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FIRST-ORDER GLOBAL ASYMPTOTICS FOR CONFINED

PARTICLES WITH SINGULAR PAIR REPULSION

By Djalil Chafäı, Nathael Gozlan and Pierre-André Zitt

Université Paris-Est Marne-la-Vallée

We study a physical system of N interacting particles in R
d,

d≥ 1, subject to pair repulsion and confined by an external field. We
establish a large deviations principle for their empirical distribution
as N tends to infinity. In the case of Riesz interaction, including
Coulomb interaction in arbitrary dimension d > 2, the rate function
is strictly convex and admits a unique minimum, the equilibrium
measure, characterized via its potential. It follows that almost surely,
the empirical distribution of the particles tends to this equilibrium
measure as N tends to infinity. In the more specific case of Coulomb
interaction in dimension d > 2, and when the external field is a convex
or increasing function of the radius, then the equilibrium measure is
supported in a ring. With a quadratic external field, the equilibrium
measure is uniform on a ball.

1. Introduction. We study in this work a physical system of N parti-
cles at positions x1, . . . , xN ∈R

d, d≥ 1, with identical “charge” qN := 1/N ,
subject to a confining potential V :Rd → R coming from an external field
and acting on each particle, and to an interaction potential W :Rd ×R

d →
(−∞,+∞] acting on each pair of particles. The function W is finite out-
side the diagonal and symmetric: for all x, y ∈ R

d with x 6= y, we have

W (x, y) =W (y,x) <∞. The energy HN (x1, . . . , xN ) of the configuration
(x1, . . . , xN ) ∈ (Rd)N takes the form

HN (x1, . . . , xN )

:=
N∑

i=1

qNV (xi) +
∑

i<j

q2NW (xi, xj)

(1.1)
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=
1

N

N∑

i=1

V (xi) +
1

N2

∑

i<j

W (xi, xj)

=

∫

V (x)dµN (x) +
1

2

∫ ∫

6=
W (x, y)dµN (x)dµN (y),

where µN := 1
N

∑N
i=1 δxi is the empirical measure of the particles, and where

the subscript “ 6=” indicates that the double integral is off-diagonal. The
energy HN : (Rd)N → R ∪ {+∞} is a quadratic form functional in the vari-
able µN .

From now on, and unless otherwise stated, we denote by | · | the Euclidean
norm of Rd, and we make the following additional assumptions:

(H1) The function W :Rd × R
d → (−∞,+∞] is continuous on R

d × R
d,

symmetric, takes finite values on R
d ×R

d \ {(x,x);x ∈R
d} and satisfies the

following integrability condition: for all compact subsetK ⊂R
d, the function

z ∈R
d 7→ sup{W (x, y); |x− y| ≥ |z|, x, y ∈K}

is locally Lebesgue-integrable on R
d.

(H2) The function V :Rd → R is continuous and such that
lim|x|→+∞V (x) = +∞ and

∫

Rd

exp (−V (x))dx <∞.

(H3) There exist constants c ∈ R and εo ∈ (0,1) such that for every
x, y ∈R

d,

W (x, y)≥ c− εo(V (x) + V (y)).

(This must be understood as “V dominates W at infinity.”)

Let (βN )N be a sequence of positive real numbers such that βN →+∞ as
N →∞. Under (H2)–(H3), there exists an integer N0 depending on εo such
that for any N ≥N0, we have

ZN :=

∫

Rd

· · ·

∫

Rd

exp (−βNHN (x1, . . . , xN ))dx1 · · ·dxN <∞,

so that we can define the Boltzmann–Gibbs probability measure PN on
(Rd)N by

dPN (x1, . . . , xN ) :=
exp (−βNHN (x1, . . . , xN ))

ZN
dx1 · · ·dxN .(1.2)

The law PN is the equilibrium distribution of a system of N interacting
Brownian particles in R

d, at inverse temperature βN , with equal individual
“charge” 1/N , subject to a confining potential V acting on each particle,
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and to an interaction potential W acting on each pair of particles; see Sec-
tion 1.5.10. Note that for βN =N2, the quantity βNHN can also be inter-
preted as the distribution of a system of N particles living in R

d, with unit
“charge,” subject to a confining potential NV acting on each particle, and
to an interaction potential W acting on each pair of particles.

Our work is motivated by the following physical control problem: given
the (internal) interaction potential W , for instance, a Coulomb potential,
a target probability measure µ⋆ on R

d, for instance, the uniform law on
the unit ball, and a cooling scheme βN →+∞, for instance, βN =N2, can
we tune the (external) confinement potential V (associated to an external
confinement field) such that µN → µ⋆ as N → ∞? In this direction, we
provide some partial answers in Theorems 1.1 and 1.2, Corollaries 1.3 and 1.4
below. We also discuss several possible extensions and related problems in
Section 1.5.

Let M1(R
d) be the set of probability measures on R

d. The mean-field
symmetries of the model suggest to study, under the exchangeable measure
PN , the behavior as N →∞ of the empirical measure µN , which is a random
variable on M1(R

d). With this asymptotic analysis in mind, we introduce
the functional I :M1(R

d)→ (−∞,+∞] given by

I(µ) :=
1

2

∫∫

(V (x) + V (y) +W (x, y))dµ(x)dµ(y).

Assumptions (H2)–(H3) imply that the function under the integral is bounded
from below, so that the integral defining I makes sense in R ∪ {+∞} =
(−∞,+∞]. If it is finite, then

∫
V dµ and

∫∫
W dµ2 both exist (see Lem-

ma 2.2), so that

I(µ) =

∫

V dµ+
1

2

∫∫

W dµ2.

The energy HN defined by (1.1) is “almost” given by I(µN ), where the
infinite terms on the diagonal are forgotten.

1.1. Large deviations principle. Theorem 1.1 below is our first main re-
sult. It is of topological nature, inspired from the available results for log-
arithmic Coulomb gases in random matrix theory [4, 5, 28, 43]. We equip
M1(R

d) with the weak topology, defined by duality with bounded contin-

uous functions. For any set A ⊂ M1(R
d) we denote by int(A), clo(A) the

interior and closure of A with respect to this topology. This topology can
be metrized by the Fortet–Mourier distance defined by (see [25, 44])

dFM(µ, ν) := sup
max(|f |∞,|f |Lip)≤1

{∫

f dµ−

∫

f dν

}

,(1.3)

where |f |∞ := sup |f | and |f |Lip := supx 6=y |f(x)− f(y)|/|x− y|.
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To formulate the large deviations result we need to introduce the following
additional technical assumption:

(H4) For all ν ∈M1(R
d) such that I(ν)<+∞, there is a sequence (νn)n∈N

of probability measures, absolutely continuous with respect to Lebesgue,
such that νn converges weakly to ν and I(νn)→ I(ν), when n→∞.

It turns out that assumption (H4) is satisfied for a large class of potentials
V,W , and several examples are given in Proposition 2.8 and Theorem 1.2.

Throughout the paper, if (aN )N and (bN )N are nonnegative sequences,
the notation aN ≫ bN means that aN = bNcN , for some cN that goes to +∞
when N →∞.

Theorem 1.1 (Large deviations principle). Suppose that

βN ≫N log(N).

If (H1)–(H3) are satisfied, then:

(1) I has compact level sets (and is thus lower semi-continuous) and
infM1(Rd) I >−∞.

(2) Under (PN )N , the sequence (µN )N of random elements of M1(R
d)

equipped with the weak topology has the following asymptotic properties. For
every Borel subset A of M1(R

d),

lim sup
N→∞

logZNPN (µN ∈A)

βN
≤− inf

µ∈clo(A)
I(µ)

and

lim inf
N→∞

logZNPN (µN ∈A)

βN
≥− inf{I(µ);µ ∈ int(A), µ≪ Lebesgue}.

(3) Under the additional assumption (H4), the full Large Deviation Prin-
ciple (LDP) at speed βN holds with the rate function

I⋆ := I − inf
M1(Rd)

I.

More precisely, for all Borel set A⊂M1(R
d),

− inf
µ∈int(A)

I⋆(µ)≤ lim inf
N→∞

logPN (µN ∈A)

βN

≤ lim sup
N→∞

logPN (µN ∈A)

βN
≤− inf

µ∈clo(A)
I⋆(µ).

In particular, by taking A=M1(R
d), we get

lim
N→∞

logZN

βN
= inf

M1(Rd)
I⋆.
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(4) Let Imin := {µ ∈M1 : I⋆(µ) = 0} 6=∅. If (H4) is satisfied and if (µN )N
are constructed on the same probability space, and if d stands for the Fortet–
Mourier distance (1.3), then we have, almost surely,

lim
N→∞

dFM(µN , Imin) = 0.

A careful reading of the proof of Theorem 1.1 indicates that if Imin = {µ⋆}
is a singleton, and if (H4) holds for ν = µ⋆, then µN → µ⋆ almost surely as
N →∞.

1.2. Case βN =N and link with Sanov theorem. If we set W = 0, then
the particles become i.i.d., and PN becomes a product measure η⊗N

N where

ηN ∝ e−(βN/N)V , where the symbol “∝” means “proportional to.” When
βN =N , then ηN ∝ e−V does not depend on N , and we may denote it η.
To provide perspective, recall that the classical Sanov theorem [19], The-
orem 6.2.10, for i.i.d. sequences means in our settings that if W = 0 and
βN =N , then (µN )N satisfies to a large deviations principle on M1(R

d) at
speed N and with good rate function

µ 7→K(µ|η) :=

{∫

f log(f)dη, if µ≪ η, with f :=
dµ

dη
;

+∞, otherwise

(Kullback–Leibler relative entropy or free energy). This large deviations
principle corresponds to the convergence limN→∞ dFM(µN , η) = 0. Note that
if µ is absolutely continuous with respect to Lebesgue measure with density
function g, then K(µ|η) can be decomposed in two terms,

K(µ|η) =

∫

V dµ−H(µ) + logZV ,

where ZV :=
∫

Rd e
−V (x) dx and whereH(µ) is the Boltzmann–Shannon “con-

tinuous” entropy H(µ) :=−
∫
g(x) log(g(x))dx; therefore at the speed βN =

N , the energy factor
∫
V dµ and the Boltzmann–Shannon entropy factor

H(µ) both appear in the rate function. In contrast, note that Theorem 1.1 re-
quires a higher inverse temperature βN ≫N log(N). If we setW = 0 in The-
orem 1.1, then PN becomes a product measure, the particles are i.i.d. though
their common law depends on N , the function µ 7→ I∗(µ) =

∫
V dµ− inf V

is affine, its minimizers Imin over M1(R
d) coincide with

MV := {µ ∈M1(R
d) : supp(µ)⊂ arg inf V }

and Theorem 1.1 boils down to a sort of Laplace principle, which corresponds
to the convergence limN→∞ dFM(µN ,MV ) = 0. It is worthwhile to notice
that the main difficulty in Theorem 1.1 lies in the fact thatW can be infinite
on the diagonal (short scale repulsion). If W is continuous and bounded on
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R
d×R

d, then one may deduce the large deviations principle for (µN )N from
the case W = 0 by using the Laplace–Varadhan lemma [19], Theorem 4.3.1;
see also [4], Corollary 5.1. To complete the picture, let us mention that if
βN =N and if W is bounded and continuous, then the Laplace–Varadhan
lemma and the Sanov theorem would yield to the conclusion that (µN )N
verifies a large deviations principle on M1(R

d) at speed N with rate function
R− infM1(Rd)R where the functional R is defined by

R(µ) :=K(µ|η) +
1

2

∫ ∫

W (x, y)dµ(x)dµ(y)

= −H(µ) + I(µ) + logZV ;

once more, the Boltzmann–Shannon entropy factor H(µ) reappears at this
rate. For an alternative point of view, we refer to [40], [14], Theorem 2.1,
[10, 15, 32] and [33].

