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Abstract: This paper deals with the problem of controlling doubly-fed induction machines
(DFIM). A nonlinear model of the whole controlled system, including the DFIM and the
associated AC/DC rectifier and DC/AC inverter, is developed within the Park coordinates.
A multi-loop nonlinear controller is developed, using the backstepping design technique. The
controller is formally shown to meet its objectives i.e. accurate motor speed-reference tracking,
tight regulation of the DC Link voltage, power factor correction. The theoretical results are
validated by simulation.

Keywords: Doubly-fed induction machines (DFIM); AC/DC rectifier; DC/AC inverter;
Backstepping design technique; Speed regulation; Power factor correction.

1. INTRODUCTION

Nowadays, the Doubly Fed Induction Motor (DFIM)
drives are becoming popular in industry applications due
to its high power handling capability without increasing
the power rating of the converters. It presents good per-
formances stability either in very low speed and in high
speed operation Khojet El Khil et al. [2004].

Despite that several studies focused in the study of wind
energy conversion systems using doubly fed induction
generator (DFIG) (Boukhezzar and Siguerdidjane [2009],
Abo-Khalil [2012], Poitiers et al. [2009], Song et al. [2012]),
many others propose the use of DFIM in motor application
(Metwally et al. [2002], Salloum et al. [2007], Bonnet
et al. [2007], Peresadaa et al. [2004], Vidal et al. [2008],
Xiying and Jian [2010]), as an interesting alternative,
for high power applications such as railway traction, ma-
rine propulsion, metallurgy, rolling mills or hydro-electric
stations and in very low speed applications like coiler-
uncoiler.

The DFIM drive is a wound rotor AC induction motor
can be controlled from the stator or rotor by various
possible combinations. Several papers presented various
control strategies of DFIM. In Hopfensperger et al. [2000],
author’s studies a field oriented control without position
sensor of DFIM in motor application with one converter
in the rotor side where the stator side is connected to the
network.

A field oriented control with and without speed sensor
of DFIM with tow inverters configuration is presented in
(Metwally et al. [2002], Khojet El Khil et al. [2004]). In
Gritli et al. [2011] autor’s present an original study on

fault tolerant control of the DFIM under time-varying
conditions. Other control strategies were presented such
us direct torque control Bonnet et al. [2007], sliding
mode control Vidal et al. [2008], output feedback control
Peresadaa et al. [2004] and loop-shaping H∞ control
Salloum et al. [2007].

This paper presents a theoretical framework for a global
control strategy of the doubly fed induction motor and
related power equipments. The DFIM stator windings are
directly connected to the line grid, while windings of the
wound rotor are controlled by means of a bi-directional
power converter. The proposed adaptive backstepping
technique control involves a multi-loop nonlinear adaptive
controller designed to meet the tow main control objectives
i.e. tight speed regulation for a wide range speed-reference
variation despite the load torque uncertainly and power
factor correction (PFC) for overall DFIM converters. Tools
from the averaging theory are resorted to formally describe
the control performances.

The paper is organized as follows: in Section 2, the whole
association including the AC/DC/AC power conversion
and doubly fed induction motor is modeled; the multi-
objective controller is designed and analyzed in Section 3;
the control performances are illustrated through numerical
simulations in Section 4.

2. MODELLING ‘AC/DC/AC CONVERTER-DOUBLY
FED INDUCTION MOTOR’ ASSOCIATION

The controlled system is illustrated by Fig. 1. It includes
a combination ‘doubly fed induction motor-inverter ’, on
one hand, and a tri-phase AC/DC rectifier, on the other
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hand. The rectifier is a AC/DC converter operating, like
the DC/AC inverter, according to the known Pulse Wide
Modulation (PWM) principle.
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Fig. 1. The AC/DC/AC converter-doubly fed induction
motor association

2.1 Doubly fed induction motor model

Using the flux φsd, φsq and current ird, irq as state
variables and under assumption of linear magnetic circuit,
the equivalent two-phase model of the doubly fed induction
motor, represented in a rotating reference frame (d, q)
linked to the stator voltage is:

ω̇m = p
Msr

JLs
(φsqird − φsdirq)−

TL
J
− F

J
ωm (1)

φ̇sd = − 1

τs
φsd + ωsφsq +

Msr

τs
ird + Vs (2)

φ̇sq = − 1

τs
φsq − ωsφsd +

Msr

τs
irq (3)

i̇rd = −γ1ird + (ωs − pωm)irq +
γ2
τs
φsd

− pωmγ2φsq − γ2Vs + γ3vrd (4)

i̇rq = −γ1irq − (ωs − pωm)ird +
γ2
τs
φsq

+ pωmγ2φsd + γ3vrq (5)

where ird, irq, φsd, φsq, ωm and ωs are the components
of rotor currents, stator fluxes, angular speed and Park
transformation speed, respectively. Wherever they come
in, the subscripts s and r refer to the stator and rotor,
respectively. That is, Rs and Rr are the stator and
rotor resistances; Ls and Lr are the self-inductances; Msr

denotes the mutual inductance between the stator and
rotor windings; p designates the number of pole-pair, J
is the inertia of the motor-load set, F is the friction
coefficient and TL is the load torque.

The remaining parameters are defined as follows:

γ1 =
RrL

2
s +RsM

2
sr

σLrL2
s

, σ = 1− M2
sr

LsLr
, τs =

Ls
Rs

,

γ2 =
Msr

σLsLr
, γ3 =

1

σLr

when the stator voltage is linked to the d-axis of the
frame we have vsd = Vs and vsq = 0, the stator and
networks currents will be related directly to the active and
reactive power. An adapted control of these currents will
thus permit to control the power exchanged between the
motor and the grid.

2.2 Modeling of the combination DFIM DC/AC inverter

The inverter is featured by the fact that the rotor d- and q-
voltage can be controlled independently. To this end, these
voltages are expressed in function of the corresponding
control action see e.g. Michael et al. [1998]:

vrd = vdcu1 vrq = vdcu2 iin = u1ird + u2irq (6)

where u1, u2 represent the average d- and q-axis (Park’s
transformation) of the triphase duty ratio system (s1,s2,s3),
iin designates the input current inverter and vdc denotes
the voltage in capacitor C.

With si =

{
1 if Si On and S

′

i Off

0 if Si Off and S
′

i On
i = 1, 2, 3 (7)

Now, let us introduce the state variables ωm = x1, φsd =
x2, φsq = x3, ird = x4, irq = x5, vdc = x6, vrd = u1x6,
vrq = u2x6. where (•) denote the average value on the
modulation (MLI) period of (•) . Then, substituting (6)
in (1-5) yields the following state space representation of
the association ‘DFIM-inverter’:

ẋ1 = −F
J
x1 + p

Msr

JLs
(x3x4 − x2x5)− TL

J
(8)

ẋ2 = − 1

τs
x2 + ωsx3 +

Msr

τs
x4 + Vs (9)

ẋ3 = − 1

τs
x3 − ωsx2 +

Msr

τs
x5 (10)

ẋ4 = −γ1x4 + (ωs − px1)x5 +
γ2
τs
x2

− pγ2x1x3 − γ2Vs + γ3x6u1 (11)

ẋ5 = −γ1x5 − (ωs − px1)x4 +
γ2
τs
x3

+ pγ2x1x2 + γ3x6u2 (12)

2.3 AC/DC rectifier modeling

The rectifier circuit (AC/DC) is presented in Fig. 2. The
power supply net is connected to a converter which consists
of a three phase converter has 6 semiconductors insulated
gate bipolar transistors (IGBTs) with anti-parallel diodes
for bidirectional current flow mode displayed in three
legs 1, 2 and 3. The 6 semiconductors are considered as
ideal switches. Only one switch on the same leg can be
conducting at the same time.

