
HAL Id: hal-00818370
https://hal.science/hal-00818370

Submitted on 29 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection and Location of Moving Point Sources in
Contaminant Transport Models. Uniqueness and

Minimal Observations
Faker Ben Belgacem, Henda El Fekih, Khiari Souad

To cite this version:
Faker Ben Belgacem, Henda El Fekih, Khiari Souad. Detection and Location of Moving Point Sources
in Contaminant Transport Models. Uniqueness and Minimal Observations. 2013. �hal-00818370�

https://hal.science/hal-00818370
https://hal.archives-ouvertes.fr


Detection and Location of Moving

Point Sources in Contaminant Transport Models.

Uniqueness and Minimal Observations

F. Ben Belgacem∗ H. El Fekih † S. Khiari ‡

April 26, 2013

Abstract

We are interested in an inverse problem of recovering the position of a pollutant or con-
taminant source in a stream water. Advection, dispersive transport and the reaction of the
solute is commonly modeled by a linear or non-linear parabolic equation. In former works, it is
established that a point-wise source is fully identifiable from measurements recorded by a couple
of sensors placed, one up-stream and the other down-stream of the pollution source. The ob-
servability question we try to solve here is related to the redundancy of sensors when additional
information is available on the point-wise source. It may occur, in hydrological engineering,
that the intensity of the pollutant is known in advance. In this case, we pursue an identifi-
ability result of a moving source location using a single observation. The chief mathematical
tools to prove identifiability are the unique continuation theorem together with an appropriate
maximum principle for the parabolic equation under investigation.

keywords: Reaction-dispersion equation, point-wise sources, maximum principle, unique continuation

theorem, identifiability.

1 Introduction

Mathematical models are increasingly used in monitoring rivers and channels and for predicting

the effects on the environmental media of contaminant transport. Advective-dispersive-reactive

equations are popular in theoretical and numerical ecological engineering. Many of computing

programs, developed for water quality analysis to assess the impact of the pollutants on stream

waters, are based on one dimensional modeling. We refer to QUAL2E (the last release is QUAL2K)

the most known of the water quality softwares, developed in the US Environmental Protection
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Agency (see [5]). The contaminant concentration c(·, ·) is governed by the following transport

equation

∂tc− (Dc′ + V c)′ +Rc = f(t)δx−s(t), in I × (0, T ). (1)

I is the interval [0, L], x ∈ I is the curvilinear abscissa, t ∈ [0, T ] the time and the symbol ′

denotes the space derivative ∂x. The physical parameters D,V and R are the dispersion, advection

and the reaction coefficients. The right hand side describes, most often, the load of an accidental

contaminant or polluting spill, where f(·) is the intensity of the source and s(·) is its time-dependent

position. The symbol δx−s stands for the Dirac distribution with mass unity and supported at the

point s. Only for seek of simplicity, we select the initial condition where there is no contamination

nor pollution at the time origin. At the extremities of the channel, we will consider the most

standard boundary conditions. Let us fix them for a while to Robin conditions. We have then

c(·, 0) = 0 in I,

−α0Dc
′(0, ·) + c(0, ·) = αLDc

′(L, ·) + c(L, ·) = 0 in (0, T ).

α0, αL are positive real-numbers. There is a large literature handling different aspects of the con-

taminant transport. We refer to [25] for a wide description of the mathematical modeling.

The inverse problem of source detection mostly dealt with in the specialized literature consists

in the determination of F = (f(·), s(·)) from some given observations on c(·, ·). we refer to [6, 7,

14, 8, 12, 11, 16, 24, 13] without being exhaustive. To make diagnostic statements about a possible

contamination, assume two sensors placed at the points ζ, η ∈ [0, L], framing the source which

means that ζ < s(·) < η. The observation operator is then defined by

Bζ,η[F ](·) = (c(ζ, ·), c(η, ·)).

The question now is the following. Consider that the measurement functions (hζ(·), hη(·)) are

known. Are they significant and sufficient to discriminate the source F . This is actually related to

the uniqueness for the inverse problem: find F satisfying

Bζ,η[F ](·) = (hζ(·), hη(·)).

This problem is mathematically ill-posed. No existence of F is ensured and, if so, it suffers from

severe instability with respect to the outputs , that is a small perturbation on the data (hζ(·), hη(·))

produce erratic solutions. The main feature dealt with has to do with the uniqueness, it is the

identifiability. We belief it worthwhile to emphasize on the fact that this identifiability issue arise

harder work and requires then sharper analysis in one than in higher dimension. Mathematical

results has been stated progressively and took several steps. The first identifiability we know of

dates back to [8, 2005], we refer also to [12, 11] for further developments. The proofs made there
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are based on some assumptions that are drastically restrictive. The physical parameters (D,V,R)

should be constant, the source should become inactive at some time anterior to T and at least one

sensor should be placed at a ‘strategic’ point. To make only one comment about these hypothesis,

we say that the last condition on the sensor placement(1) is hard and even impossible to meet in

the practice. Few improvements have been realized before the problem has been fully solved in [2,

2011] in the general context. Parameters are space-varying, no limitation are needed on the source

activity and no stringent hypothesis are made on the location of the sensors.

The purpose, in this contribution, is to focus on the detection of the location s(·) from only one

observations. The question to ask therefore is related to the observability of the system and can

be reformulated as follows

Assume the source intensity f(·) known, can one identify its moving location s(·) by means of a

single observation?

