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Abstract

Motivated by service levels in terms of the waiting-time distribution seen in e.g. call
centers, we consider two models for systems with a service discipline that depends on
the waiting time. The first model deals with a single server that continuously adapts
its service rate based on the waiting time of the first customer in line. In the second
model, one queue is served by a primary server which is supplemented by a secondary
server when the waiting of the first customer in line exceeds a threshold. Using level
crossings for the waiting-time process of the first customer in line, we derive steady-
state waiting-time distributions for both models. The results are illustrated with
numerical examples.

Keywords: Waiting-time distribution; Adaptive service rate; Call centers; Contact
centers; Queues; Deterministic threshold; Overflow; Level crossing.

1 Introduction

In service systems, the tail probability (or distribution function) of the waiting time of
customers is one of the main service-level indicators. For example, in call centers the
service level is generally characterized by the telephone service factor (TSF), i.e., the
fraction of calls whose delay fall below a prespecified target. Typically, call centers use a
80-20 TSF meaning that 80% of the calls should be taken into service within 20 seconds,
see [12]. Motivated by performance measures in terms of tail probabilities of waiting times,
we consider queueing systems where the service mechanism is based on waiting times of
customers. This type of control policy is commonly used in call centers [21], and indeed
the authors have often encountered it in various forms when working with call centers.
However, the literature on it is limited. In the traditional queueing literature, routing and
control are commonly based on the number of customers present.
The main goal of this paper is to find the steady-state waiting-time distribution for queue-
ing systems where the service characteristics depend on the waiting time of the first cus-
tomer in line. This type of service control seems to be new in the queueing literature,
despite its widespread use in the industry. The aim of this paper is to show ways to
analyze queueing models where the service mechanism depends on the waiting time. In
the sequel we use FIL as an abbreviation of first customer in line.
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We consider two Markovian queueing models: (i) single-server queues with FIL waiting-
time dependent service speed and (ii) a queue with two heterogeneous servers, where the
secondary server is only activated as soon as the FIL waiting time exceeds some target
level. For both models, the analysis is based on the waiting process of the first customer
in line (FIL-process). Using level crossings, we find the steady-state distribution of the
FIL-process and derive the waiting-time distribution as a corollary.
First, in Section 2, we study the single-server model, where the service speed can be
continuously adapted based on the waiting time of the first customer in line. This model
is related to the study of dams and queueing systems with workload-dependent service
rates, see e.g. [4], [5], [16] or [25]. The difference is that the service speed here depends
on the waiting time instead of the amount of work present.
Second, in Section 3, we consider a system with a single queue and two heterogeneous
servers, where the secondary server takes the first customer in line into service as soon as
his waiting time exceeds some threshold. The primary motivation for this model stems
from routing mechanisms in call centers with operators in front and back offices. Typically,
the only task of operators in the front office would be to answer calls whereas operators
in the back office would have other assignments and only answer calls under high load.
A common problem is then how to meet the service level agreements while keeping the
disturbance of the back office operators to a minimum, see [12] and references therein.
Overflow problems are in general difficult to analyze, see [11], because the overflow traffic
is not Poisson; the deterministic threshold of this model only adds to this. We believe
though that the model is of independent interest and has its applications in other areas
where the service level involves the (tail) distribution of the waiting time, as in, e.g.,
telecommunication and production systems, or in supply chains with lead time decisions
[20].
Related to the heterogeneous-servers model above is the slow-server problem, see [18],
[19], [24] and [26]. In the slow-server model, a single queue is served by two heterogeneous
servers with service rates μ1 and μ2, where μ1 > μ2. In [24], the author gives qualitative
and explicit quantitative results on when to maintain or discard the slow server. In the
models of [18] and [19], customers can be assigned to one of the servers depending on the
number of customers present. There it was shown that the fast server should always be
used and that the slow server should only be used if the number of customers exceeds some
threshold. This result was derived for an infinite waiting space. We note that in case of a
finite queue length, the optimal policy is not necessarily of a threshold type, see [26].
The literature on queueing models where the service time process depends on the waiting
time is limited. In [3], a system with time dependent overflow is approximated by a
queue-length dependent overflow. Prioritization based on adding different constants to the
waiting times of customers is introduced in [17] and referred to as dynamic prioritization.
There are some studies of single-server queues where the service time depends on the
waiting time experienced by the customer in service (instead of the first customer in line),
see [6], [23] and [27]. Furthermore, in [7] the authors consider an M/M/2 queue where
non-waiting customers receive a different rate of service than customers who first wait in
line. Their analysis is based on the “system point method” [8], which is closely related to
the level crossing equations [10] of Section 3.
Some numerical results are presented in Section 4. Conclusions and topics for further
research can be found in Section 5.
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2 Single-server queue

