))(2p+ 3).

Therefore we can define

µK(A) =
1

µ(K)
µ(K ∩A).

Since by assumption µ(K) < 1, we may similarly define µKc . The measure µ is the convex
combination

µ = µ(K)µK + (1 − µ(K))µKc .

The positivity of V , W , and the choice of K imply that

I(µ) =
1

2
Jα(µ) + µ(K)

∫

V dµK + (1 − µ(K))

∫

V dµKc

≥
1

2
µ(K)2Jα(µK) + µ(K)2

∫

V dµK + (1 − µ(K))(2p+ 3),
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since Jα(µKc ) and the interaction energy Jα(µK , µKc) are both non negative. Therefore

I(µ) ≥ µ(K)2I(µK) + (1 − µ(K))(2p+ 3).

Assume that I(µK) ≥ I(µ). Then

I(µ)(1 − µ(K)2) ≥ (1 − µ(K))(2p+ 3).

Using the fact that I(µ) ≤ p+ 1, and dividing by 1 − µ(K), we get

2(p+ 1) ≥ (p+ 1)(1 + µ(K)) ≥ 2p+ 3,

a contradiction. Therefore I(µK) < I(µ), and the proof is complete. �

4.2. A criterion of optimality. In this section we prove the items (5), (6) and (7) of Theo-
rem 1.2. The corresponding result in dimension 2 for the logarithmic potential can be found in [39,
Theorem 3.3, p. 44]. We adapt it, using fully the pre-Hilbertian structure rather than the principle
of domination when it is possible.

Proof of item (5) of Theorem 1.2. We already know that µ⋆ has compact support. The first step
is to show that µ⋆ satisfies (1.8) and (1.9). Let µ = µ⋆, and let ν be in ν ∈ M1 ∩ Eα such that
V ∈ L1(ν). Recall the function ψ from (4.3):

ψ(t) = I((1 − t)µ⋆ + tν).

Since Jα is quadratic we get

ψ(t) =

∫

V dµ⋆ + t

∫

V d(ν − µ⋆) +
1

2
Jα(µ⋆ + t(ν − µ⋆))

=

∫

V dµ⋆ + t

∫

V d(ν − µ⋆) +
1

2

(
Jα(µ⋆) + t2Jα(ν − µ⋆) + 2tJα(µ⋆, ν − µ⋆)

)

Therefore

ψ′(t) =

∫

V d(ν − µ⋆) + tJα(ν − µ⋆) + Jα(µ⋆, ν − µ⋆). (4.4)

Since µ⋆ minimizes I, ψ′(0+) must be non-negative.

0 ≤

∫

V d(ν − µ⋆) + Jα(µ⋆, ν − µ⋆)

≤

∫

V dν + Jα(µ⋆, ν) −

(∫

V dµ⋆ + Jα(µ⋆)

)

≤

∫

(V + Uµ⋆
α ) dν − C⋆.

Therefore:

∀ν ∈ M1 ∩ Eα,

∫

(V + Uµ⋆
α − C⋆) dν ≥ 0. (4.5)

Since this holds for all ν, V +Uµ⋆
α is greater than C⋆ quasi everywhere. Indeed, let A = {x, V (x)+

Uµ⋆
α (x) < C⋆}. Since V + Uµ⋆

α is measurable this is a Borel set. Suppose by contradiction that its
capacity is strictly positive. By Proposition 3.3, there exist a compact set K ⊂ A and a measure ν
with finite energy supported in K. For this measure

∫
V + Uµ⋆

α dν < C⋆, which contradicts (4.5).
This proves (1.8).

Let us prove (1.9). Suppose V (x) +Uµ⋆
α (x) > C⋆ for some x ∈ supp(µ⋆). Since V +Uµ⋆

α is lower
semi-continuous, we can find a neighborhood U of x, and an η > 0 such that

∀x ∈ U , V (x) + Uµ⋆
α (x) ≥ C⋆ + η.

Therefore ∫

(V + Uµ⋆
α ) dµ⋆ ≥ (C⋆ + η)µ⋆(U) +

∫

Rd\U

(V + Uµ⋆
α ) dµ⋆.

Since V + Uµ⋆
α ≥ C⋆ quasi everywhere, and µ⋆ has finite energy, this holds µ⋆ almost surely, so

C⋆ =

∫

V + Uµ⋆
α dµ⋆ ≥ C⋆ + ηµ⋆(U).