In case of an affirmative answer (it is in fact the case), this allows the economy of placing redundant

sensors and spare useless expenses. Indeed, collecting observations for some contaminant species

generates substantial costs. The issue of detecting the location of point-wise sources may be en-

countered quite often in the real-life. It may occur for instance that an accidentally broken pipe

spills hazardous matter in rivers or channels, with a well-known (positive) debit. Engineers should

therefore cope with finding its location before implementing and activating suitable mechanisms

for reparation.

The paper is organized as follows. In Section 2, we recall some useful regularity results for the

solution of the reaction-diffusion problem. They are required by the application more than once

of the unique continuation theorem. Section 3 is devoted to the inverse problem of detecting the

location of a point-wise source in (1) from a single observation. The central result we state is

the identifiability for a moving source. Then, we briefly discuss the ill-posedness issue. Section 4

is a focus on the same detection problem of the location of point sources in a coupled parabolic

system. This model is obtained after adding the Taylor dispersion term to the well known linear

Streeter-Phelps reacting equations, currently used in the water quality analysis. One of the sources

to identify describes a polluting spill in a river and the other represents an oxygen pump. We also

state a uniqueness result for both sources. Two extensions are proposed in Section 5. We address

the identifiability for multi point sources with a minimum observations. Then, we consider the case

of a semi-linear equation where the reaction kinetics are of the logistic and Michaelis-Menten type.

Notation. For a given p ∈ [1,∞[, the Lebesgue space of functions p-integrable over I is denoted by

1To provide a clue of this difficulty, we may compare it to the problem of placing the sensor at non-rational
location in the interval (0, L).
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Lp(I). The scale of Sobolev spaces Hσ(I), with σ ∈ R, are defined as in [1]. We have in particular

H0(I) = L2(I). For a given T > 0, we use also the anisotropic Sobolev spaces L2(0, T ;Hσ(I))

and Hσ(0, T ;L2(I)) whose definitions are given in [18]. Then, we indicate by C (I) the space of

continuous functions in I and Cm(I) is the space of functions whose derivative to the order m are

continuous. Finally, we need also the Hölder space C 0,1(I) containing the Lipschitzian functions.

We refer to [1] for general Hölder spaces.

2 Regularity

The mathematical complications of the inverse problem we are concerned with are essentially

originated from the dispersion term in the transport equation. The advection has doubtless an

important physical effect. It does not however bring further insuperable difficulties to the study.

Therefore, and as already explained in [2], operating a suitable transform to the equation (1)

restricts the scope to the reaction-dispersion equation instead of the full problem. Regarding these

remarks, the advection velocity of the river can be put to V = 0. The only incidence is the

changing of the boundary conditions to prescribe to the channel extremities. Well then, as we

intend to address all the classical boundary conditions, such an assumption (V = 0) has no real

limitation. The problem under investigation reads thus as follows

∂tc− (Dc′)′ +Rc = f(t)δx−s(t), in QT , (2)

c(·, 0) = 0 in I, (3)

−α0Dc
′(0, ·) + c(0, ·) = αLDc

′(L, ·) + c(L, ·) = 0 in (0, T ). (4)

The symbol QT is the space-time domain I×]0, T [.

Remark 2.1 In the geometry of the space-time domain plotted in Fig. 1, the trajectory (s(t), t)0≤t≤T

splits QT into two sub-domains Q− and Q+. The reaction-dispersion equation (2) may be then re-

formulated differently. The source can be put to zero outside the trajectory of the source support,

when the equation is restricted to Q− and Q+. Across that trajectory, a transmission condition

holds

[c](s(t), t) = 0, [Dc′](s(t), t) = f(t), ∀t ∈ (0, T ).

The symbol [c] stands for the jump (c+ − c−).

Further regularity of c(·, ·) is necessary to the analysis to undertake. We need to introduce some

assumptions on the physical parameters. We assume that the dispersion coefficient D = D(·) is

differentiable and the reaction parameter R(·) is continuous. Extension to piecewise continuously

differentiable D(·) and piecewise continuous R(·) does not bring arguments other than those related

to the technical mathematics to use. We suppose also that D(·) has both sided bounds that is
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0
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Q - Q +

s(t)

Figure 1: The trajectory of the source divides QT into two disjoint parts denoted by Q
−

and Q+.

D∗ ≤ D(x) ≤ D∗ for all x ∈ I, where D∗ and D∗ are positive constants. The reaction R(·) is

positive and continuous. In addition, we consider that the source intensity f(·) is in L2(0, T ) and

the location function s(·) ∈ C
0,1([0, T ]). The following result holds.

Lemma 2.1 Problem (2)-(4) has a unique solution c(·, ·) in C ([0, T ], L2(I))∩ L2(0, T,H1(I)). We

have also the stability

‖c(t)‖L2(I) + ‖c‖L2(0,T,H1(I)) ≤ γ‖f‖L2(0,T ), ∀t ≥ 0.

γ is a positive real-number.

The solution c(·, ·) enjoys more regularity. Results stated in [18] allows to write that

c ∈ L2(0, T,H(3/2)−(I)) ∩H(3/4)−(0, T, L2(I)). (5)

Additional and useful regularity may be obtained on c(·, ·), away from the source trajectory

(s(t), t)0≤t≤T . The proof of the following lemma may be achieved following the lines of [4, propo-

sition 3.4].

Lemma 2.2 Assume that f ∈ L2(0, T ). The solution c(·, ·) of problem (2)-(4) satisfies the following

regularity

(Dc′)′ ∈ L2
loc(Q−) ∪ L

2
loc(Q+),

Dc′ ∈ C (Q−) ∪ C (Q+).