1.3. Equilibrium measure. Our second-main result, expressed in Theo-
rem 1.2 and Corollary 1.3 below is of differential nature. It is based on an
instance of the general Gauss problem in potential theory [26, 35, 54, 55].
It concerns special choices of V and W for which I⋆ achieves its minimum
0 for a unique and explicit µ⋆ ∈M1(R

d). Recall that the Coulomb interac-
tions correspond to the choice W (x, y) = k∆(x−y) where k∆ is the Coulomb
kernel (opposite in sign to the Newton kernel) defined on R

d, d≥ 1, by

k∆(x) :=







−|x|, if d= 1,

log
1

|x|
, if d= 2,

1

|x|d−2
, if d≥ 3.

(1.4)

This is, up to a multiplicative constant, the fundamental solution1 of the
Laplace equation. In other words, denoting ∆ := ∂2x1

+ · · ·+ ∂2xd
the Lapla-

cian, we have, in a weak sense, in the space of Schwartz–Sobolev distributions
D′(Rd),

−c∆k∆ = δ0 with c :=







1

2
, if d= 1,

1

2π
, if d= 2,

1

d(d− 2)ωd
, if d≥ 3,

(1.5)

1There are no boundary conditions here, and thus the term “Green function” is not
appropriate.
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where ωd := πd/2

Γ(1+d/2) is the volume of the unit ball of R
d. Our notation

is motivated by the fact that −∆ is a nonnegative operator. The case of
Coulomb interactions in dimension d= 2 is known as “logarithmic potential
with external field” and is widely studied in the literature; see [3, 28, 30, 47].
To focus on novelty, we will not study the Coulomb kernel for d ≤ 2. We
refer to [1, 13, 22, 36, 37, 49] and references therein for the Coulomb case in
dimension d= 1, to [3, 4, 28] to the Coulomb case in dimension d= 2 with
support restriction on a line, to [5, 28, 30, 43, 47, 48, 53] for the Coulomb
case in dimension d = 2. We also refer to [7] for the asymptotic analysis
in terms of large deviations of Coulomb determinantal point processes on
compact manifolds of arbitrary dimension.

The asymptotic analysis of µN as N →∞ for Coulomb interactions in di-
mension d≥ 3 motivates our next result, which is stated for the more general
Riesz interactions in dimension d≥ 1. The Riesz interactions correspond to
the choice W (x, y) = k∆α(x− y) where k∆α , 0 < α < d, d≥ 1, is the Riesz

kernel defined on R
d, by

k∆α(x) :=
1

|x|d−α
.(1.6)

Up to a multiplicative constant, this is the fundamental solution of a frac-
tional Laplace equation [which is the true Laplace equation (1.5) when
α= 2], namely

−cα∆αk∆α =F−1(1) = δ0 with cα :=
πα−(d/2)

4π2
Γ((d−α)/2)

Γ(α/2)
,(1.7)

where the Fourier transform F and the fractional Laplacian ∆α are given
by

F(k∆α)(ξ) :=

∫

Rd

e2iπξ·xk∆α(x)dx=
1

cα4π2|ξ|
α

and

∆αf :=−4π2F−1(|ξ|αF(f)).

Note that ∆2 =∆ while ∆α is a nonlocal integro-differential operator when
α 6= 2. When d≥ 3 and α= 2 then Riesz interactions coincide with Coulomb
interactions and the constants match. Beware that our notation differs slightly
from those of Landkof [35], page 44. Several aspects of the Gauss problem
in the Riesz case are studied in [20, 54, 55].

In the Riesz case, 0< α< d, one associates to any probability measure µ
on R

d a function Uµ
α :Rd 7→ [0,+∞] called the potential of µ as follows:

Uµ
α (x) := (k∆α ∗ µ)(x) :=

∫

k∆α(x− y)dµ(y) ∀x∈R
d.
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We refer to Section 3 for a review of basic definitions from potential theory.
In particular, one defines there a notion of capacity of sets, and a property is
said to hold quasi-everywhere if it holds outside a set of zero capacity. The
following theorem is essentially the analogue in R

d of a result of Dragnev
and Saff on spheres [20]. The analogue problem on compact subsets, without
external field, was initially studied by Frostman [26]; see also the book of
Landkof [35]. A confinement (by an external field or by a support constraint)
is always needed for such type of results.

Theorem 1.2 (Riesz gases). Suppose that W is the Riesz kernel
W (x, y) = k∆α(x− y). Then:

(1) The functional I is strictly convex where it is finite.
(2) (H1)–(H4) are satisfied, and Theorem 1.1 applies.
(3) There exists a unique µ⋆ ∈M1(R

d) such that

I(µ⋆) = inf
µ∈M1(Rd)

I(µ).

(4) If we define (µN )N on a unique probability space [for a sequence βN ≫
N log(N)], then with probability one,

lim
N→∞

µN = µ⋆.

If we denote by C⋆ the real number

C⋆ =

∫

(Uµ⋆
α + V )dµ⋆ = J(µ⋆) +

∫

V dµ⋆,

then the following additional properties hold:
(5) The minimizer µ⋆ has compact support, and satisfies

Uµ⋆
α (x) + V (x)≥ C⋆ quasi-everywhere,(1.8)

Uµ⋆
α (x) + V (x) = C⋆ for all x ∈ supp(µ⋆).(1.9)

(6) If a compactly supported measure µ creates a potential Uµ
α such that,

for some constant C ∈R,

Uµ
α (x) + V (x) = C on supp(µ),(1.10)

Uµ
α + V ≥ C quasi-everywhere,(1.11)

then C =C⋆ and µ= µ⋆. The same is true under the weaker assumptions

Uµ
α (x) + V (x)≤ C on supp(µ),(1.12)

Uµ
α + V ≥ C q.e. on supp(µ⋆).(1.13)



FIRST-ORDER GLOBAL ASYMPTOTICS FOR CONFINED PARTICLES 9

(7) If α≤ 2, for any measure µ, the following “converse” to (1.12), (1.13)
holds:

sup
supp(µ)

(Uµ
α + V )≥ C⋆,(1.14)

“ inf
supp(µ⋆)

”(Uµ
α (x) + V (x))≤ C⋆,(1.15)

where the “inf” means that the infimum is taken quasi-everywhere.

The constant C⋆ is called the “modified Robin constant” (see, e.g., [47]),
where the properties (1.8)–(1.9) and the characterization (1.10)–(1.11) are
established for the logarithmic potential in dimension 2. The minimizer µ⋆
is called the equilibrium measure.

Corollary 1.3 (Equilibrium of Coulomb gases with radial external fields
in dimension ≥ 3). Suppose that for a fixed real parameter β > 0, and for
every x, y ∈R

d, d≥ 3,

V (x) = v(|x|) and W (x, y) = βk∆(x− y),

where v is two times differentiable. Denote by dσr the Lebesgue measure on
the sphere of radius r, and let σd be the total mass of dσ1 (i.e., the surface
of the unit sphere of Rd). Let w(r) = rd−1v′(r), and suppose either that v is
convex, or that w is increasing. Define two radii r0 <R0 by

r0 = inf {r > 0;v′(r)> 0} and w(R0) = β(d− 2).

Then the equilibrium measure µ⋆ is supported on the ring {x; |x| ∈ [r0,R0]}
and is absolutely continuous with respect to Lebesgue measure

dµ(r) =M(r)dσr dr where M(r) =
w′(r)

β(d− 2)σdrd−1
1[r0,R0](r).

In particular, when v(t) = t2, then µ⋆ is the uniform distribution on the
centered ball of radius

(

β
d− 2

2

)1/d

.

The result provided by Corollary 1.3 on Coulomb gases with radial ex-
ternal fields can be found, for instance, in [38], Proposition 2.13. It follows
quickly from the Gauss averaging principle and the characterization (1.10)–
(1.11). For the sake of completeness, we give a (short) proof in Section 4.3.
By using Theorem 1.2 with α = 2 together with Corollary 1.3, we obtain
that the empirical measure of a Coulomb gas with quadratic external field
in dimension d ≥ 3 tends almost surely to the uniform distribution on a
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ball when N → ∞. This phenomenon is the analogue in arbitrary dimen-
sion d ≥ 3 of the well-known result in dimension d = 2 for the logarithmic
potential with quadratic radial external field (where the uniform law on the
disc or “circular law” appears as a limit for the complex Ginibre ensemble;
see, for instance, [5, 43]). The study of the equilibrium measure for Coulomb
interaction with nonradially symmetric external fields was initiated recently
in dimension d= 2 by Bleher and Kuijlaars in a beautiful work [8] by using
orthogonal polynomials.

The following proposition shows that in the Riesz case, it is possible to
construct a good confinement potential V so that the equilibrium measure
is prescribed in advance.

Corollary 1.4 (Riesz gases: External field for prescribed equilibrium
measure). Let 0< α< d, d≥ 1, and W (x, y) := k∆α . Let µ⋆ be a probability
measure with a compactly supported density f⋆ ∈ L

p(Rd) for some p > d/α.
Define the confinement potential

V (x) :=−Uµ⋆
α (x) + [|x|2 −R]+, x ∈R

d,

where Uµ⋆
α is the Riesz potential created by µ⋆ and R > 0 is such that

supp(µ⋆)⊂B(0,R). Then the couple of functions (V,W ) satisfy (H1)–(H4),
and the functional

µ ∈M1(R
d) 7→ I(µ) :=

∫

V dµ+
1

2

∫∫

k∆α(x− y)dµ(x)dµ(y) ∈R∪ {+∞}

admits µ⋆ as unique minimizer. In particular, the probability µ⋆ is the almost
sure limit of the sequence (µN )N (constructed on the same probability space),
as soon as βN ≫N log(N).

1.4. Outline of the article. In the remainder of this introduction (Sec-
tion 1.5), we give several comments on our results, their links with different
domains, and possible directions for further research. Section 2 provides the
proof of Theorem 1.1 (large deviations principle). Section 4 provides the
proof of Theorem 1.2, Corollaries 1.3 and 1.4. These proofs rely on several
concepts and tools from Potential Theory, which we recall synthetically and
discuss in Section 3 for the sake of clarity and completeness.

1.5. Comments, possible extensions and related topics.

1.5.1. Noncompactly supported equilibrium measures. The assumptions
made on the external field V in Theorems 1.1 and 1.2 explain why the equi-
librium measure µ⋆ is compactly supported. If one allows a weaker behavior
of V at infinity, then one may produce equilibrium measures µ⋆ which are
not compactly supported (and may even be heavy tailed). This requires
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that we adapt some of the arguments, and one may use compactification
as in [28]. This might allow to extend Corollary 1.4 beyond the compactly
supported case.

1.5.2. Equilibrium measure for Riesz interaction with radial external field.
To the knowledge of the authors, the computation of the equilibrium measure
for Riesz interactions with radial external field, beyond the more specific
Coulomb case of Corollary 1.3, is an open problem, due to the lack of the
Gauss averaging principle when α 6= 2.

1.5.3. Beyond the Riesz and Coulomb interactions. Theorem 1.2 con-
cerns the minimization of the Riesz interaction potential with an external
field V , and includes the Coulomb interaction if d≥ 3. In classical Physics,
the problem of minimization of the Coulomb interaction energy with an
external field is known as the Gauss variational problem [26, 35, 54, 55]. Be-
yond the Riesz and Coulomb potentials, the driving structural idea behind
Theorem 1.2 is that if W is of the form W (x, y) = kD(x− y) where kD is
the fundamental solution of an equation −DkD = δ0 for a local differential
operator D such as ∆α with α= 2, and if V is super-harmonic for D, that
is, DV ≥ 0, then the density of µ⋆ is roughly given by DV up to support
constraints. This can be easily understood formally with Lagrange multipli-
ers. The limiting measure µ⋆ depends on V andW , and is thus nonuniversal
in general.

1.5.4. Second-order asymptotic analysis. The asymptotic analysis of µN−
µ⋆ as N →∞ is a natural problem, which can be studied on various classes
of tests functions. It is well known that a repulsive interaction may affect
dramatically the speed of convergence, and make it dependent over the regu-
larity of the test function. In another direction, one may take βN = βN2 and
study the low temperature regime β→∞ at fixed N . In the Coulomb case,
this leads to Fekete points. We refer to [12, 48, 49] for the analysis of the
second order when both β→∞ and N →∞. In the one-dimensional case,
another type of local universality inside the limiting support is available
in [27].