Applying Kirchhoff’s laws, this subsystem is described by
the following set of differential equations:

Lo
d[ire]123

dt
= [vs]123 − vdc[k]123 (13)

dvdc
dt

=
1

C
(iot − iin) (14)

iin = [k]T123[ire]123 (15)

where [ire]123 = [ ire1 ire2 ire3 ]
T

is the input currents in

the electric grid (rectifier side), [vs]123 = [ vs1 vs2 vs3 ]
T

is
the sinusoidal triphase net voltages (with known constant
frequency ωs), iot is the output current rectifier and ki is
the switch position function taking values in the discrete
set {0,1}. Specifically:

ki =

{
1 if Ki On and K

′

i Off

0 if Ki Off and K
′

i On
i = 1, 2, 3 (16)
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Fig. 2. The AC/DC converter power circuit with a tri-
phase input

To simplify the triphase representation (13 -14) for the
synthesis of control laws, the Park transformation, where
the d-axis of the frame is linked to the stator voltage, is
invoked again.

dired
dt

= ωsireq +
Vs
Lo
− vdcu3

Lo
(17)

direq
dt

= −ωsired −
vdcu4
Lo

(18)

dvdc
dt

=
1

C
(iot − iin) (19)

where (ired, ireq) denotes the rectifier side network current
in dq-coordinates and u3, u4 represent the average d- and
q- axis components of the triphase duty ratio system (k1,
k2, k3).

Let us introduce the state variables x7 = ired, x8 = ireq,
and replacing iot by iot = u3x7 + u4x8. The considered
rectifier control design will be based upon the following
equations:

ẋ6 =
1

C
(u3x7 + u4x8 − iin) (20)

ẋ7 = ωsx8 +
Vs
Lo
− x6u3

Lo
(21)

ẋ8 = −ωsx7 −
x6u4
Lo

(22)

The state space equations obtained up to now are put
together to get a state-space model of the whole system
including the AC/DC/AC converters combined with the
doubly-fed induction motor (DFIM). For convenience, the
whole model is rewritten here for future reference:

ẋ1 = −F
J
x1 + p

Msr

JLs
(x3x4 − x2x5)− TL

J
(23)

ẋ2 = − 1

τs
x2 + ωsx3 +

Msr

τs
x4 + Vs (24)

ẋ3 = − 1

τs
x3 − ωsx2 +

Msr

τs
x5 (25)

ẋ4 = −γ1x4 + (ωs − px1)x5 +
γ2
τs
x2 − pγ2x1x3

− γ2Vs + γ3x6u1 (26)

ẋ5 = −γ1x5 − (ωs − px1)x4 +
γ2
τs
x3 + pγ2x1x2 + γ3x6u2

(27)

ẋ6 =
1

C
(x7u3 + x8u4 − iin) (28)

ẋ7 = ωsx8 +
Vs
Lo
− x6u3

Lo
(29)

ẋ8 = −ωsx7 −
x6u4
Lo

(30)

3. CONTROLLER DESIGN

3.1 Control objectives

There are two operational control objectives:

(i) Speed regulation: the machine speed ωm must
track, as closely as possible, a given reference signal
x∗1, despite the load torque TL uncertainty.

(ii) PFC requirement: the whole system input current
(ig1, ig2, ig3) must be sinusoidal with the same
frequency as the supplied power grid, the reactive
power absorbed by DFIM well be all time null.

As there are four control inputs at hand, namely u1, u2,
u3 and u4, two more control objectives are added:

(iii) Controlling the continuous voltage vdc making it
track a given reference signal x∗6 = v∗dc. This generally
is set to a constant value equal to the nominal voltage
entering the converter and machine.

(iv) Regulating the stator flux norm Φs =
√
x22 + x23

to a reference value Φ∗s, preferably equal to its nomi-
nal value.