Remark 2.2 Parabolic regularity yields that the smoothness of c(·, ·), away from the source tra-

jectory, is limited only by the regularity of (D,R). For instance, in case these last parameters are

in C
∞(I), then c(·, ·) ∈ C

∞(Q−) ∪ C
∞(Q+). This is the hypo-ellipticity of the heat operator (see

[10]).
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3 Identifiability

We investigate, first, the uniqueness of the point source location s(·) where the intensity function

is known a-priori. Assume first that the sign of f(·) is constant, let us say f(·) ≥ 0. As we are

interested only in active sources we make the natural hypothesis that f(·) 6≡ 0. Extension to a

broader class of intensity functions will be discussed later on. The aim pursued here is that the

identifiability is ensured by only one observation.

Consider that the position of the sensor is fixed at ζ. Let the observation operator Bζ be defined

as

Bζ [s] := c(ζ, ·) t ∈ (0, T ).

Then, given the observed function hζ(·), we are involved in solving the problem: find s such that

Bζ [s] = hζ(·) t ∈ (0, T ). (6)

Obviously, this problem is non-linear. The question we are addressing is the identifiability. Let

sj(·), j = 1, 2, stand for the locations of two point-wise sources that are both solutions of (6). Do

they coincide? A successful answer needs an supplementary (minor) information about the position

of the sensor with respect to the source location. We shall know whether the sensor is placed up-

stream or down-stream of the point source. From now on, we assume it is located down-stream

that is s(·) ∈]0, ζ[. Then, we have

Theorem 3.1 Let f(·) be in L2(0, T ) with f(·) ≥ 0 and not identically zero. The following iden-

tifiability result holds. If Bζ [s1] = Bζ [s2], then the trajectories of both sources coincide, then

s1(·) = s2(·), in (0, T ).

Once the identifiability result stated, we are left with solving the identification problem (6). As

a by-product there holds the following

Corollary 3.2 Assume that f ∈ L2(0, T ) with f(·) ≥ 0. Let the observation function hζ(·) be

given, The identification problem (6) has at most one solution s(·) < ζ.

To establish the equality of s1(·) and s2(·), we choose to supply the guidance for the identifiability

process in the case of fixed sources that is when s is not time dependent. Necessary modifications

enabling the extension of the result to moving sources are exposed in an independent subsection.
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3.1 Fixed Source

Let us order the sources so that s1 ≤ s2. Recall that they are both < ζ. Then, we consider the

difference function ǫ = (c2 − c1). It is solution of

∂tǫ− (Dǫ′)′ +Rǫ = f(t)(δx−s2 − δx−s1) in QT , (7)

ǫ(·, 0) = 0 in I, (8)

−α0Dǫ
′(0, ·) + ǫ(0, ·) = αLDǫ

′(L, ·) + ǫ(L, ·) = 0 in (0, T ). (9)

We proceed by a contradiction argument. We state that s1 6= s2 results necessarily in f(·) = 0.

Both sources F1 and F2 are thus switched off and no contamination is affecting the channel. This

result can be obtained if we show that ǫ(·, ·) is fully zero in QT . This is gradually established

following the scheme of Fig. 2.

0 s 1 s 2 L

T

ζ

Figure 2: The space-time domain QT and illustration of some notations.

Lemma 3.3 Assume that f(·) ∈ L2(0, T ). Suppose that Bζ [s1] = Bζ [s2], then

ǫ(·, ·) = 0, in [ζ, L]× [0, T ].

Proof: Restricting the problem to (0, T )× (ζ, L) produces the sub-problem

∂tǫ− (Dǫ′)′ +Rǫ = 0 in (ζ, L)× (0, T ),

ǫ(·, 0) = 0 in (0, ζ),

ǫ(ζ, ·) = 0, αLDǫ
′(L, ·) + ǫ(L, ·) = 0 in (0, T ).

This is because the source in equation (7) lies at the left of the sensor position ζ. Dirichlet’s

condition at point ζ comes from the observations (6) satisfied by F1 and F2. The unique solution

of this homogeneous parabolic problem is ǫ(·, ·) = 0. The proof is complete.

The result can be extended to cover the larger strip (0, T )× (s2, L). The following result holds.
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Lemma 3.4 Assume that f ∈ L2(0, T ). Suppose that Bζ [s1] = Bζ [s2], then

ǫ(·, ·) = 0, in (0, T )× (s2, L).

Proof: The support of the source term in (7) does not intersect with (0, T )×]s2, L), we derive

hence

∂tǫ− (Dǫ′)′ +Rǫ = 0 in ]s2, L)× (0, T ),

ǫ(·, 0) = 0 in (s2, L),

αLDǫ
′(L, ·) + ǫ(L, ·) = 0 in (0, T ).

The smoothness on cj(·, ·), j = 1, 2, stated in Lemma 2.2 together with Lemma 3.3 showing that

ǫ(·, ·) vanishes in (ζ, L)×(0, T ) suggest to apply the unique continuation theorem (see [20, Theorem

1.1]). This yields that ǫ(·, ·) = 0 in (s2, L)× (0, T ). The proof is complete.

We are now left with the reaction-dispersion problem (7)-(9) set in the sub-domain (0, s2)×(0, T ),

∂tǫ− (Dǫ′)′ +Rǫ = −f(t)δx−s1 in (0, s2)× (0, T ),

ǫ(·, 0) = 0 in I,

−α0Dǫ
′(0, ·) + ǫ(0, ·) = 0, ǫ(s2, ·) = 0 in (0, T ).