1.5.5. Edge behavior. Suppose that V is radially symmetric and that µ⋆
is supported in the centered ball of radius r, like in Corollary 1.3. Then
one may ask if the radius of the particle system max1≤k≤n |xk| converges
to the edge r of the limiting support as N →∞. This is not provided by
the weak convergence of µN . The next question is the fluctuation. In the
two-dimensional Coulomb case, a universality result is available for a class
of external fields in [17].
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1.5.6. Topology. It is known that the weak topology can be upgraded to
a Wasserstein topology in the classical Sanov theorem for empirical mea-
sures of i.i.d. sequences (see [52]), provided that tails are strong exponen-
tially integrable. It is then quite natural to ask about such an upgrade for
Theorem 1.1.

1.5.7. Connection to random matrices. Our initial inspiration came when
writing the survey [11], from the role played by the logarithmic potential in
the analysis of the Ginibre ensemble. When d = 2, βN = N2, V (x) = |x|2

and W (x, y) = βk∆(x− y) = β log 1
|x−y| with β = 2, then PN is the law of the

(complex) eigenvalues of the complex Ginibre ensemble

dPN (x) = Z−1
N e−N

∑N
i=1 |xi|

2∏

i<j

|xi − xj |
2 dx

(here R2 ≡C and PN is the law of the eigenvalues of a random N×N matrix
with i.i.d. complex Gaussian entries of covariance 1

2N I2). For a nonquadratic
V , we may see PN as the law of the spectrum of random normal matrices
such as the ones studied in [2]. On the other hand, in the case where d= 1
and V (x) = |x|2 and W (x, y) = β log 1

|x−y| with β > 0, then

dPN (x) = Z−1
N e−N

∑N
i=1 |xi|

2∏

i<j

|xi − xj|
β dx.

This is known as the β-Ensemble in Random Matrix Theory. For β = 1,
we recover the law of the eigenvalues of the Gaussian orthogonal ensem-
ble (GOE) of random symmetric matrices, while for β = 2, we recover the
law of the eigenvalues of the Gaussian Unitary Ensemble (GUE) of random
Hermitian matrices. It is worthwhile to notice that − log | · | is the Coulomb
potential in dimension d = 2, and not in dimension d = 1. For this reason,
we may interpret the eigenvalues of GOE/GUE as being a system of charged
particles in dimension d= 2, experiencing Coulomb repulsion and an exter-
nal quadratic field, but constrained to stay on the real axis. We believe this
type of support constraint can be incorporated in our initial model, at the
price of slightly heavier notation and analysis.

1.5.8. Simulation problem and numerical approximation of the equilibrium
measure. It is natural to ask about the best way to simulate the probability
measure PN . A pure rejection algorithm is too naive. Some exact algorithms
are available in the determinantal case d = 2 and W (x, y) = −2 log |x− y|;
see [31], Algorithm 18 and [50]. One may prefer to use a nonexact algorithm
such as a Hastings–Metropolis algorithm. One may also use an Euler scheme
to simulate a stochastic process for which PN is invariant, or use a Metropolis
adjusted Langevin approach (MALA) [45]. In this context, a very natural
way to approximate numerically the equilibrium measure µ⋆ is to use a
simulated annealing stochastic algorithm.
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1.5.9. More general energies. The density of PN takes the form
∏N

i=1 f1(xi)
∏

1≤i<j≤N f2(xi, xj), which comes from the structure of HN . One

may study more general energies with many bodies interactions, of the form,
for some prescribed symmetric Wk : (R

d)k 7→R, 1≤ k ≤K, K ≥ 1,

HN (x1, . . . , xN ) =

K∑

k=1

∑

i1<···<ik

N−kWk(xi1 , . . . , xik).

This leads to the following candidate for the asymptotic first-order global
energy functional:

µ 7→
K∑

k=1

2−k

∫

· · ·

∫

Wk(x1, . . . , xk)dµ(x1) · · ·dµ(xk).

1.5.10. Stochastic processes. Under general assumptions on V and W
(see, e.g., [46]), the law PN is the invariant probability measure of a well-
defined (the absence of explosion comes from the assumptions on V and W )
reversible Markov diffusion process (Xt)t∈R+

with state space

{x∈ (Rd)N :HN(x)<∞}=

{

x ∈ (Rd)N :
∑

i<j

W (xi, xj)<∞

}

,

solution of the system of Kolmogorov stochastic differential equations

dXt =

√

2
αN

βN
dBt −αN∇HN(Xt)dt,

where (Bt)t≥0 is a standard Brownian motion on (Rd)N and where αN > 0 is
an arbitrary scale parameter (natural choices being αN = 1 and αN = βN ).
The law PN is the equilibrium distribution of a system of N interacting
Brownian particles (X1,t)t≥0, . . . , (XN,t)t≥0 in R

d at inverse temperature βN ,

with equal individual “charge” qN := 1/N , subject to a confining potential
αNV acting on each particle and to an interaction potential αNW acting on
each pair of particles, and one can rewrite the stochastic differential equation
above as the system of coupled stochastic differential equations (1≤ i≤N )

dXi,t =

√

2
αN

βN
dBi,t − qNαN∇V (Xi,t)−

∑

j 6=i

q2NαN∇1W (Xi,t,Xj,t)dt,

where (B
(1)
t )t≥0, . . . , (B

(N)
t )t≥0 are i.i.d. standard Brownian motions on R

d.
From a partial differential equations point of view, the probability measure
PN is the steady state solution of the Fokker–Planck evolution equation
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∂t − L= 0 where L is the elliptic Markov diffusion operator (second-order
linear differential operator without constant term)

L :=
αN

βN
(∆− βN∇HN · ∇),

acting as Lf = αN
βN

(∆f−〈βN∇HN ,∇f〉). This self-adjoint operator in L2(PN )

is the infinitesimal generator of the Markov semigroup (Pt)t≥0, Pt(f)(x) :=
E(f(Xt)|X0 = x). Let us take αN = βN for convenience. In the case where
V (x) = |x|2 and W ≡ 0 (no interaction), then PN is a standard Gaussian
law N (0, IdN ) on (Rd)N , and (Xt)t≥0 is an Ornstein–Uhlenbeck Gaussian

process; while in the case where d = 1 and V (x) = |x|2 and W (x, y) =
−β log |x− y| of some fixed parameter β > 0, then PN is the law of the
spectrum of a β-Ensemble of random matrices, and (Xt)t≥0 is a so-called
Dyson Brownian motion [3]. If µN,t is the law of Xt, then EµN,t → EµN
weakly as t→∞. The study of the dynamic aspects is an interesting prob-
lem connected to McKean–Vlasov models [16, 23, 41, 42, 51].

1.5.11. Calogero–(Moser–)Sutherland–Schrödinger operators. Let us keep
the notation used above. We define UN := βNHN , and we take βN =N2 for
simplicity. Let us consider the isometry Θ :L2(PN )→ L2(dx) defined by

Θ(f)(x) := f(x)

√

dPN (x)

dx
= f(x)e−(1/2)(UN (x)+log(ZN )).

The differential operator S :=−ΘLΘ−1 is a Schrödinger operator

S :=−ΘLΘ−1 =−∆+Q, Q := 1
4 |∇UN |2 − 1

2∆UN

which acts as Sf =−∆f +Qf . The operator S is self-adjoint in L2(dx). Be-
ing isometrically conjugated, the operators −L and S have the same spec-
trum, and their eigenspaces are isometric. In the case where V (x) = |x|2

and W ≡ 0 (no interactions), we find that and Q = 1
2(1 − V ), and S is a

harmonic oscillator. On the other hand, following [24], Proposition 11.3.1,
in the case d= 1 and W (x, y) =− log |x− y| (Coulomb interaction), then S
is a Calogero–(Moser–)Sutherland–Schrödinger operator,

S = −∆−E0 +
1

4

N∑

i=1

x2i −
1

2

∑

1≤i<j≤N

1

(xi − xj)2
,

E0 :=
N

2
+
N(N − 1)

2
.

More examples are given in [24], Proposition 11.3.2, related to classical en-
sembles of random matrices. The study of the spectrum and eigenfunctions
of such operators is a wide subject, connected to Dunkl operators. These
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models attracted some attention due to the fact that for several natural
choices of the potentials V,W , they are exactly solvable (or integrable). We
refer to [24], Section 11.3.1, [21], Section 9.6, [18], Section 2.7 and references
therein.

2. Proof of the large deviations principle—Theorem 1.1. The proof of
Theorem 1.1 is split is several steps.

2.1. A standard reduction. To prove Theorem 1.1, we will use the fol-
lowing standard reduction; see, for instance, [19], Chapter 4.

Proposition 2.1 (Standard reduction). Let (QN )N be a sequence of
probability measures on some Polish space (X , d), (ZN )N and (εN )N two se-
quences of positive numbers with εN → 0 and I :X →R∪{+∞} be a function
bounded from below.

(1) Suppose that the sequence (QN )N satisfies the following conditions:

(a) The sequence (ZNQN )N is exponentially tight: for all L≥ 0 there exists
a compact set KL ⊂X such that

lim sup
N→∞

εN logZNQN (X \KL)≤−L.

(b) For all x ∈X ,

lim
r→0

lim sup
N→∞

εN logZNQN (B(x, r))≤−I(x),

where B(x, r) := {y ∈X :d(x, y)≤ r}.

Then the sequence (ZNQN )N satisfies the following large deviation upper
bound: for all Borel set A⊂X , it holds

lim sup
N→∞

εN logZNQN (A)≤− inf {I(µ);µ ∈ clo(A)}.(2.1)

(2) If, in addition, (ZNQN )N satisfies the following large deviation lower
bound: for any Borel set A⊂X ,

− inf{I(x);x∈ int(A)} ≤ lim inf
N→∞

εN logZNQN (A),(2.2)

then (QN )N satisfies the full large deviation principle with speed εN and rate
function I⋆ = I − infx∈X I(x), namely for any Borel set A⊂X ,

− inf{I⋆(x);x ∈ int(A)} ≤ lim inf
N→∞

εN logQN (A)

≤ lim sup
N→∞

εN logQN (A)

≤− inf {I⋆(x);x ∈ clo(A)}.
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Proof. Let us begin by (1). Let δ > 0; by assumption, for any x ∈ X ,
there is ηx > 0 such that

lim sup
N→∞

εN logZNQN (B(x, ηx))≤−I(x) + δ.

If F ⊂ X is compact, there is a finite family (xi)1≤i≤m of points of F such
that F ⊂

⋃m
i=1B(xi, ηxi). Therefore,

lim sup
N→∞

εN logZNQN (F )≤ lim sup
N→∞

εN log

(
N∑

i=1

ZNQN (B(xi, ηxi))

)

= max
1≤i≤m

lim sup
N→∞

εN log(ZNQN (B(xi, ηxi)))

≤ max
1≤i≤m

−I(xi) + δ

≤− inf
F

I + δ.

Letting δ→ 0 yields to (2.1) for A= F compact.
Now if F is an arbitrary closed set, then for all L > 0, since F ∩ KL is

compact, it holds

lim sup
N→∞

εN logZNQN (F )

≤max
(

lim sup
N→∞

εN logZNQN (F ∩KL), lim sup
N→∞

εN logZNQN (Kc
L)
)

≤max
(

− inf
F∩KL

I;−L
)

.

Letting L→∞ shows that (2.1) is true for arbitrary closed sets F . Since
A⊂ clo(A), the upper bound (2.1) holds for arbitrary Borel sets A.

To prove (2), take A=X in (2.2) and (2.1) to get

lim
N→∞

εN log(ZN ) =− inf I ∈R.

Subtracting this to (2.2) and (2.1) gives the large deviations principle with
rate function I⋆. �

In our context, X = M1(R
d) is equipped with the Fortet–Mourier dis-

tance (1.3).

2.2. Properties of the rate function. In the following lemma, we prove
different properties of the rate function I⋆ including those announced in
Theorem 1.1, point (1).