In this section we consider a single-server queue where the service speed depends on the
waiting time of the first customer in line. In particular, we assume that customers arrive
according to a Poisson process with rate λ and have exponentially distributed service
requirements with mean 1/μ. The service discipline is assumed to be FIFO. Denote by
Wt the waiting time of the first customer in the queue at time t, with the convention that
Wt = 0 if the queue is empty. Also, let Yt denote the number of customers in service
at time t (thus Yt ∈ {0, 1}). The service speed depends on the waiting time of the first
customer in line and the service speed function is denoted by r(·). Let r(0) be the service
speed for state (Wt, Yt) = (0, 1) and 0 be the speed for state (0, 0). For convenience, define
ρ0 = λ/(μr(0)). We assume that r(·) is strictly positive, left-continuous, and has a strictly
positive right limit on (0,∞).
The process {(Wt, Yt), t ≥ 0} can now be described as follows. Given that Wt0 = w > 0
and the next service completion is at time t1 > t0, the waiting-time process of the first
customer in line during (t0, t1) behaves as Wt0+t = w+ t and Yt0+t = 1. If Sw denotes the
time until the next service completion, conditioned on the initial waiting time w > 0, then

P(Sw > t) = exp
(
−μ

∫ w+t
w r(y)dy

)
. At the moment of a service completion, the second

customer in line (if there is any) becomes the first customer in line. Since the interarrival
times between customers are exponentially distributed, we have

Wt+1
=

(
Wt−1

−Aλ

)+
, (1)

where (x)+ = max{x, 0} and Aλ denotes an exponential random variable of rate λ.
It remains to specify the boundary cases of an empty queue. For (0, Yt0), the time until
the next state transition has an exponential distribution with rate λ+μr(0)Yt0 . For (0, 1)
the next state is (0, 0) with probability μr(0)/(λ+μr(0)), or Wt starts to increase linearly
as described above with probability λ/(λ+ μr(0)). For (0, 0), the next state is (0, 1) with
probability one.
Since the service requirements and interarrival times are exponentially distributed, the
process {(Wt, Yt), t ≥ 0} is a Markov process. Assuming that the system is stable (see [9,
Corollary 4.2] for stability conditions), the process is regenerative and thus has a stationary
distribution, see e.g. [2, Chapter VII]. Below, we determine the steady-state distribution
of this process and derive from it the waiting-time distribution of an arbitrary customer.
For this, we introduce the steady-state distribution of the FIL-process as WFIL(x) =
limt→∞ P(Wt ≤ x) and the corresponding density as wFIL(x) = dWFIL(x)/dx. For the
atom in zero, Yt is included in the notation as WFIL(0, y) = limt→∞ P(Wt = 0, Yt = y).

Theorem 2.1 We have WFIL(0, 1) = ρ0W
FIL(0, 0). The density of the FIL-process is

wFIL(x) = λρ0W
FIL(0, 0) exp

{∫ x

0
(λ− μr(y))dy

}
,

where

WFIL(0, 0) =

[
1 + ρ0 + λρ0

∫ ∞

0
exp

{∫ x

0
(λ− μr(y))dy

}
dx

]−1

.

It is instructive to derive the distribution of the FIL-process based on level crossing argu-
ments. We refer to Remark 2.1 below for an alternative proof based on results in [5].
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Proof For x > 0, using (1), the level crossing equations read

wFIL(x) =

∫ ∞

y=x
e−λ(y−x)μr(y)wFIL(y)dy. (2)

The left-hand side corresponds to upcrossings of level x and the right-hand side corresponds
to the long-run average number of downcrossings through level x. Observe that we have
continuous upcrossings of waiting-time levels and downcrossings by jumps, where the
jump sizes correspond to interarrival times between successive customers (in contrast to
workloads in single-server queues). Taking derivatives on both sides of Equation (2) yields

d

dx
wFIL(x) = λ

[∫ ∞

y=x
e−λ(y−x)μr(y)wFIL(y)dy

]
− μr(x)wFIL(x)

= (λ− μr(x))wFIL(x),

where the second step follows from (2). The solution of this first-order differential equation
can be readily obtained as

wFIL(x) = Cexp

{∫ x

0
(λ− μr(y))dy

}
. (3)

Balancing the transitions between the interior part of the state space and the boundary
part, we have

λWFIL(0, 1) =

∫ ∞

0
e−λyμr(y)wFIL(y)dy.