The Dirichlet condition at s2 is ensued from Lemma 3.4. Next, calling for a weak form of the

maximum principle (see [10]) we come up with the following. Given that f(·) ≥ 0, then we have

ǫ(·, ·) ≤ 0 in (0, s2)× (0, T ). (10)

This result contributes to prove the

Lemma 3.5 Assume that f ∈ L2(0, T ) with f(·) ≥ 0. Suppose that Bζ [s1] = Bζ [s2], then

ǫ(·, ·) ≡ 0, in (0, s2)× (0, T ).

Proof: For convenience, let us first set

m(t) =

∫

(0,s2)
ǫ(x, t) dx.

Integrate equation (7) with respect to the space variable x. We obtain

∂tm(t)−

∫

(0,s2)
(Dǫ′)′(x, t) dx+

∫

(0,s2)
Rǫ(x, t) dx = −f(t).

This formula is due to 〈δx−s1 , 1〉 = 1. Then, easy computations yield that

∂tm(t)−Dǫ′(s2, t) +Dǫ′(0, t) +

∫

(0,s2)
Rǫ(x, t) dx = −f(t).
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A straightforward consequence of Lemma 3.4 is that (Dǫ′)+(s2, ·) = 0. Thus, thanks to Remark 2.1,

used with ǫ(·, ·), we deduce that

(Dǫ′)−(s2, t) = f(t), ∀t ∈ (0, T ).

This allows to derive that

∂tm(t) = −Dǫ′(0, t)−

∫

(0,s2)
Rǫ(x, t) dx.

Owing to (10), the integral term in the right hand side is non-positive. Remains to investigate the

sign of Dǫ′(0, t). This is dependent on the boundary condition, enforced there, and then on the

real number α0 ≥ 0. We check each of the possible boundary conditions.

• Neumann condition (α0 = +∞) — We have naturally that Dǫ′(0, t) = 0.

• Robin condition (0 < α0 < +∞) — According to (10), we have in particular that ǫ(0, t) ≤ 0

and since α0Dǫ
′(0, t) = ǫ(0, t), this results in Dǫ′(0, t) ≤ 0.

• Dirichlet condition (α0 = 0) — Given that ǫ(0, t) = 0 and ǫ(·, t) ≤ 0 at the vicinity of x = 0.

Then, ǫ(·, t) decreases to the right of zero. As a result we have necessarily that Dǫ′(0, t) ≤ 0.

Hence, the fact that Dǫ′(0, t) ≤ 0 holds true whatever the boundary condition at the origin is. We

directly deduce that

∂tm(t) ≥ 0, ∀t ∈ (0, T ).

The function m(·) is therefore non-decreasing, is non-positive with m(0) = 0. This implies m(t) =

0 for all t ∈ (0, T ). In view of its non-positivity of ǫ(·, ·) we conclude that ǫ(·, ·) vanishes in

(0, s2)× (0, T ). The proof is complete.

These lemmas are helpful toward the proof of the identifiability theorem of the source location

using a single observation.

Proof of Theorem 3.1 (Part 1): — We start by the case of fixed sources and assume that

s1 6= s2. Using Lemmas 3.3, 3.4 and 3.5, the equality Bζ [s1] = Bζ [s2] yields that c1(·, ·) = c2(·, ·)

in QT . A direct consequence is that f(·) ≡ 0. This is a contradiction.

Remark 3.1 The assumption concerning the position of the sensor with respect to the source

location is important for the uniqueness. Otherwise, the identifiability fails. The following counter

example is liable to sweep away any doubt. Let I = (−1, 1) and s ∈]0, 1[. Then, we place the sensor

at ζ = 0. Consider cβ with β ∈ {−1,+1}, the solution of

∂tcβ − c′′β = f(t)δx−βs, in QT ,

cβ(·, 0) = 0 in I,

c′β(0, ·) = c′β(L, ·) = 0 in (0, T ).
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It is easily checked that c−1(t, x) = c+1(t,−x) in QT . We have then the same observation c−1(t, 0) =

c+1(t, 0) for both sources supports −s and +s located at different sides of ζ.

3.2 Moving Source

We proceed now with the proofs for a moving source. The canvas of the proof is fundamentally

unchanged. Lemma 3.3 is the same. For Lemma 3.4, some adaptations are needed. The unique

continuation theorem yields therefore that ǫ(·, ·) vanishes in the non-cylindrical sub-domain

Q+ =
{

(x, t); max(s1(t), s2(t)) ≤ x ≤ L, t ∈ (0, T )
}

.

0 s 1 (t) s 2 (t) L

T

t 1

t 2

ω I

ω0

ωT

Figure 3: The function ǫ(·, ·) is zero in Q+, the horizontally hashed sub-domain.

We revisit the maximum principle fulfilled by ǫ(·, ·). In the moving sources context, it can not

be globally in Q− (the complementary region of Q+). Actually, we need to proceed by sliced

sub-domains, according to the strips where max(s1(t), s2(t)) = s1(t) or s2(t).

Lemma 3.6 Assume that f ∈ L2(0, T ) with f(·) ≥ 0. Suppose that Bζ [s1] = Bζ [s2], then

ǫ(·, ·) = 0, in QT .

Proof: To fix the ideas, we consider the example of Figure 3. The trajectories (s1(t), t), (s2(t), t)

split Q− into three sub-regions ω0, ωI and ωT related to the time intervals (0, T0), (T0, TI) and

(TI , T ). The fact that remains to check is that ǫ(·, ·) = 0 in Q− = ∪i∈{0,I,T}ωi. It takes three steps.