3.2 Motor speed and stator flux norm regulation

The problem of controlling the rotor speed and stator flux
norm is presently addressed for the doubly fed induction
motor described by (23-27). The speed reference x∗1 = ω∗m
is any bounded and derivable function of time and its two
first derivatives are available and bounded. These proper-
ties can always be achieved filtering the reference through
second-order linear filters. The stator flux reference Φ∗s
is fixed to its nominal value. The controller design will
now be performed in two steps using the tuning-functions
adaptive backstepping technique Krstic et al. [1995].

First, introduce the tracking errors:

z1 = x∗1 − x1 (31)

z2 = Φ∗s
2 − (x2

2 + x3
2) (32)

Step 1. It follows from (23) and (24-25) that the errors
z1 and z2 undergo the differential equations:
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ż1 = ẋ∗1 +
F

J
x1 − p

Msr

JLs
(x3x4 − x2x5) +

TL
J

(33)

ż2 = 2Φ∗sΦ̇
∗
s − 2(ẋ2x2 + ẋ3x3)− 2x2Vs

= 2Φ∗sΦ̇
∗
s +

2

τs
(x2

2 + x3
2)− 2Msr

τs
(x2x4 + x3x5) (34)

In (33) and (34), the quantities pMsr

JLs
(x3x4 − x2x5) and

2Msr

τs
(x2x4 + x3x5) stand up as virtual control signals. If

these were the actual control signals, the error system (33)-
(34) could be globally asymptotically stabilized letting
pMsr

JLs
(x3x4 − x2x5) = µ1 and 2Msr

τs
(x2x4 + x3x5) = ν1

with:

µ1
def
= c1z1 + ẋ∗1 +

F

J
x1 +

TL
J

(35)

ν1
def
= c2z2 + 2Φ∗sΦ̇

∗
s +

2

τs
(x22 + x23)− 2x2Vs (36)

On the other hand, the load torque TL is unknown suggests
the certainty equivalence from of equations (35).

µ1
def
= c1z1 + ẋ∗1 +

F

J
x1 +

T̂L
J

(37)

where c1 and c2 are any positive design parameters and
T̂L is the estimate of TL.

As the quantities pMsr

JLs
(x3x4−x2x5) = µ1 and 2Msr

τs
(x2x4+

x3x5) = ν1 are not the actual control signals, they cannot
be let equal to µ1 and ν1, respectively. Nevertheless, we
retain the expressions of µ1 and ν1 as first stabilizing
functions and introduce the new errors:

z3 = µ1 − p
Msr

JLs
(x3x4 − x2x5) (38)

z4 = ν1 −
2Msr

τs
(x2x4 + x3x5) (39)

Then, using the notations (37) to (39), the dynamics of
the errors z1 and z2, initially described by (33) - (34), can
be rewritten as follows:

ż1 = −c1z1 + z3 +
T̃L
J

(40)

ż2 = −c2z2 + z4 (41)

where

T̃L = TL − T̂L (42)

Step 2. The second design step consists in choosing the
actual control signals, u1 and u2, so that all errors (z1, z2,
z3, z4) converge to zero. To this end, we should make how
these errors depend on the actual control signals (u1, u2).
We start focusing on z3; it follows from (38) that:

ż3 = µ̇1 − p
Msr

JLs
(ẋ3x4 + x3ẋ4 − ẋ2x5 − x2ẋ5) (43)

Assume that the load torque TL is constant or slowly time-
varying and using (23- 27), (42) and (37), one gets from
(43):

ż3 = µ2 + (c1 −
F

J
)
T̃L
J
−

˙̃TL
J
− pMsr

JLs
γ3x6(x3u1 − x2u2)

(44)

with

µ2 = −c21z1 + c1z3 + ẍ∗1 −
(
F

J

)2

x1

+ p
Msr

JLs

(
F

J
+ γ1 +

1

τs

)
(x3x4 − x2x5)− F

J

T̂L
J

+ p
Msr

JLs

[
px1(x3x5 + x2x4)pγ2x1Φ2

s + (γ2x3 + x5)Vs
]

(45)