This is impossible since µ⋆(U) > 0, by definition of the support. Therefore (1.9) holds. �
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Proof of item (6) of Theorem 1.2. Let µ ∈ Eα ∩ M1(Rd) be such that V ∈ L1(ν). It is enough to
show that, if (1.12) and (1.13) hold, then µ = µ⋆. We argue by contradiction and suppose µ 6= µ⋆.
Consider again the function ψ (with ν = µ): ψ(t) = I((1 − t)µ⋆ + tµ), t ∈ [0, 1]. According to
Lemma 3.1, this function is strictly convex, therefore ψ′(1) > ψ′(0) ≥ 0. The explicit expression
of ψ′ (Equation (4.4)) gives:

0 < ψ′(1) =

∫

V d(µ− µ⋆) + Jα(µ− µ⋆) + Jα(µ⋆, µ− µ⋆)

=

∫

V dµ−

∫

V dµ⋆ + Jα(µ) − Jα(µ, µ⋆).

Therefore:
∫

(Uµ
α + V ) dµ⋆ <

∫

(Uµ
α + V ) dµ. (4.6)

On the other hand, integrating (1.12) with respect to µ and (1.13) with respect to µ⋆ yields:
∫

(Uµ
α + V ) dµ ≤ C ≤

∫

(Uµ
α + V ) dµ⋆,

which contradicts (4.6) and concludes the proof. �

To prove the last result of Theorem 1.2 we recall the following classical result.

Theorem 4.2 (Principle of domination). Suppose α ≤ 2. Let µ and ν be two positive measures in
Eα, and c a non negative constant. If the inequality

Uµ
α (x) ≤ Uν

α(x) + c

holds µ-almost surely, then it holds for all x ∈ Rd.

Proof. In the Coulomb case α = 2, [30, Theorem 1.27, p. 110] applies, since Uν
α is positive and

super-harmonic. If α < 2, the potential Uν
α is α-superharmonic, so we can apply [30, Theorem 1.29,

p. 115] and get the result. �

Proof of item (7) of Theorem 1.2. We follow the proof of Theorem 1.3 in [18]. Arguing by contra-
diction, let us suppose that, for some measure µ, and some ǫ > 0,

sup
supp(µ)

(Uµ
α + V ) ≤ C⋆ − ǫ.

By (1.9), this implies that

Uµ
α (x) + ǫ ≤ Uµ⋆

α (x),

for all x ∈ supp(µ). Let η be the equilibrium (probability) measure of supp(µ): Uη
α(x) = Cη on

supp(µ), therefore

Uµ+(ǫ/Cη)η
α ≤ Uµ⋆

α

for all x in supp(µ). By the principle of domination this holds at infinity. Since for any compactly

supported µ, Uµ
α (x) ∼ µ(Rd)

|x|d−α at infinity, we get a contradiction:

(1 + ǫ/Cη) ≤ 1.

Similarly, if

” inf
supp(µ⋆)

” (Uµ
α (x) + V (x)) > C⋆,

then Uµ
α + V ≥ C⋆ + ǫ q.e. on supp(µ⋆), so

Uµ
α (x) ≥ Uµ⋆

α (x) + ǫ, µ⋆ − a.s.

The same proof as before applies to get a contradiction. �
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4.3. Radial external fields in the Coulomb case — Corollary 1.3. For the sake of com-
pleteness, let us finally give a proof of the result mentioned in Corollary 1.3.

Changing V into βV , we can assume without loss of generality that β = 1.
Recall that V is supposed to be radially symmetric and of class C2: there exists v : R+ → R

such that V (x) = v(|x|).
In this case it is thus natural to look for a radially symmetric equilibrium probability measure.

Guided by the results of [39], let us consider an absolutely continuous probability measure µ, such
that supp(µ) = {x ∈ Rd; r0 ≤ |x| ≤ R0} for some 0 ≤ r0 < R0 and such that dµ = M(r) dσrdr,
where M : [r0, R0] → R+ is assumed to be continuous.

First let us calculate the potential of µ. Using the Gauss’ averaging principle (Theorem 3.4), it
holds

Uµ
2 (x) =

∫∫

M(r)W (x, y) dσr(y)dr

=

∫

M(r)

∫

∂B(0,r)

1

|x− y|d−2
dσr(y)dr

= σd

∫

M(r)rd−1

(

1{|x|>r}

|x|d−2
+

1{|x|≤r}

rd−2

)

dr

=
σd

|x|d−2

∫ |x|

0

M(r)rd−1 dr + σd

∫ ∞

|x|

M(r)r dr. (4.7)

Thus Uµ
2 (x) = u(|x|), for some function u of class C1.