We start by the first sub-domain

ω0 =
{

(x, t); 0 ≤ x ≤ s2(t), t ∈ (0, T0)
}

.

The sub-problem set in ω0 reads as

∂tǫ− (Dǫ′)′ +Rǫ = −f(t)δx−s1(t) in ω0,

ǫ(·, 0) = 0, in (0, s2(0)),

ǫ(0, ·) = ǫ(s2(·), ·) = 0, in (0, T0).
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Using standard arguments, we may show that the weak maximum principle is valid

ǫ(·, ·) ≤ 0, in ω0. (11)

The function ǫ(·, ·) vanishes in QT0
\ ω0 and is non-positive in ω0. Next, we follow the proof

developed for fixed sources. The point here is that because of the non-cylindrical shape of ω0, we

are led to integrate ǫ(·, ·) in x on the whole interval I. We obtain then

∂t

(

∫

I
ǫ(x, t) dx

)

−

∫

I
(Dǫ′)′(x, t) dx+

∫

I
Rǫ(x, t) dx = 0, ∀t ∈ (0, T0).

Accounting for ǫ(x, t) = 0 for all x ≥ s2(t), we derive that

∂t

(

∫

(0,s2(t))
ǫ(x, t) dx

)

= −Dǫ′(0, t)−

∫

(0,s2(t))
Rǫ(x, t) dx, ∀t ∈ (0, T0).

The proof is then achieved following the same process as in the one for Lemma 3.5 using the

maximum principle (11). The result that ǫ(·, ·) = 0 in QT0
is thus demonstrated.

The second step is to extend that result to QTI
and we are then involved in proving it in QTI

\QT0
.

We have already established it outside ωI . Restricting the problem to

ωI =
{

(x, t); 0 ≤ x ≤ s1(t), t ∈ (T0, TI)
}

,

we get that

∂tǫ− (Dǫ′)′ +Rǫ = f(t)δx−s2(t) in ωI ,

ǫ(x, T0) = 0, in (0, s1(T0)),

ǫ(0, t) = ǫ(s1(t), t) = 0, in (T0, TI).

The initial condition is inherited from the previous step, hence the necessity to proceed sequentially.

Applying the maximum principle yields that

ǫ(·, ·) ≥ 0, in ωI , (12)

so that ǫ(·, ·) and is non-negative in ωI and vanishes outside (of ωI). Performing the same proof as

above yields that

∂t

(

∫

(0,s1(t))
ǫ(x, t) dx

)

= −Dǫ′(0, t)−

∫

(0,s1(t))
Rǫ(x, t) dx, in (T0, TI).

In view of the maximum principle (12), it can be stated that the right hand sides is non-positive.

The function

m(t) =

∫

(0,s1(t))
ǫ(x, t) dx,

is thus non-increasing and non-negative with m(T0) = 0. This implies necessarily that m(t) = 0,

for all t ∈ (T0, TI). Calling once again for the non-negativity provides that ǫ(·, ·) = 0 in QTI
.

The last step is to switch to ωT which is made by reproducing the proof in ω0 with some slight

modifications. The final result is that ǫ(·, ·) vanishes in the whole QT . The proof is complete.

Proof of Theorem 3.1 (Part 2): — To conclude with the identifiability for a moving source,

we argue in the same way as for a fixed source, where Lemma 3.5 is replaced by Lemma 3.6.
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3.3 Identifiability for a broader class of intensity functions

The identifiability result stated in Theorem 3.1 are so far limited to intensity functions f(·) ∈

L2(0, T ) possessing a constant sign. However, they may be extended to a broader class of intensities.

Assume, for instance, that for a given sequence t0 = 0 < t1 < · · · < tK−1 < tK = T , the sign of

the intensity function f(·) remains constant in ([tk, tk+1])(0≤k≤K−1), the sign, whatever it is, does

not matter. Then the identifiability may be processed sequentially step by step as in the proof of

Theorem 3.1 elaborated for a moving source location. First, we prove the result in I × [0, t1], then

on I × [t1, t2] and so on until the last I × [tK−1, T ]. This class includes the continuous functions

f(·), for which the zeroes, in [0, T [, where f(·) changes sign are isolated. An example for which the

approach fails is provided by the intensity function

f(t) = t sin(
1

t
), t ∈ (0, T ).

Although it is continuous at t = 0, this function changes sign permanently at the vicinity of zero.

The step-by-step arguing hardly works in this case, we do not even see how to start. Nevertheless,

our feeling is that the identifiability still holds true. Conceiving a different methodology to prove

this result is thus an open question.

3.4 Ill-posedness

The issue of ill-posedness degree is probably hard to investigate in details. This is beyond our scope.

The modest purpose we are assigned is to briefly illustrate the severe ill-posedness of problem (6).

The way to reach this objective consists in proving that for all s(·) ∈ C
0,1([0, T ]), the operator

B′
ζ [s], mapping C

0,1([0, T ]) into L2(0, T ), is compact. B′
ζ is the Fréchet derivative of Bζ . Then, we

supply an explanation of why the compactness degree of B′
ζ [s] is infinite which is a clue of severe

ill-posedness (see [23]).

We investigate the particular case where D(·) and R(·) are indefinitely smooth. Hence, they both

lie in C
∞([0, T ]). In addition, to alleviate the presentation, we fix the amplitude function to

f(·) ≡ 1 and we consider the case where conditions (3) are of (Dirichlet, Neumann) type. Let now

(ds)(·) ∈ C
0,1([0, T ]) be a given small perturbation of the source s(·), we define ψ ∈ L2(QT ) as the

solution of the boundary value problem

∂tψ − (Dψ′)′ +Rψ = −(ds)(t)δ′x−s(t), in QT ,

ψ(·, 0) = 0 in (0, T ),

ψ(0, ·) = Dψ′(L, ·) = 0 in I.