Similarly, it follows from (39) that, z4 undergoes the
following differential equation:

ż4 = ν̇1 −
2Msr

τs
(ẋ2x4 + x2ẋ4 + ẋ3x5 + x3ẋ5) (46)

Using (23-27) and (36), it follows from (46):

ż4 = ν2 −
2Msr

τs
γ3x6(x2u1 + x3u2) (47)

with

ν2 = c2(−c2z2 + z4) + 2(Φ̇∗s)
2 + 2Φ∗sΦ̈

∗
s

+ 2
Msr

τs
(

3

τs
+ γ1)(x2x4 + x3x5) +

4

τs
(− 1

τs
Φ2
s + Vsx2)

− 2Vs(−
1

τs
x2 + ωsx3 +

Msr

τs
x4 + Vs)− 2(

Msr

τs
)2(x24 + x25)

− 2
Msr

τs

(
γ2
τs

Φ2
s + px1(x3x4 − x2x5) + x4Vs − γ2x2Vs

)
(48)

To analyze the error system, composed of equations (40-
41), (44) and (47), let us consider the following augmented
Lyapunov function candidate:

V =
1

2
z21 +

1

2
z22 +

1

2
z23 +

1

2
z24 +

1

2

T̃ 2
L

J
(49)

Its time-derivative along the trajectory of the state vector
(z1,z2,z3,z4) is:

V̇ = ż1z1 + ż2z2 + ż3z3 + ż4z4 +
˙̃TLT̃L
J

(50)

Using (40-41), (44) and (47), equation (50) implies:

V̇ = z1(−c1z1 + z3 +
T̃L
J

) + z2(−c2z2 + z4)

+ z3(µ2 + (c1 −
F

J
)
T̃L
J
−

˙̃TL
J
− pMsr

JLs
γ3x6(x3u1 − x2u2))

+ z4(ν2 −
2Msr

τs
γ3x6(x2u1 + x3u2)) +

˙̃TLT̃L
J

(51)

adding c3z
2
3 − c3z23 + c4z

2
4 − c4z24 to the right side of (51)

and rearranging terms, yields:

V̇ = −c1z21 − c2z22 − c3z23 − c4z24

+ z3

[
µ2 + c3z3 + z1 −

˙̃TL
J
− pMsr

JLs
γ3x6(x3u1 − x2u2)

]

+ z4

[
ν2 + c4z4 + z2 −

2Msr

τs
γ3x6(x2u1 + x3u2)

]
+
T̃L
J

[
(c1 −

F

J
)z3 + z1 + ˙̃TL

]
(52)
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suggest the following parameter adaptation law:

˙̃TL = −(c1 −
F

J
)z3 − z1 (53)

from (42) and (53), the expression of T̂L can be calculated
with the following equation:

˙̂
TL = (c1 −

F

J
)z3 + z1 (54)

Substituting the parameter adaptation law (53) to ˙̃TL in
the right side of (52) yields:

V̇ = −c1z21 − c2z22 − c3z23 − c4z24

+ z3

[
µ2 + (c3 +

1

J
(c1 −

F

J
))z3 + (1 +

1

J
)z1

]
− z3

[
p
Msr

JLs
γ3x6(x3u1 − x2u2)

]
+ z4

[
ν2 + c4z4 + z2 −

2Msr

τs
γ3x6(x2u1 + x3u2)

]
(55)

where c3 and c4 are new positive real design parameters.
Equation (55) suggests that the control signals u1, u2 must
be chosen so that the two quantities between curly brackets
(on the right side of (55) are set to zero. Letting these
quantities equal to zero and solving the resulting second-
order linear equation system with respect to (u1, u2), gives
the following control law:[

u1
u2

]
= Λ−1

[
µ2 + (c3 + 1

J (c1 − F
J ))z3 + (1 + 1

J )z1
ν2 + z2 + c4z4

]
(56)

with:

Λ =

[
λ0 λ1
λ2 λ3

]
; λ0 = p

Msr

JLs
γ3x6x3,

λ1 = −pMsr

JLs
γ3x6x2

λ2 =
2Msr

τs
γ3x6x2, λ3 =

2Msr

τs
γ3x6x3

(57)

It worth’s noting that the matrix Λ is nonsingular. Indeed,
it is easily checked that its determinant is D = λ0λ3 −
λ2λ4 = 2p

M2
sr

JLsτs
γ23x

2
6(x22 +x23) and Φs =

√
(x22 + x23) never

vanish in practice because of the machine nonzero remnant
flux.