Using the above and letting x ↓ 0 in (2) yields limx↓0 w
FIL(x) = λWFIL(0, 1). Also, letting

x ↓ 0 in (3) determines the constant C = limx↓0w
FIL(x) = λWFIL(0, 1).

Now, balancing the transitions between the two boundary states gives

λWFIL(0, 0) = μr(0)WFIL(0, 1),

which enables us to determine the three constants in terms of WFIL(0, 0). Finally, using
normalization, we have

WFIL(0, 0) +WFIL(0, 1) + λWFIL(0, 1)

∫ ∞

0
exp

{∫ x

0
(λ− μr(y))dy

}
dx = 1.

Expressing WFIL(0, 1) in WFIL(0, 0) and solving for WFIL(0, 0) completes the proof.

To determine the waiting time, we only need to consider the FIL-process at specific points
in time. We introduce the waiting time an arbitrary customer experiences as W and the
distribution of this as W (x) = P(W ≤ x). Using PASTA, it is easy to see that the atom in
zero of the waiting time is given by P(W = 0) = WFIL(0, 0). In case of non-zero waiting
times, the waiting times are given by the FIL-process embedded at epochs just before
downward jumps.
Let Ns(u, v) denote the number of customers taken into service during the interval (u, v].
Consider an infinitesimal interval (t, t + h], h > 0. Then, P(Wt > x;Ns(t, t + h) = 1) =∫∞
x μr(y)hwFIL(y)dy + o(h). Note that P(Ns(t, t + h) = 1)/h (for h → 0) is the rate at
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which customers are taken into service and, since every customer leaves the queue through
the server and the system is stable, equals λ. Combining the above, we have

P(W > x) = lim
h→0

P(Wt > x | Ns(t, t+ h) = 1)

= lim
h→0

P(Wt > x;Ns(t, t+ h) = 1)

P(Ns(t, t+ h) = 1)

=
1

λ

∫ ∞

x
μr(y)wFIL(y)dy.

The density of the steady-state waiting time, w(x), can be obtained by differentiating the
above:

Corollary 2.1 For the steady-state waiting time, we have P(W = 0) = WFIL(0, 0) and
density

w(x) =
μr(x)wFIL(x)

λ
,

where WFIL(0, 0) and wFIL(·) are given in Theorem 2.1.

Remark 2.1 We note that the steady-state waiting time and FIL distributions take a
similar form as the steady-state workload distribution of an M/M/1 queue with workload-
dependent arrival and/or service rate, see e.g. [4], [16] or [2], p. 388. Also related is the
elapsed waiting time process in the M/G/1 queue [22].
For positive values, the FIL-process is a special case of the model considered in [5], i.e.,
an on/off storage system with state-dependent rates restricted to up intervals. Applying
[5, Theorem 1] combined with [5, Section 6] and taking (in the notation of [5]) r0(x) ≡ 1,
λ0(x) = μr(x) and λ1(x)/r1(x) ≡ λ with λ1(x) and r1(x) tending to infinity, directly yields
the FIL-density represented in (3). Furthermore, combining results on expected excursion
times [5, Theorem 2] with standard renewal arguments provides the remaining constants.
	

Remark 2.2 For a renewal arrival process, the interior part of the state space can be
straightforwardly adapted. In particular, Wt is still a Markov process for positive waiting
times and the level crossing equation (2) then reads

wFIL(x) =

∫ ∞

y=x
μr(y)wFIL(y)(1 −A(y − x))dy,

where A(·) is the interarrival-time distribution. Note that the above equation can be
written as a Volterra integral equation of the second kind, see e.g. [28]. For the FIL
process to be a Markov process, a supplementary variable is required to describe the
elapsed interarrival time at the boundary of the state space, i.e., in case there is no
customer in line. We note that Corollary 2.1 remains valid for a renewal arrival process.
	