It may be checked without pain that

〈B′
ζ [s], (ds)〉 = ψ(ζ, ·), in (0, T ).

12



The well posedness of the problem in ψ(·, ·) may be stated by the duality method (see [17]).

Actually, the source term expresses that in the sub-domains Q− and Q+ represented in Fig. 1, the

source in the reaction-diffusion vanishes. Then, across the interface (s(t), t), one has the following

transmission conditions

[Dψ′](s(t), t) = 0, [ψ](s(t), t) = (ds)(t), ∀t ∈ (0, T ).

The following result holds

Lemma 3.7 For all s(·) ∈ C
0,1([0, T ]), the linear operator B′

ζ [s] mapping C
0,1([0, T ]) into L2(0, T )

is compact.

Proof: The hypo-ellipticity of the heat operator yields that ψ(·, ·) is indefinitely smooth out-

side the support of the source term. In consequence, we infer that ψ(ζ, ·) belongs to C
∞([0, T ]).

Furthermore, for arbitrary m ≥ 0 we have the estimate

‖〈B′
ζ [s], (ds)〉‖Cm([0,T ]) = ‖ψ(ζ, ·)‖Cm([0,T ]) ≤ C(m)‖(ds)‖C0,1([0,T ]).

Then, invoking the compactness of the embedding from C
∞([0, T ]) into L2(0, T ), we conclude to

the compactness of B′
ζ [s] when considered as an operator ranging from C

0,1([0, T ]) into L2(0, T ).

The proof is complete.

Remark 3.2 The compactness of B′
ζ [s], for any s(·), suffices to assert the ill-posedness of the

inverse problem (6). However, one may be interested in further information about the ill-posedness

degree. The severe ill-posedness is in general related to the smoothing effects of B′
ζ [s] which are

unlimited here. As mentioned in the proof above, 〈B′
ζ [s], (ds)〉 is indefinitely smooth for all (ds)(·) ∈

C
0,1([0, T ]). This suggests that the the problem is in reality severely ill posed.

4 A deoxygenation reaeration model

In the analysis of water quality in rivers, engineers are most often interested in two tracers. One is

the biochemical oxygen demand concentration b(·, ·) measures the amount of oxygen consumed by

bacteria in the oxidation or biodegradation process of polluting organic matter. The other indicator

is the dissolved oxygen density generally denoted c(·, ·) describing the amount of oxygen available

in the water and absorbed by the river from the atmosphere (see [22, 21]). In the subsequent, we

use the acronyms (bod) and (do) for convenience. The model currently used is derived from the

Streeter-Phelps coupled reaction system to which the Taylor dispersion is added. It is a linear

model in which the vertical and transversal transport are instantaneously completed processes (see
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[5]). In this respect, the dispersive (bod-do) system reads then as follows

∂tb− (Db′)′ +Rb = f(t)δx−s(t) in QT

∂tc−
(

Dc′
)′
+Rc+Rb = Rχ+ g(t)δx−r(t) in QT

Db′(L, ·) = 0, b(0, ·) = 0 in (0, T )

Dc′(L, ·) = 0, c(0, ·) = χ in (0, T )

b(·, 0) = 0 in I

c(·, 0) = χ in I.

The constant χ is the saturation level of the oxygen in the water. Before the activation of the point-

wise sources we consider that the equilibrium of the river is settled at the oxygen saturation. This

explains the initial condition on c(·, ·). The Dirichlet condition says that, upstream, sufficiently

away from the sources, the river is at the equilibrium state and no pollution occurs there. The term

Rb in the second equation indicates that the increase in (bod) is interpreted as the oxygen uptake in

the water. Together with the source g(t)δx−r(t) (if g(·) < 0), they contribute to the de-oxygenation

of the river. Oppositely, the Rχ competes to the re-aeration of the river. Notice that here again,

we do not account for the advection despite its physical important meaning. We mainly focus on

the effects of the dispersion which is responsible of the most intricating mathematical difficulties.

The inverse problem we consider is the reconstruction of the sources f(·)δx−s(·) and g(·)δx−r(·) by

observing the depletion of the (do) concentration c(·, ·) caused by the elevation of the (bod) density.

No direct measurements are available for the density b(·, ·). The reason is that observations on (do)

are much easier to conduct. Recording observations on (bod) follows a strict chemical protocol that

may last five days, too long a period when treating accidental spills is pursued. The complication

of the identifiability of the sources is currently augmented by the lack of direct records on b(·, ·). To

correctly solve this issue, we will extract from [3] the results that will help us to be in the context

described in the previous sections.

We will be in particular interested in the non-linear identifiability of the sources location. Only

(s(·), r(·)) are to be detected. The intensities f(·) and g(·) are available beforehand and are fixed.

We suppose that they are signed, let us say for instance that f(·) ≥ 0 and g(·) ≤ 0. The assumption

on f(·) is natural and expresses that f(·)δx−s(·) is a polluting source, while the one on g(·) tells

that g(·)δx−r(·) describes the action of an oxygen pump. Define the following observations operator

Dζ [s, r] =
{

(c(ζ, ·), D(ζ)c′(ζ, ·)), 0 ≤ t ≤ T
}

.