Lemma 2.2 (Properties of the rate function). Under assumptions (H1)–
(H3):
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(1) I⋆ is well defined;
(2) I⋆(µ)<∞ implies

∫
|V |dµ <∞ and

∫∫
|W |dµ2 <∞;

(3) I⋆(µ)<∞ for any compactly supported probability µ with a bounded
density with respect to Lebesgue;

(4) I⋆ has is a good rate function (i.e., the levels sets {I⋆ ≤ k} are com-
pact).

Proof. Let us define ϕ :Rd ×R
d → (−∞,+∞] by ϕ(x, y) := 1

2(V (x) +
V (y) +W (x, y)).

(1) Since V is continuous and V (x)→∞ as |x| →∞ thanks to (H2), the
function V is bounded from below. Using (H3) it follows that ϕ is bounded
from below. The functional I⋆ is thus well defined with values in [0,∞].

(2) Assume that I(µ) =
∫∫

ϕdµ2 <∞. Since V is bounded from below,
[V ]− ∈ L

1(µ). From (H3) and the definition of ϕ,

2ϕ(x, y) = V (x) + V (y) +W (x, y)≥ c+ (1− ε0)(V (x) + V (y)).

Therefore

(1− ε0)([V ]+(x) + [V ]+(y))≤ 2ϕ(x, y)− c+ (1− ε0)([V ]−(x) + [V ]−(y)),

so [V ]+ ∈ L
1(µ) and

∫
|V |dµ <∞. Since

c− ε0V (x)− ε0V (y)≤W (x, y)≤ 2ϕ(x, y)− V (x)− V (y),(2.3)

this implies that W ∈ L
1(µ2).

(3) It is clearly enough to prove that W is locally Lebesgue integrable
on R

d ×R
d. Let K be a compact of Rd; according to (H2) and (H3) the

function W is bounded from below on K ×K. On the other hand, letting

αK(z) = sup{W (x, y); |z − y| ≥ |z|, x, y ∈K},

we have W (x, y)≤ αK(x− y), for all x, y ∈K. Assumption (H1) then easily
implies that (x, y) 7→ αK(x− y) is integrable on K ×K.

(4) According to the monotone convergence theorem,

I = sup
n∈N

In, In(µ) :=

∫ ∫

min(ϕ(x, y);n)dµ(x)dµ(y).

The functions min(ϕ,n) being bounded and continuous, it follows that the
functionals In are continuous for the weak topology; see, for instance, [19],
Lemma 7.3.12. Being a supremum of continuous functions, I is lower semi-
continuous. Set b⋆ = inf ϕ; we have, for every µ ∈M1(R

d), L> 0,

I(µ)− b⋆ =

∫ ∫

(ϕ(x, y)− b⋆)dµ(x)dµ(y)

≥

∫ ∫

1|x|>L,|y|>L(ϕ(x, y)− b⋆)dµ(x)dµ(y)

≥ (bL − b⋆)µ(|x|>L)2,
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where bL := inf |x|>L,|y|>Lϕ(x, y). According to (H2) and (H3), we see that
bL →+∞ as L→+∞. Therefore, there exists L⋆ > 0 such that bL > b⋆ for
every L> L⋆. We get then for every real number r≥ b⋆,

{µ ∈M1(R
d) : I(µ)≤ r} ⊂

{

µ ∈M1(R
d) :µ(|x|>L)≤

√

r− b⋆
bL − b⋆

,L > L⋆

}

.

Since bL →+∞ as L→+∞, the subset of M1(R
d) on the right-hand side is

tight, and the Prohorov theorem implies then that it is relatively compact
for the topology of M1(R

d). Since I is lower semi-continuous, the set {I ≤ r}
is also closed, which completes the proof. �

2.3. Proof of the upper bound. For all N ≥ 1, one denotes by QN the

law of µN = 1
N

∑N
i=1 δxi under the probability PN defined by (1.2): QN is

an element of M1(M1(R
d)).

Lemma 2.3 (Exponential tightness). If βN ≫ N , then under assump-
tions (H2)–(H3), the sequence of measures (ZNQN )N is exponentially tight:

for all L≥ 0 there exists a compact set KL ⊂M1(R
d) such that

lim sup
N→∞

logZNQN (M1(R
d) \KL)

βN
≤−L.(2.4)

Proof. For any L ≥ 0, let L′ := L−c/2
1−εo

and set KL := {µ ∈ M1(R
d);

∫
V dµ≤ L′}. Since (H2) holds, V (x)→∞ when |x| →+∞ and V is contin-

uous. By Prohorov’s theorem on tightness, this implies that KL is compact
in M1(R

d).
It remains to check (2.4). Let us consider the law νV ∈M1(R

d) defined
by

dνV (x) :=
e−V (x)

CV
dx, CV :=

∫

e−V (x) dx > 0.(2.5)

Using (2.3) to bound W from below, we get

ZNQN

(∫

V dµN >L′

)

=

∫

(Rd)N
1{

∫
V dµN>L′} exp

(

−
βN
2

∫ ∫

6=
W dµ2N − βN

∫

V dµN

)

dx

≤

∫

(Rd)N
1{

∫
V dµN>L′}

× exp

(

−
βN
2

∫∫

6=
(c− εo(V (x) + V (y)))dµ2N − βN

∫

V dµN

)

dx
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=

∫

(Rd)N
1{

∫
V dµN>L′}

× exp

(

−
βN
2
c
N − 1

N
− βN

(

1− εo
N − 1

N

)∫

V dµN

)

dx

=CN
V

∫

(Rd)N
1{

∫
V dµN>L′}

× exp

(

−
βN
2
c
N − 1

N

−

(

βN

(

1− εo
N − 1

N

)

−N

)∫

V dµN

)

dν⊗N
V (x).

Now, if N is large enough, then βN (1− εo
N−1
N )≥N , so that

ZNQN

(∫

V dµN >L′

)

≤CN
V exp

(

−
βN
2
c
N − 1

N

)

exp

(

−

(

βN

(

1− εo
N − 1

N

)

−N

)

L′

)

.

Therefore, when N is large enough, using the fact that βN ≫N ,

logZNQN (
∫
V dµN >L′)

βN

≤
N logCV

βN
−

1

2
c
N − 1

N
−

((

1− εo
N − 1

N

)

−
N

βN

)

L′

=−
1

2
c− (1− εo)L

′ + oN→∞(1)

=−L+ oN→∞(1).

This implies (2.4) and completes the proof. �

Proposition 2.4 (Upper bound). If βN ≫N , then under assumptions
(H2)–(H3), for all r≥ 0, for all µ ∈M1(R

d),

lim
r→0

lim sup
N→+∞

logZNQN (B(µ, r))

βN
≤−I(µ),

where the ball B(µ, r) is defined for the Fortet–Mourier distance (1.3).

Proof. In contrast with the proof of Lemma 2.3, our objective now
is to keep enough empirical terms inside the exponential in order to get
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I(µ) at the limit. Introduce ϕ(x, y) = 1
2(W (x, y) + V (x) + V (y)), x, y ∈ R

d.
According to (H3), it holds

ϕ(x, y)≥
c

2
+

1− εo
2

(V (x) + V (y)) ∀x, y ∈R
d,(2.6)

for some c ∈ R and εo ∈ (0,1). Define λN = N2

(1−εo)(N−1) , and let us bound

the function HN from below using (2.6) at the third line: for all n ∈ N, it
holds

βNHN (x) = βN

(
1

2

∫∫

6=
W dµ2N +

∫

V dµN

)

= βN

(∫∫

6=
ϕdµ2N +

1

N

∫

V dµN

)

≥ (βN − λN )

∫ ∫

6=
ϕdµ2N + λN

∫∫

6=
ϕdµ2N +

βN
N

minV

≥ (βN − λN )

∫ ∫

6=
ϕdµ2N + λN

(N − 1)c

2N
+N

∫

V dµN +
βN
N

minV

≥ (βN − λN )

∫ ∫

ϕ∧ ndµ2N − (βN − λN )
n

N

+ λN
(N − 1)c

2N
+N

∫

V dµN +
βN
N

minV

= (βN − λN )

∫ ∫

ϕ∧ ndµ2N +N

∫

V dµN + o(βN ),

since βN ≫N and λN =O(N).
Denoting by In(ν) =

∫∫
ϕ ∧ ndν2, ν ∈M1(R

d), and using the preceding
lower bound, we see that for every µ ∈M1(R

d), r ≥ 0 and N ≫ 1, we have

ZNQN (B(µ, r))

=

∫

(Rd)N
1B(µ,r)(µN ) exp (−βNHN (x))dx

≤ eo(βN )

∫

(Rd)N
1B(µ,r)(µN ) exp (−(βN − λN )In(µN ))

N∏

i=1

e−V (xi) dx

=CN
V e

o(βN )

∫

(Rd)N
1B(µ,r)(µN ) exp (−(βN − λN )In(µN ))dνNV

≤CN
V e

o(βN )e−(βN−λN ) infν∈B(µ,r) In(ν),

where the definition of νV is given by (2.5).
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Therefore, since βN ≫N and λN =O(N),

lim sup
N→+∞

logZNQN (B(µ, r))

βN
≤− inf

ν∈B(µ,r)
In(ν).

Since ϕ ∧ n is bounded continuous, the functional In is continuous for the
weak topology. As a result, it holds

lim
r→0

inf
ν∈B(µ,r)

In(ν) = In(µ).

Finally, the monotone convergence theorem implies that supn≥1 In(µ) =
I(µ), which ends the proof. �

Using this proposition, Lemma 2.3 and the first point of Proposition 2.1,
we get the upper bound of Theorem 1.1, point (2).

2.4. The lower bound and the full LDP. In what follows, we denote by
|A| the Lebesgue measure of a Borel set A⊂R

n.

Proposition 2.5 (Lower bound for regular probabilities). Under the
assumptions (H1)–(H3), if βN ≫N log(N), then for every probability mea-

sure µ on R
d supported in a box B =

∏d
i=1[ai, bi], ai, bi ∈R, with a density h

with respect to the Lebesgue measure such that, for some δ > 0, δ ≤ h≤ δ−1

on B, it holds

lim inf
N→∞

logZNQN (B(µ, r))

βN
≥−I(µ) ∀r≥ 0,

where B(µ, r) is the open ball of radius r centered at µ for the Fortet–Mourier
distance (1.3).

If B is the box
∏d

k=1[ak, bk] in R
d, let l(B) and L(B) be the minimum

(resp., maximum) edge length

l(B) = min
1≤k≤d

(bk − ak), L(B) = max
1≤k≤d

(bk − ak).

We admit for a moment the following result:

Lemma 2.6 (Existence of nice partitions). For all d and all δ > 0 there
exists a constant C(d, δ) such that the following holds. For any box B, any

integer n, and any measure µ with a density h w.r.t. Lebesgue measure, if
δ ≤ h ≤ δ−1, then there exists a partition (B1,B2, . . . ,Bn) of B in n sub-
boxes, such that:

(1) B is split in equal parts: for all i, µ(Bi) =
1
nµ(B);
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(2) the edge lengths of the Bi are controlled

1

C(d, δ)n1/d
l(B)≤ l(Bi)≤L(Bi)≤

C(d, δ)

n1/d
L(B).

Proof of Proposition 2.5. For each N we apply Lemma 2.6 to obtain
a partition of B in N boxes BN

1 , . . . ,B
N
N . Let dN be the maximum diameter

of the boxes: by the lemma, since µ(B) = 1,

c1

N1/d
≤ l(BN

i ) and dN := max
1≤i≤N

sup
x,y∈BN

i

|x− y| ≤
c2

N1/d
,

where c1 and c2 only depend on B, d and δ.
Note that, for all 1-Lipschitz function f with ‖f‖∞ ≤ 1, if xi ∈B

N
i for all

i≤N , since µ(Bi) = 1/N we have
∣
∣
∣
∣
∣

1

N

N∑

i=1

f(xi)−

∫

f dµ

∣
∣
∣
∣
∣
≤

N∑

i=1

∫

BN
i

|f(x)− f(xi)|dµ(x)

≤ dN .

If N is large enough, dN ≤ r, which implies that

{(x1, . . . , xn) ∈B
N
1 × · · · ×BN

N } ⊂ {µN ∈B(µ, r)}.