Example 2.1 The results become even more tractable in various special cases. Here, we
consider the case of two service speeds determined by a threshold value of the waiting
time of the first customer in the queue. Specifically, we assume that

r(x) =

{
r1, for 0 ≤ x ≤ K,
r2, for x > K.

5
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This example may serve as an approximation for the case of two heterogeneous servers in
Section 3, where the secondary server is only activated as soon as the FIL-process exceeds
K.
Using Theorem 2.1 and Corollary 2.1, we may easily obtain the steady-state distribution of
the FIL-process and the waiting time. Here, we present the atom in zero and the density of
the waiting time. Let ρi = λ/(μri), for i = 1, 2. After some straightforward calculations,
we obtain

w(x) =

⎧
⎨
⎩

r1μρ1W (0)e−r1μ(1−ρ1)x, for 0 < x ≤ K,

r2μρ1W (0)e(r2−r1)μKe−r2μ(1−ρ2)x, for x > K,

where

W (0) =

[
1

1− ρ1
+ ρ1e

−r1μ(1−ρ1)K
(

1

1− ρ2
− 1

1− ρ1

)]−1

.

3 Two-server queue

In this section we turn our attention to a system with two heterogeneous servers. As in
Section 2 we use the concept of a FIL-process, where Wt denotes the waiting time of the
first customer in line at time t. Again customers arrive to the queue according to a Poisson
process with rate λ. A primary server handles jobs with exponentially distributed service
times with mean 1/μp. A secondary server starts serving customers when Wt exceeds a
threshold K. The service times at the secondary server are exponentially distributed with
mean 1/μs. As in the one-server model of Section 2, the service discipline is FIFO and the
servers will always complete a started job, i.e., the secondary server will finish an already
started job even if Wt drops below K due to a service completion. In this section Yt refers
to the number of active secondary servers at time t, thus Yt ∈ {0, 1}. For the system to be
stable we assume λ < μp + μs. The described two-server system is depicted in Figure 1.

Wt ≥ K

λ μp

μs

Figure 1: The queue is served by a primary server with rate μp which is supplemented
by a secondary server with service rate μs, when the waiting time of the first in line, Wt,
equals or exceeds K.

When dealing with the two-server setup, we introduce the steady-state joint distribution
of the FIL-process as WFIL

i (x) = limt→∞ P(Wt ≤ x;Yt = i). The joint steady-state density
of the FIL-process is denoted wFIL

i (x).
A sample path of the FIL-process is shown in Figure 2. Wt increases linearly with time
whenever a customer is in the queue. When the n’th customer enters service at time
t, the waiting time of the first in line decreases with min(An,Wt−) from Wt− to Wt+ =
max(Wt− − An, 0), where An is the exponentially distributed interarrival time with rate
λ between customers n and n + 1. Because both service times and interarrival times are
exponentially distributed, the FIL-process is Markovian.

6
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Arrivals
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A3

A2

tW

1 2 4 7 8

3 5 6

75 643 81

t

2

Primary server

Secondary server

A4

A

K

Figure 2: Elapsed waiting time of the first customer in line, Wt. The occupation of the
servers are shown beneath the graph. Notice how Wt keeps increasing after customer #3
finishes service as the secondary server is not allowed to start a new service until the level
K is reached.

The analysis of the system is based on the level crossing equations for the FIL-process.
These are more involved, compared to those in Section 2, and are thus presented in
Lemma 3.1. From this, the steady state distribution of the FIL-process is determined and
given in Theorem 3.1.

Lemma 3.1 We consider the level crossing equations for three different cases.

(i) For x < K and an active secondary server we have

wFIL
1 (x) + μsW

FIL
1 (x) = μp

∫ ∞

y=x
e−λ(y−x)wFIL

1 (y)dy

+ μs

∫ ∞

y=K
e−λ(y−x)wFIL

1 (y)dy

+ wFIL
0 (K−)e−λ(K−x).

(ii) For x < K and an inactive secondary server

wFIL
0 (x) = μp

∫ K

y=x
e−λ(y−x)wFIL

0 (y)dy + μsW
FIL
1 (x).

(iii) For x > K the secondary server will always be active

wFIL
1 (x) = (μp + μs)

∫ ∞

y=x
e−λ(y−x)wFIL

1 (y)dy.