Given two observation functions hζ(·), kζ(·) we pursue the reconstruction of (s(·), r(·)) satisfying

Dζ [s, r] = (hζ(·), kζ(·)). (13)
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The identifiability result concludes that the trajectories of the pollution sources may be recovered

if the variations in (do) concentration are recorded at an observation station. The only further

information required is the knowledge about the position of the sources with respect to station

location ζ. The case we are able to study is when the positions s(·) and r(·) of both sources are

at the same side of ζ and we need to know at which side. Henceforth, we consider that they are

permanently contained in (0, ζ). Then, we have s(t), r(t) < ζ for all t ∈ (0, T ). The identifiability

of the source for the coupled (bod-do) system is given in

Theorem 4.1 Assume that f(·) ≥ 0 and g(·) ≤ 0. Then, for any hζ(·) and kζ(·) in L2(0, T ),

problem (13) has at most one solution (s(·), r(·)) with s(·), r(·) < ζ.

To proceed with the proof, we follow the lines of [3]. Consider (s1(·), r1(·)) and (s2(·), r2(·)) two

solutions to the inverse problem (13). Without loss of generality, we suppose that s1(·) < s2(·) and

r1(·) < r2(·) . Indeed, if the trajectories cross each other, we split the interval into slices where

either s1(·) ≤ s2(·) or s1(·) ≥ s2(·) following the methodology elaborated in Subsection 3.2. The

ultimate objective is to show that

(

Dζ [s1, r1] = Dζ [s2, r2]
)

implies that ((b1, c1) = (b2, c2)).

This assertion produces the uniqueness result, that is s1(·) = s2(·) and r1(·) = r2(·) , which is the

ultimate purpose. We begin by some preparatory lemmas.

Lemma 4.2 Suppose that Dζ [s1, r1] = Dζ [s2, r2], then

(b1, c1) = (b2, c2) in (ζ, L)× (0, T ).

Proof: Introduce the notations ǫ = (b2 − b1) and κ = (c2 − c1). The following system holds

∂tǫ− (Dǫ′)′ +Rǫ = 0 in (ζ, L)× (0, T )

∂tκ−
(

Dκ′
)′
+Rκ+Rǫ = 0 in (ζ, L)× (0, T )

Dǫ′(L, t) = Dκ′(L, t) = 0 in (0, T )

Dκ′(ζ, t) = 0, κ(ζ, t) = 0 in (0, T )

ǫ(·, 0) = 0, κ(·, 0) = 0 in (ζ, L),

The particularity consists in the boundary conditions at ζ. Neumann and Dirichlet conditions are

enforced on κ(·, ·) whereas ǫ(·, ·) is free of any condition. It is checked in [3] that this system is

ill-posed. Nevertheless, a uniqueness result has been proven in [3, Theorem 2.7] . It is easily seen

that this homogeneous system has the trial solution (ǫ(·, ·), κ(·, ·)) = (0, 0) which therefore unique.

The proof is complete.

We are in position to achieve the first step, the identifiability for the (bod) source s(·). Indeed,

there holds that
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Lemma 4.3 Assume that f(·) ≥ 0. If Dζ [s1, r1] = Dζ [s2, r2], then

s1(·) = s2(·), in (0, T ).

Proof: Setting once again ǫ = (b2 − b1). We derive that

∂tǫ−
(

Dǫ′
)′
+Rǫ = f(t)δx−s2(t) − f(t)δx−s1(t) in QT

Dǫ′(L, t) = 0 ǫ(0, t) = 0 in (0, T )

ǫ(·, 0) = 0 in I.

In addition, we know now that ǫ(·, ·) = 0 in (ζ, L) × (0, T ). Using that f(·) ≥ 0, we deduce that

ǫ(·, ·) ≤ 0 in QT . Then, to end the proof we follow the argument of the proof of Lemma 3.6. This

results in ǫ(·, ·) ≡ 0 in QT . Identifiability for s(·) is a directly ensued. The proof is complete.

We are one step away from concluding to the global identifiability result for both sources s(·)

and r(·) . Theorem 4.1 is proved if we show the following

Proposition 4.4 Assume that f(·) ≥ 0 and g(·) ≤ 0. If Dζ [s1, r1] = Dζ [s2, r2], then

(s1(·), r1(·)) = (s2(·), r2(·)) in (0, T ).

Proof: It remains only to check the identifiability for r(·). Accounting for the fact that ǫ(·, ·) ≡ 0

obtained in Lemma 4.3, the following reaction-dispersion equation on κ(·, ·) holds,

∂tκ−
(

Dκ′
)′
+Rκ = g(t)δx−r2(t) − g(t)δx−r1(t) in QT

Dκ′(L, t) = 0, κ(0, t) = 0 in (0, T ),

κ(·, 0) = 0 in I.

Calling once again for Lemma 4.2 yields that the κ(·, ·) = 0 in the strip (ζ, L)× (0, T ). In view of

the sign constancy, g(·) ≤ 0, we are able to show that κ(·, ·) ≥ 0 in QT . We are exactly in the same

context as in the proof of Lemma 2.1. The only difference is the sign of κ(·, ·). Using analogous

arguments concludes to the same result κ(·, ·) ≡ 0 in QT . This yields that r1(·) = r2(·) in (0, T ).

The proof is complete.

5 Extensions

We present and comment two extensions. We generalize the forgoing identifiability to the case

of multi point-wise sources. Then, we check the reasons why the same results still hold true for

Fisher’s equation where the reaction term is non-linear.
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5.1 Multiple point-wise sources.