Substituting the control law (56) to (u1, u2) on the right
side of (55) yields:

V̇ = −c1z21 − c2z22 − c3z23 − c4z24 (58)

As the right side of (58) is a negative definite function
of the state vector (z1, z2, z3, z4), the closed-loop system
is globally asymptotically stable Khalil [2003]. The result
thus established is more precisely formulated in the follow-
ing proposition:

Proposition 1. (Speed regulation). Consider the closed-
loop system composed of the doubly fed induction motor-
DC/AC inverter, described by model (23-27), the non-
linear controller defined by the control law (56) and the
parameter update law (54). Then, one has the following
properties:

1) The closed-loop error system undergoes, in the (z1,
z2, z3, z4) coordinates, the following equations:

ż1 = −c1z1 + z3 +
T̃L
J

(59)

ż2 = −c2z2 + z4 (60)

ż3 = −c3z3 − z1 + (c1 −
F

J
)
T̃L
J

(61)

ż4 = −c4z4 − z2 (62)

2) The above linear system is globally asymptotically
stable with respect to the Lyapunov function V =
1
2z

2
1 + 1

2z
2
2 + 1

2z
2
3 + 1

2z
2
4 + 1

2
T̃ 2
L

J . Consequently, the errors
(z1, z2, z3, z4) vanish exponentially fast, whatever the
initial conditions.

Proof. Equations (59-60) are immediately obtained from
(40-41). Equation (61) is obtained substituting the control
law (56) and the parameter update law (54) to (u1,u2) on
the right side of (44). Equation (62) is obtained substitut-
ing the control law (56) to (u1,u2) on the right side of (47).
This proves Part 1. On the other hand, it is readily seen

from (49) and (53) that V = 1
2z

2
1 + 1

2z
2
2 + 1

2z
2
3 + 1

2z
2
4 + 1

2
T̃ 2
L

J

is a Lyapunov function of the error system (59-62). As V̇ is
a negative definite function of the state vector (z1, z2, z3,
z4), the error system is globally asymptotically stable. But
asymptotic stability implies exponential stability due to
system linearity Khalil [2003]. Proposition 1 is established.

Remark 1. . Note that the exponential nature of stability
guarantees stability robustness with respect to modelling
and measurements errors Khalil [2003].

3.3 Power factor correction and DC voltage controller

Controlling rectifier input current to meet PFC: The
PFC objective means that the input current overall system
should be sinusoidal and in phase with the AC supply
voltage.

Therefore, one seeks a regulator that enforces the current
igq = isq + ireq to tack a reference signal equal to zero to
impose a ig in phase with the voltage supply vs.

As the reference signal i
∗
gq is null, it follows that the

tracking error z5 = i
∗
gq − igq undergoes the equation:

z5 = −isq − x8 (63)

as x3 = Lsisq +Msrx5, equation (63) becomes :

z5 = −x3
Ls

+
Msr

Ls
x5 − x8 (64)

In view of (25), (27) and (30), the above error undergoes
the following equation:

ż5 = − ẋ3
Ls

+
Msr

Ls
ẋ5 − ẋ8

= − 1

Ls
(− 1

τs
x3 − ωsx2 + (

Msr

τs
+Msrγ1)x5)

+ ωsx7 +
x6u4
Lo

+
Msr

Ls
(−(ωs − px1)x4 +

γ2
τs
x3 + pγ2x1x2 + γ3x6u2)

(65)

To get a stabilizing control law for this first-order system,
consider the quadratic Lyapunov function V5 = 0.5z25 .