Proof Only case (i) is dealt with in detail as it is the most complicated. The level
crossing equations are obtained from setting up forward Kolmogorov equations. For case

7
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(i) this becomes

P(Wt+h ≤ x+ h;Yt+h = 1)

= (1− μph− μsh)P(Wt ≤ x;Yt = 1)

+ μphP(Wt ≤ x+An;Yt = 1)

+ μshP(K < Wt ≤ x+An;Yt = 1)

+ (1− μph)P(Wt ∈ [K − h,K];Wt ≤ x+An;Yt = 0) + o(h).

Subtracting P(Wt ≤ x+h;Yt = 1) from both sides, dividing by h and letting h → 0 allows
us to rewrite the term on the left side and the first term on the right side as derivatives
with regard to t and x respectively. Moreover h cancels from the rest of the terms except
the last. Note that μpP(Wt ∈ [K − h,K];Wt ≤ x+An;Yt = 0) → 0 for h → 0. Hence,

d

dt
P(Wt ≤ x;Yt = 1)

=− d

dx
P(Wt ≤ x;Yt = 1)− (μp + μs)P(Wt ≤ x;Yt = 1)

+ μpP(Wt ≤ x+An;Yt = 1) + μsP(K < Wt ≤ x+An;Yt = 1)

+ lim
h→0

P(Wt ≤ K;Yt = 0)− P(Wt ≤ K − h;Yt = 0)

h
· P(An > K − x).

By letting t → ∞, the left side of the expression tends to zero. The probabilities can be
written in form of density and distribution functions, using convolution for the probabilities
involving An; e.g. P(Wt ≤ x + An;Yt = 1) = WFIL

1 (x) + P(x < Wt ≤ x + An, Yt = 1) =

WFIL
1 (x) +

∫∞
y=x e

−λ(y−x)wFIL
1 (y)dy. Using limh→0,t→∞

(
P(Wt≤K;Yt=0)−P(Wt≤K−h;Yt=0)

h

)
=

wFIL
0 (K−), then leads to:

0 = −wFIL
1 (x)− (μp + μs)W

FIL
1 (x)

+ μp

(
WFIL

1 (x) +

∫ ∞

y=x
e−λ(y−x)wFIL

1 (y)dy

)
+ μs

∫ ∞

y=K
e−λ(y−x)wFIL

1 (y)dy

+wFIL
0 (K−)e−λ(K−x).

Finally, the level crossing equation for case (i) can be obtained by simply rearranging the
above terms.
We now turn to case (ii). Following an approach similar to the one for case (i), the level
crossing equation can be found from the initial Kolmogorov equation

P (Wt+h ≤ x+ h;Yt+h = 0) = (1− μph)P(Wt ≤ x;Yt = 0)

+ μphP(Wt ≤ x+An;Yt = 0)

+ μshP(Wt ≤ x;Yt = 1) + o(h).

In case (iii) the Kolmogorov equation is of the following form

P(Wt+h ≤ x+ h;Yt+h = 1) = (1− μph− μsh)P(Wt ≤ x;Yt = 1)

+ (μp + μs)hP(Wt ≤ x+An;Yt = 1) + o(h).

Again, using the same approach as for case (i), the level crossing equation of Lemma 3.1,
case (iii), can be obtained.

8
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Theorem 3.1 The density of the FIL-process, for Yt = 0, is

wFIL
0 (x) = −c1e

(λ−μp)x − r1c3e
r1x − r2c4e

r2x, for 0 < x < K,

and, for Yt = 1, it is

wFIL
1 (x) =

⎧
⎪⎨
⎪⎩
r1c3e

r1x + r2c4e
r2x, for 0 < x < K;

c2e
(λ−μp−μs)x, for x > K,

with r1, r2 given by (6) and (7). The marginal density of the FIL-process for the two-server
system becomes

wFIL(x) =

⎧
⎪⎨
⎪⎩
c1e

(λ−μp)x, for 0 < x < K;

c2e
(λ−μp−μs)x, for x > K.

The constants ci, i ∈ {1, 2, 3, 4}, are determined in Subsection 3.1.