Let us denote by CN
i ⊂ BN

i the box obtained from BN
i by an homothetic

transformation of center the center of BN
i and ratio (say) 1/2. It holds

ZNQN (B(µ, r))≥ exp

(

−
βN
N

N∑

i=1

max
CN

i

V −
βN
N2

∑

i<j

max
CN

i ×CN
j

W

)
N∏

i=1

|CN
i |.

Since |CN
i | ≥ (l(BN

i )/2)d ≥ c3/N for some absolute constant c3, we have

log
∏N

i=1 |C
N
i |

βN
≥
N log(c3)

βN
−
N log(N)

βN
−→
N→∞

0,

and thus we conclude that

lim inf
N→+∞

log (ZNQN (B(µ, r)))

βN

≥− lim sup
N→∞

1

N

N∑

i=1

max
CN

i

V − lim sup
N→∞

1

N2

∑

i<j

max
CN

i ×CN
j

W.

For all N , consider the locally constants functions VN :B→R and WN :B×
B→R defined by

∀x∈BN
i VN (x) := max

CN
i

V
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and

∀(x, y) ∈BN
i ×BN

j WN (x, y) := max
CN

i ×CN
j

W.

Since µ(BN
i ) = 1/N , it holds

1

N

N∑

i=1

max
CN

i

V =

∫

B
VN (x)dµ(x)

and

1

N2

∑

i<j

max
CN

i ×CN
j

W =
1

2

∫

x 6=y
WN (x, y)dµ(x)dµ(y).

The uniform continuity of V on B immediately implies that VN converges
uniformly to V , and so

∫

VN dµ→

∫

V dµ.

For the same reason WN converges uniformly to W on

(B ×B)∩ {(x, y) ∈R
d ×R

d; |x− y| ≥ u},

for all u > 0. According to (H2) and (H3), the function W is bounded from
below on B ×B. It follows that the functions WN are bounded from below
by some constant independent on N . To apply the dominated convergence
theorem, it remains to bound WN from above by some integrable function.
Let

αB(u) := sup
|x−y|≥u

W (x, y),

so that W (x, y)≤ αB(|x− y|). Obviously

max
(x,y)∈BN

i ×BN
j

|x− y| ≤ 2dN + min
(x,y)∈CN

i ×CN
j

|x− y|.

By construction, since i 6= j, we have

min
(x,y)∈CN

i ×CN
j

|x− y| ≥
1

4
(l(BN

i ) + l(BN
j ))≥

c1
4
N−1/d ≥

c1
4c2

dN .

Therefore, there is an absolute constant c4 such that

min
(x,y)∈CN

i ×CN
j

|x− y| ≥ c4 max
(x,y)∈BN

i ×BN
j

|x− y|.

Since the function αB is nonincreasing, it holds

max
CN

i ×CN
j

αB(|x− y|)≤ min
(x,y)∈BN

i ×BN
j

αB(c4|x− y|).
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We conclude from this that WN (x, y)≤ αB(c4|x− y|), x 6= y. It follows from
assumption (H1) that the function αB(c4|x−y|) is integrable on B×B with
respect to Lebesgue measure. Since the density of µ with respect to Lebesgue

is bounded from above this function is integrable on B ×B with respect to
µ2. Applying the dominated convergence theorem, we conclude that

lim inf
N→∞

log (ZNQN (B(µ, r)))

βN
≥−

∫

V (x)dµ(x)−
1

2

∫ ∫

W (x, y)dµ(x)dµ(y)

=−I(µ). �

Let us now prove that “nice” partitions exist.

Proof of Lemma 2.6. The proof is an induction on the dimension d.
Base case. Let d= 1, and suppose that B = [a0, b0]. Since µ has a density,

there exist “quantiles” a0 = q0 < q1 < · · ·< qn = b0 such that

∀1≤ i≤ n µ([qi−1, qi]) =
1

n
µ(B).

In this simple case l(B) = L(B) = b0 − a0 and l(Bi) = L(Bi) = (qi − qi−1).
The boundedness assumption on h implies that

δ(qi − qi−1)≤ µ([qi−1, qi])≤
1

δ
(qi − qi−1),

δ(b0 − a0)≤ µ(B)≤
1

δ
(b0 − a0),

and the claim holds for d= 1 with C(1, δ) = 1/δ2.
Induction step. Suppose that the statement holds for a dimension d −

1. Let B = [a0, b0] × B′ be a box in dimension d [where B′ is a (d − 1)-
dimensional box]. Let µ0 be the first marginal of µ (this is a measure on
[a0, b0]⊂R).

Let b = ⌊n1/d⌋ be the integer part of n1/d, and let b0 = 1/(21/d − 1). If
b≤ b0, we reason as in the base case, on the one-dimensional measure µ0, to
find a partition of B in n slices of mass µ(B)/n. Since the number of slices
is less than the constant (b0 +1)d, the edge length is controlled as needed.

If b > b0, we look for a decomposition of n as a sum of b integers ni, each

as close to n(d−1)/d as possible: the idea is to cut B along the first dimension
in b slices, and to apply the induction hypothesis to cut the slice i in ni
parts.

To this end, decompose the integer n in base b

∃α0, α1, . . . , αd ∈ {0, . . . , b− 1}d+1 n=

d∑

k=0

αkb
k.
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The condition b > b0 guarantees that b+1< 21/db, which implies that αd = 1.
Therefore,

∃α0, α1, . . . , αd−1 ∈ {0, . . . , b− 1}d n= bd +

d−1∑

k=0

αkb
k.

Writing αk =
∑b

i=1 1{i≤αk} we get

n=

b∑

i=1

(

bd−1 +

d−1∑

k=0

1{i≤αk}b
k

)

=

b∑

i=1

ni,

where ni = bd−1 +
∑d−1

k=0 1{i≤αk}b
k. From this expression, we get the bound

bd−1 ≤ ni ≤ (bd − 1)/(b − 1). Since k − 1 ≥ k/2 whenever k ≥ 2, using the

inequalities b≤ n1/d and b≥ n1/d − 1≥ 1
2n

1/d, we get

1

2d−1
n(d−1)/d ≤ ni ≤ 2n(d−1)/d.

Now let us cut B along its first dimension. Recall that µ0 is the first
marginal of µ. By continuity there exist quantiles a0 = q0 < q1 < · · ·< qb = b0
such that

∀1≤ i≤ b µ1([qi−1, qi]) = µ([qi−1, qi]×B′) =
ni
n
µ(B).

We apply the induction hypothesis separately for each 1 ≤ i ≤ b, to the
(d− 1)-dimensional box B′, with the measure

µi(·) = µ([qi−1, qi]× ·)

and the integer ni to obtain a decomposition B′ =
⋃ni

j=1B
′
i,j such that:

(1) the edge lengths B′
i,j are controlled;

(2) µi(B
′
i,j) =

1
ni
µi(B

′).

Finally, for all 1≤ i≤ b and all 1≤ j ≤ ni, let

Bi,j = [qi−1, qi]×B′
i,j .

Let us check that the partition B =
⋃

i

⋃

jBi,j satisfies the requirements.
By definition,

µ(Bi,j) = µi(B
′
i,j) =

1

ni
µi(B

′) =
1

n
µ(B),

so the first requirement is met. To control the edge lengths, first remark that

l(B) = min(b0 − a0, l(B
′)), L(B) = max(b0 − a0,L(B

′)),

l(Bi,j) = min(qi − qi−1, l(B
′
i,j)), L(Bi,j) =max(qi − qi−1,L(B

′
i,j)).
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By the induction hypothesis, the bounds on ni and the fact that L(B′) ≤
L(B) we get

L(B′
i,j)≤

C(d− 1, δ)

n
1/(d−1)
i

L(B′)

≤
2C(d− 1, δ)

n1/d
L(B).

On the other hand, reasoning as in the proof of the base case,

(qi − qi−1)|B
′| ≤

1

δ

ni
n
µ(B),

µ(B)≤
1

δ
(b0 − a0)|B

′|

so

(qi − qi−1)≤ (b0 − a0)δ
−2ni

n
≤ L(B)

2δ−2

n1/d
.

Therefore L(Bi,j) ≤ C(d, δ)n−1/dL(B). The proof of the lower bound on
l(Bi,j) follows the same lines and is omitted. This completes the induction
step, and the lemma is proved. �

Corollary 2.7 (Lower bound). Under assumptions (H1)–(H3), if βN ≫
N log(N), then for all A⊂M1(R

d), it holds

lim inf
N→∞

logZNQN (A)

βN
≥− inf{I(η);η ∈ int(A), η≪ Lebesgue}.

Proof. Let A⊂M1(R
d) be a Borel set, and let η ∈ int(A) be absolutely

continuous with respect to Lebesgue with density h and such that I(η) <
+∞. For some sequence (εn)n≥1 converging to 0, let us define, for all n≥ 1,

ηn := (1− εn)νn + εnλn,

where dνn(x) =
1
Cn

min(h(x);n)1[−n;n]d(x)dx and dλn(x) =
1

(2n)d
1[−n;n]d(x)dx,

where the normalizing constant Cn → 1, when n→+∞.
According to point (3) of Lemma 2.2, we see that

I(νn)<∞, I(λn)<∞,

∫ ∫

ϕ(x, y)dνn(x)dλn(y)<∞,

where ϕ(x, y) := 1
2(V (x) + V (y) +W (x, y)) (this function takes its values

in (−∞,+∞] and is bounded from below thanks to (H3); see the proof of
Lemma 2.2). It holds

I(ηn) = (1− εn)
2I(νn) + 2εn(1− εn)

∫∫

ϕ(x, y)dνn(x)dλn(y) + ε2nI(λn).
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Choose εn converging to 0 sufficiently fast so that the last two terms above
converge to 0 when n→∞. According to point (1) of Lemma 2.2, V ∈L

1(µ)
and W ∈ L

1(µ2); it follows then easily from the dominated convergence
theorem that I(νn)→ I(η) when n→∞ and that ηn converges to η for the
weak topology.

Let r > 0 be such that B(η,2r) ⊂ A; for all n large enough, B(ηn, r) ⊂
B(η,2r)⊂A. Since ηn satisfies the assumptions of Proposition 2.5, we con-
clude that for n large enough,

lim inf
N→∞

logZNQN (A)

βN
≥ lim inf

N→∞

logZNQN (B(ηn, r))

βN
≥−I(ηn).

Letting n→∞ and optimizing over {η ∈A,η≪ Lebesgue} gives the conclu-
sion. �

End of the proof of Theorem 1.1. The properties of I⋆ and the
upper bound in point (2) are already known. The lower bound of point (2)
is given by Corollary 2.7.

To prove point (3), let A ⊂ M1(R
d) be some Borel set and take µ ∈

int(A). According to assumption (H4), there exists a sequence of absolutely
continuous probability measures νn converging weakly to µ and such that
I(νn) → I(µ), when n→ ∞. For all n large enough, νn ∈ A so applying
Corollary 2.7, we conclude that

lim inf
N→∞

logZNQN (A)

βN
≥−I(νn).

Letting n→∞ and then optimizing over µ ∈ int(A) we arrive at

lim inf
N→∞

logZNQN (A)

βN
≥− inf{I(µ);µ ∈ int(A)}.

According to point (2) of Proposition 2.1, we conclude that QN obeys the
full LDP. �

2.5. Proof of the almost-sure convergence. Let us establish the last part
of Theorem 1.1. First note that since I⋆ has compact sublevel sets and is
bounded from below, I⋆ attains is infimum, so Imin is not empty. For an
arbitrary fixed real ε > 0, consider the complement of the ε-neighborhood
of Imin for the Fortet–Mourier distance

Aε := (Imin)
c
ε := {µ ∈M1 :dFM(µ, Imin)> ε}.

Since I is lower semi-continuous, cε := infµ∈Aε I(µ)> 0, thus P(µN ∈Aε)≤
exp(−βN cε), by the upper bound of the full large deviation principle. By the
first Borel–Cantelli lemma, it follows that almost surely, limN→∞ dFM(µN ,
Imin) = 0.
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2.6. Sufficient conditions for (H4). The following proposition gives sev-
eral sufficient conditions under which assumption (H4) holds true. Even if
some of these conditions are quite general, it is an open problem to find
an even more general and natural condition. One may possibly find some
inspiration in [9].