Now, let us consider Condition (1.10). It holds if and only if there exists some C such that
u(r) = C − v(r) for all r ∈ [r0, R0]. This is obviously equivalent to the conditions u′(r) = −v′(r)

for all r ∈ [r0, R0] and u(R0) = 1/Rd−2
0 = C − v(R0) (here we use that σd

∫ R0

0 M(r)rd−1 dr = 1).
Observing that

u′(r) = −
σd(d− 2)

rd−1

∫ r

0

M(t)td−1 dt,

we see that u′ = −v′ on [r0, R0] if and only if u′(R0) = −v′(R0) which amounts to w(R0) = d− 2

and M(t) = 1
σd(d−2)

ω′(t)
td−1 , for all t ∈ [r0, R0], where we recall that w(t) = td−1v′(t), t ≥ 0. The

condition σd

∫ R0

0 M(r)rd−1 dr = 1 implies that 1
d−2(w(R0) − w(r0)) = 1 and so w(r0) = 0. In the

case where w is increasing this determines uniquely r0 = 0 and R0 = w−1(d−2). In the case where
v is supposed to be convex, we see that w is increasing on [a0,∞[ with a0 = inf{t > 0; v′(t) > 0}
and w ≤ 0 on [0, a0]. Therefore R0 is uniquely defined and reasoning on the support of µ easily
yields to the conclusion that r0 = a0. In all cases, the probability µ is uniquely determined and
C = 1/Rd−2

0 + v(R0).
It remains to check that this probability µ satisfies also Condition (1.11). If r = |x| ≥ R0, then

Uµ
2 (x) + V (x) = 1

rd−2 + v(r) ≥ 1

Rd−2
0

+ v(R0) = C, since it is easy to check that r 7→ 1
rd−2 + v(r) is

increasing on [R0,∞). In the case where v is convex and r ≤ r0, an integration by parts yields to

Uµ
2 (x) =

1

(d− 2)

∫ R0

r0

w′(t)

td−2
dt =

1

d− 2

∫ R0

r0

(d− 1)v′(t) + tv′′(t) dt

= v(R0) − v(r0) +
1

Rd−2
0

= C − v(r0) ≥ C − v(r),

since v is non-increasing on [0, r0]. Therefore, in all cases Uµ
2 (x) + V (x) ≥ C for every x ∈ Rd,

which completes the proof of the characterization of the equilibrium measure.
Finally, if the external field V is quadratic, i.e. if v(r) = r2, then w(r) = 2rd and so r0 = 0,

R0 = ((d − 2)/2)1/d and M(r) = 2d
σd(d−2) 1{|x|≤R0}. In other words, the equilibrium probability

measure is uniform on the ball centered in 0 and of radius ((d− 2)/2)1/d.

4.4. Prescribed equilibrium measure. In this section we prove Corollary 1.4. We will need
the following elementary lemma.
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Lemma 4.3 (Regularity of Riesz potential). Let 0 < α < d, d ≥ 1, and let µ be a probability mea-
sure with a density f ∈ Lp

loc(Rd) for some p > d/α. Then Uµ
α is continuous and finite everywhere

on Rd.

Proof. For all n ≥ 1, define

Rn(x) :=

∫

f(y) min(n; k∆α
(x− y)) dy

and

Sn(x) := Uµ
α (x) −Rn(x) =

∫

f(y)[k∆α
(x− y) − n]+ dy.