Proof The densities of the FIL-process are found from the level crossing equations given
in Lemma 3.1. The derivative with respect to x of the level crossing equation in case (i)
becomes

wFIL
′

1 (x) + μsW
FIL

′

1 (x) = λ

[
μp

∫ ∞

y=x
e−λ(y−x)wFIL

1 (y)dy

+ μs

∫ ∞

y=K
e−λ(y−x)wFIL

1 (y)dy

+ wFIL
0 (K−)e−λ(K−x)

]

− μpw
FIL
1 (x),

where the first and last term on the right-hand side of the above equation stem from the
derivative of μp

∫∞
y=x e

−λ(y−x)wFIL
1 (y)dy. By rearranging and noting that the term inside

the brackets equals wFIL
1 (x) + μsW

FIL
1 (x), as given in the level crossing equation, we end

up with a second-order differential equation:

WFIL
′′

1 (x) + [μp + μs − λ]WFIL
′

1 (x)− λμsW
FIL
1 (x) = 0. (4)

The general solution of (4) is of the form:

WFIL
1 (x) = c3e

r1x + c4e
r2x, (5)

where

r1 =
λ− (μp + μs)−

√
(μp + μs − λ)2 + 4λμs

2
, (6)

r2 =
λ− (μp + μs) +

√
(μp + μs − λ)2 + 4λμs

2
(7)

and c3 and c4 are constants. The derivative of (5) with respect to x yields the density,
wFIL
1 (x), for 0 < x < K, as given in Theorem 3.1.

The expressions for wFIL
0 (x) for x < K and wFIL

1 (x) for x > K can be found in the same
way as the solution to the derivative of the level crossing equations in cases (ii) and (iii)
of Lemma 3.1 respectively. Finally the marginal density of wFIL(x) is found as the sum of
wFIL
0 (x) and wFIL

1 (x).

9
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3.1 Constants and atoms

To fully describe the distribution of the FIL-process, the atoms in zero must be determined
together with the constants in Theorem 3.1. The atoms, corresponding to the queue being
empty, can be divided into four different boundary states; both servers are unoccupied
(N), only the primary server is occupied (P), only the secondary server is occupied (S),
and both servers are occupied (PS). The probabilities of being in these states are referred
to as WFIL

N (0), WFIL
P (0), WFIL

S (0) and WFIL
PS (0), respectively.

Eight independent equations are needed to determine the eight constants; the probability
of being in the four boundary states and the ci’s, i ∈ {1, 2, 3, 4}. Two equations follow
directly from the boundary states in 0, as N and S can only be entered and left from other
boundary states. Writing the rate out of the states on the left-hand side and the rate into
the states on the right-hand side gives

λWFIL
N (0) = μpW

FIL
P (0) + μsW

FIL
S (0) (8)

and

(λ+ μs)W
FIL
S (0) = μpW

FIL
PS (0). (9)

The rate out of P is λ + μp as this state can only be left by an arrival or a departure
from the primary server. The state can be entered by an arrival in state N or a departure
from the secondary server in state PS. P can also be entered from the FIL-process for
non-zero Wt given that Yt = 0 and Wt < An. This is represented by the second term on
the right-hand side in (10).

(λ+ μp)W
FIL
P (0) = λWFIL

N (0) + μp

∫ K

0+
e−λywFIL

0 (y)dy + μsW
FIL
PS (0). (10)

The balance equation for WFIL
PS (0) is found in the same way:

(λ+ μp + μs)W
FIL
PS (0) = λWFIL

S (0) + μp

∫ ∞

0+
e−λywFIL

1 (y)dy

+ μs

∫ ∞

K
e−λywFIL

1 (y)dy + wFIL
0 (K−)e−λK . (11)

Three more equations can be obtained by considering boundary conditions. By letting
x ↓ 0 in (5) we have

WFIL
S (0) +WFIL

PS (0) = c3 + c4. (12)

Letting x ↑ K in the level crossing equation of case (ii) in Lemma 3.1 gives

wFIL
0 (K−) = μsW

FIL
1 (K)

= μs

[
WFIL

S (0) +WFIL
PS (0) +

∫ K

0
wFIL
1 (y)dy

]
, (13)

and the same limit in the level crossing equation of case (i) gives

wFIL
1 (K−) + μsW

FIL
1 (K) = wFIL

0 (K−) + (μp + μs)

∫ ∞

y=K
e−λ(y−K)wFIL

1 (y)dy

= wFIL
0 (K−) + c2e

(λ−μp−μs)K . (14)

10
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The final equation is obtained by normalization of the FIL-process:

1 =

∫ K

0
wFIL
0 (y)dy +

∫ ∞

0
wFIL
1 (y)dy +WFIL

N (0) +WFIL
S (0) +WFIL

P (0) +WFIL
PS (0). (15)

The analytical expressions for the constants do not seem to give any additional insight into
the problem. Solving the equations numerically is straightforward. We have shown that at
most two of the equations can be mutually dependent and all numerical investigations point
toward them being independent. Furthermore we argue that as long as the requirements
for stability of the system are fulfilled, a unique solution to the equation array must exist
and thus the equations must indeed be independent.