Proposition 2.8 [Sufficient conditions for (H4)]. Let V :Rd → R and
W :Rd ×R

d → (−∞,+∞] be symmetric, finite on R
d ×R

d \ {(x,x);x ∈R
d}

and such that (H2) and (H3) hold true. Assumption (H4) holds in each of
the following cases:

(1) W is finite and continuous on R
d ×R

d;
(2) for all x ∈ R

d, the function y 7→W (x, y) is super harmonic, that is,
W satisfies

W (x, y)≥
1

|B(y, r)|

∫

B(y,r)
W (x, z)dz ∀r > 0,

where |B(y, r)| denotes the Lebesgue measure of the ball of center y and
radius r;

(3) the function W is such that W (x+a, y+a) =W (x, y) for all x, y, a ∈
R
d and the function J defined by

J(µ) =

∫ ∫

W (x, y)dµ(x)dµ(y)(2.7)

is convex on the set of compactly supported probability measures.

Proof. Let µ ∈M1(R
d) be such that I(µ)<∞. Recall that, according

to point (1) of Lemma 2.2, under assumptions (H2)–(H3), the condition
I(µ)<∞ implies that

∫

|V |dµ <+∞ and

∫ ∫

|W |dµ2 <+∞.

Moreover, it follows from (H2) and (H3) that W is bounded from below
on every compact, and so the definition (2.7) of J(µ) makes sense if µ is
compactly supported.

For all R > 0, let us define µR as the normalized restriction of µ to
[−R;R]d. Using the dominated convergence theorem and point (1) of Lem-
ma 2.2, it is not hard to see that µR converges weakly to µ and that I(µR)→
I(µ) when R→+∞. To regularize µR, we consider µR,ε = Law(XR + εU),
ε ≤ 1, where XR is distributed according to µR and U is uniformly dis-
tributed on the Euclidean unit ball B1 of Rd. It is clear that µR,ε has a den-
sity with respect to Lebesgue measure. Moreover, µR,ε → µR, when ε→ 0.
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Indeed, if f :Rd → R is continuous, it is bounded on [−R;R]d +B1, and it
follows that

∫

f dµR,ε = E[f(XR + εU)] →
ε→0

E[f(XR)].

This applies in particular to f = V . Now let us show in each cases that
J(µR,ε) converges to J(µR), when ε goes to 0. Let us write

J(µR,ε) = E[W (XR + εU,YR + εV )],

where XR, YR,U,V are independent and such that YR
(d)
= XR and V

(d)
= U .

(1) If W is finite and continuous on R
d×R

d, then using the boundedness
of W on ([−R;R]d+B1)× ([−R;R]d +B1), it follows that J(µR,ε)→ J(µR)
when ε→ 0.

(2) If W is super harmonic, then Wε(x, y) := EU,V [W (x+ εU, y + εV )]≤
W (x, y) for all x, y. Moreover, it follows from the continuity ofW outside the
diagonal that, for all x 6= y, Wε(x, y)→W (x, y) when ε→ 0. Since I(µ) <
+∞, µ does not have atoms, and so the diagonal is of measure 0 for µ2. It
follows from the dominated convergence theorem that J(µR,ε)→ J(µR) as
ε→ 0.

(3) Denoting by µxR the law of XR+x, we see that µR,ε = EU [µ
εU
R ]. There-

fore, the convexity of J yields to

J(µR,ε)≤ EU [J(µ
εU
R )]

= EU

[∫∫

W (x+ εU, y+ εU)dµR(x)dµR(y)

]

= J(µR),

where the last equality comes from the property W (x+ a, y+ a) =W (x, y).
On the other hand, Fatou’s lemma implies that lim infε→0 J(µR,ε)≥ J(µR).
Therefore J(µR,ε)→ J(µR), when ε goes to 0.

We conclude from the above discussion that for any δ > 0, it is possible to
choose R sufficiently large and then ε sufficiently small so that dFM(µR,ε, µ)≤
δ and |I(µR,ε)− I(µ)| ≤ δ. This completes the proof. �

3. Tools from potential theory. In this section, we recall results from
potential theory that will prove useful when we discuss the proof of Theo-
rem 1.2 and Corollary 1.3. There are many textbooks on potential theory,
with different point of views; our main source is [35], where the Riesz case
is well-developed.

In this section, and unless otherwise stated, we set kα := k∆α and we take
W (x, y) := kα(x− y), 0 < α < d, d ≥ 1. We denote, respectively, by M1 ⊂
M∞ ⊂ M+ ⊂ M± the sets of probability measures, of positive measures
integrating kα(·)1|·|>1, of positive measures, and of signed measures on R

d.
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3.1. Potentials and interaction energy. We benefit from the constant
sign of the Riesz kernel: kα ≥ 0, contrary to the Coulomb kernel in dimension
d= 2 and its logarithm. Following [35], page 58, the potential of µ ∈M+ is
the function Uµ

α :Rd → [0,∞] defined for every x ∈R
d by

Uµ
α (x) :=

∫

W (x, y)dµ(y) =

∫

kα(x− y)dµ(y).(3.1)

Note that Uµ
α (x) =∞ if µ has a Dirac mass at point x. By using the Fubini

theorem, for every µ ∈M+, we have U
µ
α <∞ Lebesgue almost everywhere if

and only if µ ∈M∞. This explains actually the condition 0<α< d taken in
the Riesz potential, which is related to polar coordinates (dx= rd−1 dr dσd).
In fact if µ ∈M∞, then Uµ

α is a locally Lebesgue integrable function. More-
over, as Schwartz distributions, we have Uµ

α = kα ∗ µ and, with the notation
of (1.7),

−cα∆αU
µ
α = (−cα∆αkα) ∗ µ= µ.

The interaction energy is the quadratic functional Jα :M+ 7→ [0,∞] defined
by

Jα(µ) :=

∫∫

W (x, y)dµ(x)dµ(y) =

∫

Uµ
α dµ.

Note that Jα(µ) =∞ if µ has a Dirac mass, and in particular Jα(µN ) =∞.
In the Coulomb case where α = 2, we have c2J2(µ) = −

∫
Uµ
2 ∆U

µ
2 dx =

∫
|∇Uµ

2 |
2
dx. The quantity ∇Uµ

2 is the (electric) field generated by the
(Coulomb) potential Uµ

2 , and this explains the term “carré-du-champ”
(“square of the field” in French) used for J2(µ).

Lemma 3.1 (Positivity and convexity on M+).

• for every µ ∈M+ we have Jα(µ)≥ 0 with equality if and only if µ= 0;
• Jα :M+ 7→ [0,∞] is strictly convex: for every µ, ν ∈M+ with µ 6= ν, we

have

∀t ∈ (0,1) Jα(tµ+ (1− t)ν)< tJα(µ) + (1− t)Jα(ν);

• Eα,+ := {µ ∈M+ :Jα(µ)<∞} is a convex cone.

We recall that in classical harmonic analysis, a function K :R × R→ R

is called a positive definite kernel when
∑n

i=1 xiK(xi, xj)x̄j ≥ 0 for every
n≥ 1 and every x ∈C

n. If this holds only when x1+ · · ·+xn = 0, the kernel
is said to be weakly positive definite. The famous Bochner theorem states
that a kernel is positive definite if and only if it is the Fourier transform
of a finite Borel measure. The famous Schoenberg theorem states for every
f :R+ → R+, the kernel (x, y) 7→ f(|x− y|2) is positive definite on R

d for
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every d≥ 1 if and only if f is the Laplace transform of a finite Borel measure
on R+. The famous Bernstein theorem states that if f :R→R is continuous
and C∞((0,∞)), then f is the Laplace transform of a finite Borel measure on
R+ if and only if f is completely monotone: (−1)nf (n) ≥ 0 for every n≥ 0.
For all these notions, we refer to [6, 34].

The proof of Lemma 3.1 is short and self-contained. It relies on the fact
that the convexity of the functional is equivalent to the fact that W is a
weakly positive definite kernel, which is typically the case when W is a mix-
ture of shifted Gaussian kernels, which are the most useful weakly positive
definite kernels. For example, this works if for some arbitrary measurable
α,β :R→R and Borel measure η, and every x, y ∈R

d,

W (x, y) =w(|x− y|) =

∫ ∞

0
(e−α2(t)|x−y|2 + β(t))dη(t).

The shift β can be < 0, which allows nonpositive definite kernels such as
the logarithmic kernel (note that the Riesz kernel is positive definite). The
method is used for the logarithmic kernel in [4], Proof of Property 2.1(4),
with the following mixture:

log
1

|x− y|
=

∫ ∞

0

1

2t
(e−|x−y|2/(2t) − e−1/(2t))dt.

This kernel has a sign change and a double singularity near zero and infinity,
which can be circumvented by using a cutoff. Alternatively, one may proceed
by regularization and use the Bernstein theorem with the completely mono-
tone function f(t) = (ε+ t)−β , β, ε > 0, and then the Schoenberg theorem;
see, for example, [39]. For instance, for the logarithmic kernel, the following
representation is used in [30], Chapter 5:

log
1

ε+ |x− y|
=

∫ ∞

0

(
1

ε+ 1+ |x− y|
−

1

1 + t

)

dt.

Finally, let us mention that for the Riesz kernel, yet another short proof of
Lemma 3.1, based on the formula kα = ckα/2 ∗ kα/2, can be found in [35],
Theorem 1.15, page 79.

Proof of Lemma 3.1. Set β := d−α. We start from the identity

Γ(1 +α) = c1+α

∫ ∞

0
tαe−ct dt, c > 0, α >−1.

Taking c= |x− y|2 and 1+α= β/2, we get, for every x, y ∈R
d,

kα(x− y) =

∫ ∞

0
f(t)e−t|x−y|2 dt where f(t) :=

tβ/2−1

Γ(β/2)
.
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Now for every µ ∈M+ such that Jα(µ)<∞,

Jα(µ) =

∫ ∞

0
f(t)

(∫∫

e−t|x−y|2 dµ(x)dµ(y)

)

dt.

Expressing the Gaussian kernel as the Fourier transform of a Gaussian ker-
nel, we get, by writing ei〈x−y,w〉 = ei〈x,w〉e−i〈y,w〉 and using the Fubini theo-
rem,

∫∫

e−t|x−y|2 dµ(x)dµ(y)

= (4πt)−d/2

∫ ∫ (∫

Rd

ei〈x−y,w〉e(1/(4t))|w|2 dw

)

dµ(x)dµ(y)

= (4πt)−d/2

∫

Rd

∣
∣
∣
∣

∫

ei〈x,w〉 dµ(x)

∣
∣
∣
∣

2

︸ ︷︷ ︸

Kw(µ)

e−(1/(4t))|w|2 dw.

Now Kw is clearly convex since for every µ, ν ∈M1(R
d) and every t ∈ (0,1),

tKw(µ) + (1− t)Kw(ν)−Kw(tµ+ (1− t)ν)

t(1− t)

=Kw(µ− ν) =

∣
∣
∣
∣

∫

ei〈x,w〉 d(µ− ν)(x)

∣
∣
∣
∣

2

≥ 0.

It follows then that Jα is also convex as a conic combination of convex
function. Let us establish now the strict convexity of Jα. Let us suppose that
µ, ν ∈M1(R

d) with Jα(µ)<∞ and Jα(ν)<∞ and tJα(µ) + (1− t)Jα(ν) =
Jα(tµ+ (1− t)ν) for some t ∈ (0,1). Then

Jα(µ− ν) =
tJα(µ) + (1− t)Jα(ν)− Jα(tµ+ (1− t)ν)

t(1− t)
= 0.

Arguing as before, we find

0 = Jα(µ− ν) =

∫ ∞

0
f(t)

[

(4πt)−d/2

∫

Rd

Kw(µ− ν)e−(1/(4t))|w|2 dw

]

dt.

Hence, for every t > 0 (a single t > 0 suffices in what follows),
∫

Rd

Kw(µ− ν)e−(1/(4t))|w|2 dw = 0.

Thus, the Fourier transform of µ−ν vanishes almost everywhere, and there-
fore µ= ν.