It follows from the dominated convergence theorem that Rn is continuous on Rd. Let us show that
Sn converges to 0 uniformly on compact sets, which will prove the claim. Let q := p/(p − 1) be
the conjugate exponent of p; applying Hölder inequality yields to

0 ≤ Sn(x) ≤

∫

f(y)
1

|x− y|d−α
1B(x,n−1/(d−α))(y) dy

≤ ‖f‖p,B(x,1)

(∫
1

|x− y|q(d−α)
1B(x,n−1/(d−α))(y) dy

)1/q

= ‖f‖p,B(x,1)εn,

where εn := σ
1/q
d

(∫ n−1/(d−α)

0
1

uq(d−α)−d+1 du
)1/q

and where σd is the surface of the unit Euclidean

ball. The condition p > d/α is equivalent to q(d−α)−d+1 < 1 and so εn is finite for all n and εn → 0
as n → ∞. We conclude from this that if K is a compact set of Rd and K1 = {x ∈ R

d; d(x,K) ≤ 1},
it holds

sup
x∈K

|Sn|(x) ≤ ‖f‖p,K1εn,

which completes the proof. �

Proof of Corollary 1.4. Lemma 4.3 above shows that Uµ⋆
α is continuous and everywhere finite on

Rd. Since µ⋆ is compactly supported, Uµ⋆
α (x) → 0 as |x| → ∞. Therefore V (x) → ∞, when

|x| → ∞. This proves (H2). The other assumptions are straightforward. By the very definition of
V , it holds

Uµ⋆
α (x) + V (x) ≥ 0, ∀x ∈ R

d,

with equality on B(0, R) ⊇ supp(µ). According to point (6) of Theorem 1.2, this proves that µ∗ is
the (unique) minimizer of I. The last assertion follows from point (4) of Theorem 1.2. �
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36. Dénes Petz and Fumio Hiai, Logarithmic energy as an entropy functional, Advances in differential equations
and mathematical physics (Atlanta, GA, 1997), Contemp. Math., vol. 217, Amer. Math. Soc., Providence, RI,
1998, pp. 205–221. MR-1606719 2, 4, 6

37. Gareth O. Roberts and Jeffrey S. Rosenthal, Optimal scaling for various Metropolis-Hastings algorithms, Statist.
Sci. 16 (2001), no. 4, 351–367. MR-1888450 8

38. Gilles Royer, An initiation to logarithmic Sobolev inequalities, SMF/AMS Texts and Monographs, vol. 14,
American Mathematical Society, Providence, RI, 2007, Translated from the 1999 French original by Donald
Babbitt. MR-2352327 8

39. Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997,
Appendix B by Thomas Bloom. MR-1485778 4, 6, 22, 23, 25

40. E. Sandier and S. Serfaty, 2D Coulomb Gases and the Renormalized Energy, preprint arXiv:1201.3503, January
2012. 4, 7

41. Etienne Sandier and Sylvia Serfaty, 1D Log Gases and the Renormalized Energy: Crystallization at Vanishing

Temperature, preprint arXiv:1303.2968, 2013. 4, 7
42. Antonello Scardicchio, Chase Zachary, and Salvatore Torquato, Statistical properties of determinantal point

processes in high-dimensional Euclidean spaces, Phys. Rev. E 79 (2009), no. 4, Article 041108. 8

http://www.ams.org/mathscinet-getitem?mr=1440140
http://www.ams.org/mathscinet-getitem?mr=2571413
http://www.ams.org/mathscinet-getitem?mr=2276529
http://www.ams.org/mathscinet-getitem?mr=1932358
http://www.ams.org/mathscinet-getitem?mr=1827871
http://www.ams.org/mathscinet-getitem?mr=0147214
http://www.ams.org/mathscinet-getitem?mr=2062570
http://www.ams.org/mathscinet-getitem?mr=2641363
http://arxiv.org/abs/1205.0671
http://www.ams.org/mathscinet-getitem?mr=2926763
http://www.ams.org/mathscinet-getitem?mr=1746976
http://www.ams.org/mathscinet-getitem?mr=2216966
http://www.ams.org/mathscinet-getitem?mr=2132704
http://www.ams.org/mathscinet-getitem?mr=0350027
http://www.ams.org/mathscinet-getitem?mr=0129874
http://www.ams.org/mathscinet-getitem?mr=0148411
http://arxiv.org/abs/1303.1240
http://www.ams.org/mathscinet-getitem?mr=2647570
http://www.ams.org/mathscinet-getitem?mr=1422615
http://www.ams.org/mathscinet-getitem?mr=1606719
http://www.ams.org/mathscinet-getitem?mr=1888450
http://www.ams.org/mathscinet-getitem?mr=2352327
http://www.ams.org/mathscinet-getitem?mr=1485778
http://arXiv.org/abs/1201.3503
http://arxiv.org/abs/1303.2968
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MR-2073873 4, 5, 7

Acknowledgments. The authors would like to thank Luc Deléaval, Abey López Garćıa, Arnaud
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