3.2 Waiting-time distribution

We now turn to the waiting-time distribution and use the same definition of this as in
Section 2; W (x) = P(W ≤ x), where W is the waiting time an arbitrary customer expe-
riences. Observe that arriving customers are directly taken into service in case the queue
is empty and the primary server is available. Using PASTA, it is easy to obtain the atom
in zero of the waiting time:

P(W = 0) = WFIL
N (0) +WFIL

S (0).

In case the waiting time is non-zero, the waiting time corresponds to the FIL-process at
epochs right before downward jumps. Here, we again consider an infinitesimal interval
(t, t+ h) and apply similar arguments as in Section 2. In particular, for x ≥ K, we have

P(Wt > x;Ns(t, t+ h) = 1) = (μp + μs)h

∫ ∞

x
wFIL
1 (y)dy + o(h).

For 0 < x < K, we have

P(Wt > x;Ns(t, t+ h) = 1) = μph

∫ K−h

x
wFIL
0 (y)dy + μph

∫ K

x
wFIL
1 (y)dy

+

∫ K

K−h
wFIL
0 (y)dy + (μp + μs)h

∫ ∞

K
wFIL
1 (y)dy + o(h).

Note that
∫K
K−hw

FIL
0 (y)dy/h → wFIL

0 (K−), as h → 0. Also, observe that P(Ns(t, t+ h) =
1)/h (for h → 0) is the rate at which customers are taken into service and, since every
customer leaves the queue through the server and the system is stable, equals λ. Combining
the above and using a similar conditioning as in Section 2, we obtain

P(W > x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
λ

[
μp

∫K
x (wFIL

0 (y) +wFIL
1 (y))dy

+wFIL
0 (K−) + (μp + μs)

∫∞
K wFIL

1 (y)dy
]
, for 0 ≤ x < K,

μp+μs

λ

∫∞
x wFIL

1 (y)dy, for x ≥ K.

(16)

From this, we obtain the density of the steady-state waiting time and the atom at K:

Corollary 3.1 For the steady-state waiting time, we have two atoms

P(W = 0) = WFIL
N (0) +WFIL

S (0),

P(W = K) =
wFIL
0 (K−)

λ
,

11



QUES9225_source.tex; 31/03/2011; 16:26 p. 12

and density

w(x) =

⎧⎨
⎩

μp

λ c1e
(λ−μp)x, for 0 < x < K,

μp+μs

λ c2e
(λ−μp−μs)x, for x > K.

Remark 3.1 Note that the form of the steady-state waiting time density (and distribu-
tion) is closely related to the density in Example 2.1, i.e., the single-server model with two
service speeds determined by a threshold on the FIL-process. In particular, the parame-
ters ri, i = 1, 2, and μ should be taken such that r1μ = μp and r2μ = μp+μs (for instance,
let μ = μp, r1 = 1, and r2 = 1 + μs/μp). The main difference between the waiting-time
distributions concerns the atom at K. 	

4 Numerical results

To illustrate the difference in behavior of the waiting-time distribution for the one server
system of Example 2.1 and the two-server system treated in Section 3, a few numerical
results are shown in Figure 3. The parameters have been chosen such that the two cases
are comparable.
The waiting-time distributions in Figure 4 are found from Corollary 3.1 and the corre-
sponding eight constants, found with Maple, are given in Table 1. It is seen how the
relation between λ and μp governs the shape of the distribution for x < K; it is convex
for λ < μp, concave for λ > μp and a straight line for λ = μp. Notable are also the atoms
at K which are absent in the two-speed single server case of Figure 4.
The somewhat better performance of the two-server model can be explained by the sec-
ondary server finishing an already started service when Wt drops below K, whereas the
single server system of Example 2.1 will change the service speed to r1 immediately.

Table 1: Numerical results for common parameters λ = 2, μs = 3.