Finally, Eα,+ is clearly a cone, and its convexity comes from the convexity
of Jα. �
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Following [35], page 62, for any µ= µ+ − µ− ∈M± such that µ± ∈M∞,
we have U

µ±
α < ∞ Lebesgue almost everywhere, and we may define for

Lebesgue almost every x

Uµ
α (x) := Uµ+

α (x)−Uµ−
α (x) ∈ (−∞,+∞).

Following [35], page 77, for every µ= µ+ − µ− ∈M± such that µ± ∈M∞

and
∫

Uµ+
α dµ− <∞ and

∫

Uµ−
α dµ+ <∞,

we may define Jα(µ) ∈ (−∞,+∞] as (thanks to the Fubini theorem)

Jα(µ) :=

∫

Uµ
α dµ=

∫

Uµ+
α dµ+ +

∫

Uµ−
α dµ− −

∫

Uµ+
α dµ− −

∫

Uµ−
α dµ+.

More generally, for every µ1, µ2 ∈M± such that µ1±, µ2± ∈M∞ and
∫

Uµ1±
α dµ2∓ <∞,

we may define Jα(µ1, µ2) ∈ (−∞,+∞] by

Jα(µ1, µ2) :=

∫

Uµ1
α dµ2

=

∫

Uµ1+
α dµ2+ +

∫

Uµ1−
α dµ2− −

∫

Uµ1+
α dµ2− −

∫

Uµ1−
α dµ2+.

Following [35], page 78, since kα is symmetric, then the reciprocity law holds,

Jα(µ1, µ2) = Jα(µ2, µ1), i.e.,

∫

Uµ1
α dµ2 =

∫

Uµ2
α dµ1.

Let Eα be the set of elements of M± for which Jα makes sense and is finite.
As pointed out by Landkof [35] in his preface, a very nice idea going back to
Cartan consists of seeing Jα as a Hilbert structure on Eα. This idea is simply
captured by the following lemma, which is the analogue of Lemma 3.1 for
signed measures of finite energy.

Lemma 3.2 [Properties of (Eα, Jα)].

• Jα is lower semi-continuous on Eα for the vague topology (i.e., with respect
to continuous functions with compact support);

• Eα is a vector space and (µ1, µ2) 7→ Jα(µ1, µ2) defines a scalar product on
Eα.

In particular for every µ ∈ Eα, we have Jα(µ) = Jα(µ,µ)≥ 0 with equality if
and only if µ = 0; and moreover, Jα :Eα 7→ (−∞,∞) is strictly convex: for
every µ, ν ∈ Eα with µ 6= ν,

∀t ∈ (0,1)
tJα(µ) + (1− t)Jα(ν)− Jα(tµ+ (1− t)ν)

t(1− t)
= Jα(µ− ν)> 0.
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Proof. The lower semi-continuity for the vague convergence follows
from the fact that kα ≥ 0; see [35], page 78. The vector space nature of Eα
is immediate from its definition. The bilinearity of (µ1, µ2) 7→ Jα(µ1, µ2) is
immediate. By reasoning as in the proof of Lemma 3.1, we get Jα(µ,µ)≥ 0
for every µ ∈ Eα, with equality if and only if µ= 0. �

Following [35], Theorems 1.18 and 1.19, page 90, for this pre-Hilbertian
topology, it can be shown that Eα,+ is complete while Eα is not complete if
α > 1, and that Jα is not continuous for the vague topology.

3.2. Capacity and “approximately/quasi-everywhere.” The notion of ca-
pacity is central in Potential Theory. We just need basic facts on zero-
capacity sets. Once more we follow the presentation of Landkof [35], Chapter
II.1, to which we refer for additional details, references and proofs.

For any compact set K, consider the minimization problem

Wα(K) = inf{Jα(ν);ν ∈M1 ∩ Eα, supp(ν)⊂K}.

The boundedness of K implies that Wα(K) ∈ (0,∞]. Its inverse Cα(K) is
called the capacity of the compact set K. The capacity of K is zero if and
only if there is no measure of finite energy supported in K.

On general sets on can define an “inner capacity” and an “outer capacity”
by

Cα(A) = sup{Cα(K),K ⊂A,K compact},

Cα(A) = inf{Cα(O),A⊂O,O open}.

It can be shown (see [35], Theorem 2.8) that if A is a Borel set, these two
quantities coincide—A is said to be “capacitable” and the common value is
called the capacity of A.

A property P (x) is said to hold “approximately everywhere” if the set A
of x such that P (x) is false, has zero inner capacity, and “quasi-everywhere”
if it has zero outer capacity. For many “reasonable” P (x), the set A is Borel,
and the two notions coincide. The following result [35], Theorems 2.1 and 2.2,
shows that, for such “reasonable” properties, “quasi-everywhere” means “ν-
almost surely, for all measures ν of finite energy.”

Theorem 3.3 (Zero capacity Borel sets). A Borel set A has zero capac-
ity if and only if, for any measure ν of finite energy, ν(A) = 0. In particular,
if Cα(A) > 0, A has a positive inner capacity, and there exists a compact
K ⊂A and a probability measure ν of finite energy such that supp(ν)⊂K.

3.3. The Gauss averaging principle. In the classical Coulombian case
(α= 2), we will need the following result, known as Gauss’s averaging prin-
ciple. In R

d, for all r > 0, let σr be the surface measure on the sphere
∂B(0, r); its total mass is σdr

d−1 where σd is the surface of the unit sphere.
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Theorem 3.4 (Gauss’s averaging principle). In R
d,

1

rd−1σd

∫

∂B(0,r)

1

|x− y|d−2
dσr(y) =







1

rd−2
, if |x|< r,

1

|x|d−2
, if |x|> r.

This result can be found in [29], Lemma 1.6.1, page 21.

4. Proof of the properties of the minimizing measure. The proof of The-
orem 1.2 is decomposed in two steps. We begin by proving the existence,
uniqueness and the support properties of µ⋆ in Section 4.1. The characteri-
zation of µ⋆ is proved in Section 4.2.

Recall that, for a probability measure µ, we have defined

I(µ) =
1

2
Jα(µ) +

∫

V dµ.

In this section we consider the following minimization problem:

P : inf {I(µ), µ ∈M1}.(4.1)

4.1. Existence, uniqueness and compactness of the support. The exis-
tence of a minimizer for P is clear since we have already seen that I has
compact level sets.

Since I(µ) <∞ implies that µ ∈ Eα and
∫
V dµ <∞, the problem P is

equivalent to

Pα : inf {I(µ), µ ∈M1 ∩ Eα such that V ∈L1(µ)}(4.2)

in that they have the same values and the same minimizers. Let us call p
the common value.

Suppose µ and ν are two measures inM1∩Eα such that V ∈ L1(µ)∩L1(ν).
Let ψ : t ∈ [0,1] 7→ [0,∞) by

ψ(t) := I((1− t)µ+ tν)
(4.3)

=
1

2
Jα((1− t)µ+ tν) + (1− t)

∫

V dµ+ t

∫

V dν.

By Lemma 3.2, ψ is strictly convex if µ 6= ν. If µ and ν minimize I , then they
are in M1 ∩Eα, so ψ is well defined, and since ψ(0) = I(µ) = I(ν) = ψ(1), µ
must be equal to ν. Therefore the minimizer µ⋆ is unique.

Let us now prove that µ⋆ has compact support. This result also holds in
dimension 2 with the logarithmic potential; see [47], Theorem 1.3, page 27.
To this end, let us define, for any compact K, a new minimization problem,

PK : inf {I(µ), µ ∈M1 ∩ Eα, supp(µ)⊂K},

and let pK be the value of PK .
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Lemma 4.1 (Reduction to restricted optimization problem). Let K be
a compact set, and suppose that V (x)≥ 2p+ 3 when x /∈K, where p is the
common value of P, Pα [defined by (4.1) and (4.2)]. Then the problems P
and PK are equivalent: their values p and pK are equal, the minimizer exists
and is the same. In particular, the minimizer µ⋆ of the original problem P
satisfies supp(µ⋆)⊂K.

Proof. Suppose µ is such that I(µ) ≤ p + 1. We will prove that, if
µ(K)< 1, we can find a µK , supported in K such that I(µK)< I(µ). This
clearly implies that the two values pK and p coincide. Since we know that
the minimizer µ⋆ of the original problem exists, this also proves that it must
be supported in K.

Let us now construct µK as the renormalized restriction of µ to K. First,
remark that µ(K) cannot be zero, since

p+1≥ I(µ)≥ (1− µ(K))(2p+3).

Therefore we can define

µK(A) =
1

µ(K)
µ(K ∩A).

Since by assumption µ(K)< 1, we may similarly define µKc . The measure
µ is the convex combination

µ= µ(K)µK + (1− µ(K))µKc.

The positivity of V , W and the choice of K imply that

I(µ) =
1

2
Jα(µ) + µ(K)

∫

V dµK + (1− µ(K))

∫

V dµKc

≥
1

2
µ(K)2Jα(µK) + µ(K)2

∫

V dµK + (1− µ(K))(2p+ 3),

since Jα(µKc) and the interaction energy Jα(µK , µKc) are both nonnegative.
Therefore

I(µ)≥ µ(K)2I(µK) + (1− µ(K))(2p+3).

Assume that I(µK)≥ I(µ). Then

I(µ)(1− µ(K)2)≥ (1− µ(K))(2p+ 3).

Using the fact that I(µ)≤ p+1, and dividing by 1− µ(K), we get

2(p+1)≥ (p+1)(1 + µ(K))≥ 2p+3,

a contradiction. Therefore I(µK)< I(µ), and the proof is complete. �
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4.2. A criterion of optimality. In this section we prove the items (5),
(6) and (7) of Theorem 1.2. The corresponding result in dimension 2 for
the logarithmic potential can be found in [47], Theorem 3.3, page 44. We
adapt it, using fully the pre-Hilbertian structure rather than the principle
of domination when it is possible.

Proof of item (5) of Theorem 1.2. We already know that µ⋆ has
compact support. The first step is to show that µ⋆ satisfies (1.8) and (1.9).
Let µ = µ⋆, and let ν be in ν ∈M1 ∩ Eα such that V ∈ L1(ν). Recall the
function ψ from (4.3),

ψ(t) = I((1− t)µ⋆ + tν).

Since Jα is quadratic we get

ψ(t) =

∫

V dµ⋆ + t

∫

V d(ν − µ⋆) +
1

2
Jα(µ⋆ + t(ν − µ⋆))

=

∫

V dµ⋆ + t

∫

V d(ν − µ⋆)

+
1

2
(Jα(µ⋆) + t2Jα(ν − µ⋆) + 2tJα(µ⋆, ν − µ⋆)).

Therefore,

ψ′(t) =

∫

V d(ν − µ⋆) + tJα(ν − µ⋆) + Jα(µ⋆, ν − µ⋆).(4.4)

Since µ⋆ minimizes I , ψ′(0+) must be nonnegative:

0≤

∫

V d(ν − µ⋆) + Jα(µ⋆, ν − µ⋆)

≤

∫

V dν + Jα(µ⋆, ν)−

(∫

V dµ⋆ + Jα(µ⋆)

)

≤

∫

(V +Uµ⋆
α )dν −C⋆.

Therefore,

∀ν ∈M1 ∩ Eα

∫

(V +Uµ⋆
α −C⋆)dν ≥ 0.(4.5)

Since this holds for all ν, V + Uµ⋆
α is greater than C⋆ quasi-everywhere.

Indeed, let A= {x,V (x) +Uµ⋆
α (x)<C⋆}. Since V +Uµ⋆

α is measurable this
is a Borel set. Suppose by contradiction that its capacity is strictly positive.
By Proposition 3.3, there exist a compact set K ⊂A and a measure ν with
finite energy supported in K. For this measure

∫
V + Uµ⋆

α dν < C⋆, which
contradicts (4.5). This proves (1.8).

Let us prove (1.9). Suppose V (x) + Uµ⋆
α (x) > C⋆ for some x ∈ supp(µ⋆).

Since V +Uµ⋆
α is lower semi-continuous, we can find a neighborhood U of x,
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and an η > 0 such that

∀x ∈ U V (x) +Uµ⋆
α (x)≥C⋆ + η.