It can be easily checked that the time-derivative V̇5 is a
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negative definite function of z5 if the control input u4x6 is
chosen as follows:

u4x6 = −c5Loz5 − Loωsx7 + h1(x) (66)

with c5 > 0 is a design parameter and

h1(x) =
Lo
Ls

(
− 1

τs
x3 − ωsx2 + (

Msr

τs
+Msrγ1)x5

)
+
LoMsr

Ls
((ωs − px1)x4 −

γ2
τs
x3 − pγ2x1x2 − γ3x6u2)

(67)

DC link voltage regulation: The aim is now to design a
control law u3 so that the rectifier output voltage x6 = vdc
is steered to a given reference value x∗6 = v∗dc. As mentioned
above, v∗dc is generally (not mandatory) set to the nominal
value of the rotor voltage amplitude.

Therefore, one seeks a regulator that enforces the current
x7 to tack a reference signal x∗7. Introduce the current
tracking error z7:

z7 = x∗7 − x7 (68)

the z7 -dynamics undergoes the following equation:

ż7 = ẋ∗7 − ωsx8 −
Vs
Lo

+
x6u3
Lo

(69)

To get a stabilizing control signal for this first-order sys-
tem, consider the following quadratic Lyapunov function:

V7 =
1

2
z27 (70)

It is easily checked that the time-derivative V̇7 can be made
negative definite in the state z7 by letting the quantity
x6u3 as follows:

x6u3 = −c7Lox∗7 + c7Lox7 − Loẋ∗7 + Loωsx8 + Vs (71)

with c7 > 0 is a design parameter.

Multiply both sides of the equation (28) by 2x6 and
replace the quantities x6u3 and x6u4 by their equivalents,
described by the equations (71) and (66) respectively, in
the equation (28). The squared voltage (y = x26) varies, in
response to the tuning x∗7, according to the equation:

ẏ =
2

C
(x7x6u3 + x8x6u4 − x6iin)

= − 2

C
(c7Lox7x

∗
7 + Lox7ẋ

∗
7 + c5Lox8z5) + h2(x) (72)

where

h2(x) =
2

C
(c7Lox

2
7 + Vsx7 + x8h1(x)− x6iin) (73)

As previously mentioned, the reference signal y∗ = v∗dc
2

(of the squared DC-link voltage x6 = vdc) is chosen to
be constant (i.e. ẏ∗ = 0), it is given the nominal value of
rotor voltage amplitude. Then, it follows from (72) that
the tracking error z6 = y∗ − y undergoes the following
equation:

ż6 = ẏ∗ +
2

C
(c7Lox7x

∗
7 + Lox7ẋ

∗
7 + c5Lox8z5)− h2(x)

(74)

To get a stabilizing control law for the system (74),
consider the following quadratic Lyapunov function:

V6 =
1

2
z26 (75)
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Fig. 3. Control system including AC/DC/AC converters
and a doubly- fed induction motor

Deriving V6 along the trajectory of (74) yields:

V̇6 = ż6z6 (76)

This suggests for x∗7 the following control law:

ẋ∗7 = −c7x∗7 − c5z5
x8
x7

+
C

2Lox7
(−c6z6 − ẏ∗ + h2(x))

(77)

with c6 > 0 a design parameter. Indeed, substituting x∗7
to (76) gives V̇6 = −c6z26 which clearly is negative definite
in z6.

Proposition 2. Consider the control system consisting of
the subsystem (28-30) and the control laws (66), (71) and
(77). The resulting closed-loop system undergoes, in the
(z5, z6, z7, x∗7)-coordinates, the following equation:

Ż = AZ + g(x) (78)

with

Z =

 z5z6z7
x∗7

 , A =


−c5 0 0 0

0 −c6 0 0
0 0 −c7 0

−c5 x8

x7
− c6C

2Lox7
0 −c7



g(x) =


0
0
0

C
2Lox7

(h2(x)− ẏ∗)

 (79)

Equation (78) defines a stable system and the vector
(z5, z6, z7,x∗7) converges exponentially fast to (0, 0,
0, C

2c7Lox7
h2(x)), whatever the initial conditions.