(μp = 1, K = 1.5) (μp = 2, K = 1.0) (μp = 4, K = 0.5)

WN 0.0470 0.2298 0.5318
WP 0.0860 0.2181 0.2559
WS 0.0027 0.0078 0.0133
WPS 0.0135 0.0195 0.0166
c1 0.1990 0.4751 0.5451
c2 6.3453 2.9956 0.6123
c3 -0.6401·10−4 -0.2673·10−3 -0.4749·10−3

c4 0.01626 0.0276 0.0304

In Figure 4 we compared the performance of the service mechism based on waiting times to
the control based on queue lengths, since the latter is common in the queueing literature.
For the model with queue-length based control, the secondary server is only allowed to
take customers into service when more than 30 and 3 customers, in Figures 4 and 4,
respectively, are waiting in the queue. These parameters have been chosen such that the
resulting average waiting times are nearly identical for the two policies. The waiting-time
distribution for the queue-length based threshold is found by taking the average of 50
simulations of 100.000 calls each. In this way the 95% confidence intervals become too

12
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narrow to display in the figure. It is seen that the waiting-time based threshold results in
less variation of waiting times which is preferable as the objective is to have more control
over the system. This reduction in variability of waiting times is accentuated for larger
threshold value as displayed in Figure 4. The figure illustrates the interesting, but not
surprising, phenomenon of how the probability mass gathers around K for λ > μp, K
large and waiting-time based control.
Given the distribution of the waiting-time and FIL-process, most of the commonly used
performance measures such as TSF are easily found. Other performance measures such
as the utilization of the servers can be found as

ap = 1−WN(0)−WS(0),

as = 1−WN(0)−WP(0) −
∫ K

0
wFIL
0 (y)dy,

where ap and as are the utilization of the primary and secondary server, respectively.

5 Conclusions and topics for further research

We have studied queueing systems where the provided service depends on the waiting time
of the first customer in line. This type of control is commonly used in call centers and has
mainly been motivated by a frequently used setup referred to as an “inverted V”, see [1].
The main contribution is that we have shown ways to deal with systems where the service
changes depending on the waiting time, which can be inherently difficult to deal with in
particular in the case of fixed thresholds.
The first model of this paper deals with a single server that operates with a service speed
depending on the waiting time of the first customer in line. We derived the waiting-time
distribution of an arbitrary customer entering the system and showed how the model can
be used for the threshold case.
The second model of this paper deals with a two-server setup where a secondary server
supplements a primary server when the waiting time of the first in line exceeds a threshold.
Again the waiting distribution of an arbitrary customer has been derived and numerical
examples have been given. It was illustrated that a waiting-time based threshold is prefer-
able to a queue-length based, when a high degree of control of the waiting times is desired.
Also, The simplicity of the form of the solution for the waiting time given in Corollary 3.1
provides some useful insight.
In the model presented in Section 3, only one primary and one secondary server was
considered. This is easily extended to a more general setup with multiple primary servers
by introducing additional states for WFIL(0) along with the four already used. The extra
boundary states should describe the number of unoccupied servers. Analyzing a setup
with multiple secondary servers would be much more difficult as the joint distribution of
wFIL
i (x) must be extended to include i ∈ {0, 1, ..., n}, where n is the number of secondary

servers.
A related routing setup, often seen in call centers and used as a way to prioritize a group of
customers over another, is the “N” design, see [12]. Also related are [13], [14] and [15]. The
“N” design is basically an extension to the model of Section 3 where the secondary server
also has a queue of its own, from which it receives jobs. Extending the model presented in
this paper to the “N” design, necessitates the use of a 2-dimensional FIL-process in order
to keep track of the waiting time of the first customer in line in both queues.

13
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There is still much to be done in relation to analysis of complex queueing systems such
as those seen in call centers. Even though simulation may remain the dominant way of
modelling these systems, it is indeed worth pursuing analytical approaches to gain insight
not obtainable through simulation such as the result in Corollary 3.1.
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Waiting-time distributions for the single server system in Example 2.1 with two service
speeds determined by different parameter values of r1, r2, and K. Shared parameters:

λ = 2 and μ = 1.
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Figure 3: Numerical comparison of the one and two-server models.
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Waiting-time distribution for large K, (λ = 2, μp = 1, μs = 3, K = 15) compared to a
similar setup with queue-length based threshold of 30.
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Figure 4: Waiting-time thresholds compared to queue-length thresholds.
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