Therefore
∫

(V +Uµ⋆
α )dµ⋆ ≥ (C⋆ + η)µ⋆(U) +

∫

Rd\U
(V +Uµ⋆

α )dµ⋆.

Since V + Uµ⋆
α ≥ C⋆ quasi-everywhere, and µ⋆ has finite energy, this holds

µ⋆ almost surely, so

C⋆ =

∫

V +Uµ⋆
α dµ⋆ ≥C⋆ + ηµ⋆(U).

This is impossible since µ⋆(U) > 0, by definition of the support. Therefore
(1.9) holds. �

Proof of item (6) of Theorem 1.2. Let µ ∈ Eα ∩M1(R
d) be such

that V ∈ L1(ν). It is enough to show that, if (1.12) and (1.13) hold, then
µ= µ⋆. We argue by contradiction and suppose µ 6= µ⋆. Consider again the
function ψ (with ν = µ): ψ(t) = I((1 − t)µ⋆ + tµ), t ∈ [0,1]. According to
Lemma 3.1, this function is strictly convex, therefore ψ′(1)>ψ′(0)≥ 0. The
explicit expression of ψ′ [equation (4.4)] gives

0<ψ′(1) =

∫

V d(µ− µ⋆) + Jα(µ− µ⋆) + Jα(µ⋆, µ− µ⋆)

=

∫

V dµ−

∫

V dµ⋆ + Jα(µ)− Jα(µ,µ⋆).

Therefore,
∫

(Uµ
α + V )dµ⋆ <

∫

(Uµ
α + V )dµ.(4.6)

On the other hand, integrating (1.12) with respect to µ and (1.13) with
respect to µ⋆ yields

∫

(Uµ
α + V )dµ≤C ≤

∫

(Uµ
α + V )dµ⋆,

which contradicts (4.6) and concludes the proof. �

To prove the last result of Theorem 1.2 we recall the following classical
result.

Theorem 4.2 (Principle of domination). Suppose α≤ 2. Let µ and ν be
two positive measures in Eα, and c a nonnegative constant. If the inequality

Uµ
α (x)≤ Uν

α(x) + c

holds µ-almost surely, then it holds for all x ∈R
d.
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Proof. In the Coulomb case α= 2, [35], Theorem 1.27, page 110, ap-
plies, since Uν

α is positive and super-harmonic. If α< 2, the potential Uν
α is

α-superharmonic, so we can apply [35], Theorem 1.29, page 115 and get the
result. �

Proof of item (7) of Theorem 1.2. We follow the proof of The-
orem 1.3 in [20]. Arguing by contradiction, let us suppose that, for some
measure µ, and some ǫ > 0,

sup
supp(µ)

(Uµ
α + V )≤C⋆ − ǫ.

By (1.9), this implies that

Uµ
α (x) + ǫ≤ Uµ⋆

α (x),

for all x ∈ supp(µ). Let η be the equilibrium (probability) measure of
supp(µ) :Uη

α(x) =Cη on supp(µ), therefore

U
µ+(ǫ/Cη)η
α ≤ Uµ⋆

α

for all x in supp(µ). By the principle of domination this holds at infinity.

Since for any compactly supported µ, Uµ
α (x) ∼

µ(Rd)

|x|d−α at infinity, we get a

contradiction

(1 + ǫ/Cη)≤ 1.

Similarly, if

“ inf
supp(µ⋆)

”(Uµ
α (x) + V (x))>C⋆,

then Uµ
α + V ≥C⋆ + ǫ q.e. on supp(µ⋆), so

Uµ
α (x)≥ Uµ⋆

α (x) + ǫ, µ⋆-a.s.

The same proof as before applies to get a contradiction. �

4.3. Radial external fields in the Coulomb case: Corollary 1.3. For the
sake of completeness, let us finally give a proof of the result mentioned in
Corollary 1.3.

Changing V into βV , we can assume without loss of generality that β = 1.
Recall that V is supposed to be radially symmetric and of class C2: there

exists v :R+ →R such that V (x) = v(|x|).
In this case it is thus natural to look for a radially symmetric equilib-

rium probability measure. Guided by the results of [47], let us consider
an absolutely continuous probability measure µ, such that supp(µ) = {x ∈
R
d; r0 ≤ |x| ≤ R0} for some 0 ≤ r0 < R0 and such that dµ =M(r)dσr dr,

where M : [r0,R0]→R+ is assumed to be continuous.
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First let us calculate the potential of µ. Using the Gauss’s averaging
principle (Theorem 3.4), it holds

Uµ
2 (x) =

∫ ∫

M(r)W (x, y)dσr(y)dr

=

∫

M(r)

∫

∂B(0,r)

1

|x− y|d−2
dσr(y)dr

(4.7)

= σd

∫

M(r)rd−1

(
1{|x|>r}

|x|d−2
+

1{|x|≤r}

rd−2

)

dr

=
σd

|x|d−2

∫ |x|

0
M(r)rd−1 dr+ σd

∫ ∞

|x|
M(r)r dr.

Thus Uµ
2 (x) = u(|x|), for some function u of class C1.

Now, let us consider condition (1.10). It holds if and only if there exists
some C such that u(r) = C − v(r) for all r ∈ [r0,R0]. This is obviously

equivalent to the conditions u′(r) = −v′(r) for all r ∈ [r0,R0] and u(R0) =

1/Rd−2
0 = C − v(R0) [here we use that σd

∫ R0

0 M(r)rd−1 dr = 1]. Observing
that

u′(r) =−
σd(d− 2)

rd−1

∫ r

0
M(t)td−1 dt,

we see that u′ = −v′ on [r0,R0] if and only if u′(R0) = −v′(R0) which

amounts to w(R0) = d− 2 and M(t) = 1
σd(d−2)

ω′(t)
td−1 , for all t ∈ [r0,R0], where

we recall that w(t) = td−1v′(t), t≥ 0. The condition σd
∫ R0

0 M(r)rd−1 dr = 1

implies that 1
d−2(w(R0) − w(r0)) = 1 and so w(r0) = 0. In the case where

w is increasing, this determines uniquely r0 = 0 and R0 = w−1(d − 2). In
the case where v is supposed to be convex, we see that w is increasing on
[a0,∞[ with a0 = inf{t > 0;v′(t)> 0} and w ≤ 0 on [0, a0]. Therefore R0 is
uniquely defined and reasoning on the support of µ easily yields to the con-
clusion that r0 = a0. In all cases, the probability µ is uniquely determined
and C = 1/Rd−2

0 + v(R0).
It remains to check that this probability µ satisfies also condition (1.11).

If r = |x| ≥R0, then U
µ
2 (x) + V (x) = 1

rd−2 + v(r)≥ 1
Rd−2

0

+ v(R0) = C, since

it is easy to check that r 7→ 1
rd−2 + v(r) is increasing on [R0,∞). In the case

where v is convex and r ≤ r0, an integration by parts yields to

Uµ
2 (x) =

1

d− 2

∫ R0

r0

w′(t)

td−2
dt=

1

d− 2

∫ R0

r0

(d− 1)v′(t) + tv′′(t)dt

= v(R0)− v(r0) +
1

Rd−2
0

=C − v(r0)≥C − v(r),
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since v is nonincreasing on [0, r0]. Therefore, in all cases Uµ
2 (x) + V (x)≥C

for every x ∈ R
d, which completes the proof of the characterization of the

equilibrium measure.
Finally, if the external field V is quadratic, that is, if v(r) = r2, then

w(r) = 2rd and so r0 = 0, R0 = ((d− 2)/2)1/d and M(r) = 2d
σd(d−2)1{|x|≤R0}.

In other words, the equilibrium probability measure is uniform on the ball
centered in 0 and of radius ((d− 2)/2)1/d .

4.4. Prescribed equilibrium measure. In this section we prove Corollary 1.4.
We will need the following elementary lemma.

Lemma 4.3 (Regularity of Riesz potential). Let 0 < α < d, d ≥ 1, and
let µ be a probability measure with a density f ∈ L

p
loc(R

d) for some p > d/α.

Then Uµ
α is continuous and finite everywhere on R

d.

Proof. For all n≥ 1, define

Rn(x) :=

∫

f(y)min(n;k∆α(x− y))dy

and

Sn(x) := Uµ
α (x)−Rn(x) =

∫

f(y)[k∆α(x− y)− n]+ dy.

It follows from the dominated convergence theorem that Rn is continuous
on R

d. Let us show that Sn converges to 0 uniformly on compact sets, which
will prove the claim. Let q := p/(p − 1) be the conjugate exponent of p;
applying Hölder inequality yields to

0≤ Sn(x)≤

∫

f(y)
1

|x− y|d−α
1B(x,n−1/(d−α))(y)dy

≤ ‖f‖p,B(x,1)

(∫
1

|x− y|q(d−α)
1B(x,n−1/(d−α))(y)dy

)1/q

= ‖f‖p,B(x,1)εn,

where εn := σ
1/q
d (

∫ n−1/(d−α)

0
1

uq(d−α)−d+1 du)
1/q and where σd is the surface of

the unit Euclidean ball. The condition p > d/α is equivalent to q(d− α)−
d+ 1 < 1 and so εn is finite for all n and εn → 0 as n→∞. We conclude
from this that if K is a compact set of Rd and K1 = {x ∈R

d;d(x,K)≤ 1},
it holds

sup
x∈K

|Sn|(x)≤ ‖f‖p,K1εn,

which completes the proof. �
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Proof of Corollary 1.4. Lemma 4.3 above shows that Uµ⋆
α is con-

tinuous and everywhere finite on R
d. Since µ⋆ is compactly supported,

Uµ⋆
α (x)→ 0 as |x| →∞. Therefore V (x)→∞, when |x| →∞. This proves

(H2). The other assumptions are straightforward. By the very definition of
V , it holds

Uµ⋆
α (x) + V (x)≥ 0 ∀x∈R

d,

with equality on B(0,R)⊇ supp(µ). According to point (6) of Theorem 1.2,
this proves that µ∗ is the (unique) minimizer of I . The last assertion follows
from point (4) of Theorem 1.2. �
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[11] Bordenave, C. and Chafäı, D. (2012). Around the circular law. Probab. Surv. 9
1–89. MR2908617

[12] Borodin, A. and Serfaty, S. (2013). Renormalized energy concentration in random
matrices. Comm. Math. Phys. 320 199–244. MR3046995

http://www.ams.org/mathscinet-getitem?mr=0597033
http://www.ams.org/mathscinet-getitem?mr=2817648
http://www.ams.org/mathscinet-getitem?mr=2760897
http://www.ams.org/mathscinet-getitem?mr=1465640
http://www.ams.org/mathscinet-getitem?mr=1660943
http://www.ams.org/mathscinet-getitem?mr=0747302
http://www.ams.org/mathscinet-getitem?mr=3177931
http://www.ams.org/mathscinet-getitem?mr=2921180
http://www.ams.org/mathscinet-getitem?mr=2858167
http://www.ams.org/mathscinet-getitem?mr=1678526
http://www.ams.org/mathscinet-getitem?mr=2908617
http://www.ams.org/mathscinet-getitem?mr=3046995


FIRST-ORDER GLOBAL ASYMPTOTICS FOR CONFINED PARTICLES 43

[13] Brascamp, H. J. and Lieb, E. H. (1974). Some inequalities for Gaussian measures
and the long-range order of the one-dimensional plasma. In Functional Integra-

tion and Its Applications. Proceedings of the International Conference Held in
London in April 1974 (A. M. Arthur, ed.) 1–14. Clarendon, Oxford.

[14] Caglioti, E., Lions, P.-L., Marchioro, C. and Pulvirenti, M. (1992). A spe-

cial class of stationary flows for two-dimensional Euler equations: A statistical
mechanics description. Comm. Math. Phys. 143 501–525. MR1145596

[15] Caglioti, E., Lions, P.-L., Marchioro, C. and Pulvirenti, M. (1995). A spe-
cial class of stationary flows for two-dimensional Euler equations: A statistical
mechanics description. II. Comm. Math. Phys. 174 229–260. MR1362165
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