Proof. Equation (78) is obtained substituting the control
law (66), (71) and (77) to x6u3, x6u4 and x∗7 on the right
side of (65), and (76). It is clear that the matrix A is
Hurwitz, this implying that the closed loop system (78) is
globally exponentially stable. This completes the proof of
Proposition 2.

4. SIMULATION RESULTS

The experimental setup is described by Fig. 3 and the
nonlinear adaptive controller, developed in Section 3, in-
cluding the control laws (54, 66, 71, 77) and the parameter
adaptive law (53), will now be evaluated by simulation.
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Characteristic Symbol Value Unity

Nominal power PN 1.5 Kw

Nominal stator voltage Usn 380 V

Nominal stator current Isn 4.3 A

Nominal flux Φsn 0.56 wb

Stator resistance Rs 1.75 Ω

Stator inductance Ls 0.295 H

Nominal rotor voltage Urn 225 V

Nominal rotor current Irn 4.5 A

Rotor resistance Rr 1.68 Ω

Leakeage inductance Msr 0.195 H

Rotor inductance Lr 0.165 H

Inertia moment J 0.35 Kg.m2

Friction coefficient F 0.026 N.m.s.rd−1

Number of pole pairs p 2

Table 1. Numerical values of considered doubly
fed induction motor characteristics

The simulated system is given the following characteristics:
. Supply network: is triphase 220V/50Hz
. AC/DC/AC converters: Lo = 15mH; C = 1.5mF ;
modulation frequency 10KHz.
. Doubly fed induction machine: it is a 1.5KW motor
whose characteristics are summarized in Table 1.
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The simulation protocol is described by Figs. 4 and 5
which show that the reference signals and load torque,

are profiled so that the machine is enforced to operate,
successively, both at high and low speeds. Specifically, the
machine operates in high speed (ω∗m = 150rd/s) over the
interval [0, 6s] and at low speed (ω∗m = 10rd/s) over [6, 8s].

The DC-link voltage reference is set to the constant value
v∗dc = 220V . The reference value Φ∗s for the stator flux
norm is set to its nominal value (0.7wb).

The indicated values of design parameters (c1, c2, c3,
c4, c5, c6,c7) have been selected using a try-and-error
search method and proved to be suitable. The experi-
mental setup is simulated within the Matlab/Simulink
environment with a calculation step of 5µs. This value is
motivated by the fact that the inverter frequency commu-
tation is 10kHz. In the light of the closed-loop responses
(see Figs 5 - 9), it is seen that the multiloop nonlinear
adaptive controller meets all its objectives and enjoy quite
satisfactory transient performances.
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5. CONCLUSIONS

In this paper, the problem of controlling associations in-
cluding AC/DC rectifier, DC/AC inverter and doubly fed
induction motor has been addressed. The system dynamics
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Fig. 9. Unitary power factor checking in presence of a
varying speed reference and load torque

have been described by the averaged eighth order nonlinear
state-space model (23-30). Based on such a model, an
adaptive nonlinear controller defined by (54, 66, 71, 77,
53), has been introduced for DFIM-AC/DC/AC converters
association drives. The proposed controller is designed
based on adaptive backstepping control approach and is
capable of making the system states trajectories follow the
speed reference signal with unity power factor condition
inspite of external load torque disturbance. The proposed
control approach has been tested for the motoring mode.
Furthermore the DC link voltage is maintained constant
also based backstepping control, using a rotating syn-
chronous reference frame with d-axis coincide with the
direction of space voltage vector of the main AC supply.
Computer simulation results obtained, confirm the validity
and effectiveness of the proposed control approach.
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