Engineers may be facing the detection of more than one pollution spill. The source term in

the reaction-diffusion equation (2)-(4) corresponds to the superimposition of multiple point-wise

sources,

∂tc− (Dc′)′ +Rc = f(t)δx−s(t), in QT , (14)

c(·, 0) = 0 in I, (15)

c(0, ·) = Dc′(L, ·) = 0 in (0, T ). (16)

The source is the given by

f(t)δx−s(t) =
∑

1≤k≤k∗

fk(t)δx−sk(t), ∀t ∈ (0, T ).

The amplitudes f(·) = (fk(·))1≤k≤k∗ are known and the detection will be exclusively concerned

with the sources location s(·) = (sk(·))1≤k≤k∗ .

We study here a particular category of sources. Their locations s(·) should satisfy the following

ordering

s1(·) < s2(·) < · · · < sk∗−1(·) < sk∗(·), in (0, T ).

Recording k∗ observations at k∗ distinct points ζ = (ζk)1≤k≤k∗ turns out to be sufficient for the

statement of the identifiability for k∗ point-wise sources. They should be distributed in a particular

way. Between each pair of neighboring sources one should place an observation station,

ζ1 < s1(·) < ζ2 < s2(·) < ζ3 < · · · < sk∗−1(·) < ζk∗ < sk∗(·), in (0, T ). (17)

Remark 5.1 Assumption (17) tells that to each source sk(·) may be attached an observation point

ζk located at its the left side (of sk(·)). This demands of course some a-priori knowledge on the

location of the polluting sources. The symmetric situation where ζk is positioned at the right side

of sk(·) is also admissible.

Basically, the mathematical process toward the identifiability consists in using repeatedly the

arguments elaborated above in a given order that depends on the position of the observations and

with respect to the sources. The aim is to analyze the observation operator and to figure out its

properties liable to help us reach the identifiability objective. This operator is thus defined by

Bζ [s] =
{

(c(ζ1, ·), c(ζ2, ·), · · · , c(ζk∗ , ·)), 0 ≤ t ≤ T
}

.

Now, given k∗ observation functions hζ(·) = (hζk(·))1≤k≤k∗ we consider the inverse problem: find

s(·) satisfying

Bζ [s] = hζ(·). (18)

The following identifiability holds true
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Proposition 5.1 Assume that f(·) ≥ 0 and that assumption (17) is fulfilled. If Bζ [s1] = Bζ [s2],

then

s1(·) = s2(·) in (0, T ).

Proof: Only for seek of simplicity, we sketch the proof in the case of two sources (k∗ = 2). The

ideas exposed here work as well for an arbitrary number of sources provided that assumption (17)

is valid. The notation sk(·) = (sk,1(·), sk,2(·)) is suitable and will be adopted during the proof.

Now, assume that Bζ [s1] = Bζ [s2] and ǫ = (c2 − c1). The following holds

∂tǫ− (Dǫ′)′ +Rǫ = f1(t)(δx−s2,1 − δx−s1,1) + f2(t)(δx−s2,2 − δx−s1,2) in QT . (19)

The initial and boundary conditions are still homogeneous. Owing to the observations we obtain

that

ǫ(ζ1, ·) = ǫ(ζ2, ·) = 0, in (0, T ).

Let us now start the identifiability proof by looking at equation (19), restricted to the strip (0, ζ2)×

(0, T ). The assumption (17) re-transcribed yields that ζ1 < sk,1 ≤ ζ2 < sk,2, for k = 1, 2. In the

reaction-dispersion equation set (0, ζ2) × (0, T ) only the sources s1,1 and s2,1 are kept there. The

new situation turns out to be similar to the forgoing one studied in Subsection 3.2. Arguing alike,

we are able to reach the fact that ǫ(·, ·) ≡ 0 in (0, ζ2)× (0, T ). This results in s1,1(·) ≡ s2,1(·). Back

to equation (19), the first part of the source, the one involving f1(·) is canceled. Only remain the

sources located at the right of the sensor ζ2 whose amplitude f2(·). This problem can be handled

as previously done and ends to the coincidence of the source locations s1,2(·) and s2,2(·). The proof

is complete.

Remark 5.2 The non-negative sign of f = (fk(·))1≤k≤k∗ is of course only indicative. Some of the

intensities fk(·) may be non-negative and others may be non-positive. The only mandatory feature

is that each fk(·) should be signed.

Remark 5.3 The proof is unfolded into two steps (k∗ steps in the general case), it was necessary

to proceed from the left to the right. Checking the identifiability s1,1(·) = s2,1(·) first and then

s1,2(·) = s2,2(·). Otherwise if the observation points and the sources are distributed differently, that

is sk,1 ≤ ζ1 < sk,2 ≤ ζ2, one could and should proceed from the right to the left. The identifiability

s1,2(·) = s2,2(·) should be established first.

Corollary 5.2 Assume that f(·) is signed. Problem (18) has at most one solution fulfilling as-

sumption (17).

5.2 Fisher’s equation

In many real-situations, the reaction term turns out to be non-linear. We are then interested in

the detection of a point-wise source for a semi-linear diffusion-reaction equation of Fisher’s type.
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The equation (2) is therefore transformed into the Fisher equation

∂tc− (Dc′)′ +R(c)c = f(t)δx−s(t), in QT

The reaction term R(c)c is non-linear. This means that R(·) is dependent on c. This is not a rare

event and may occur for instance for the biochemical oxygen demand (bod) in a river that is heavily

polluted by an organic matter. If the intensity of the polluting spill gets high, then reasonably the

(bod) concentration cannot increase without restriction. The fact is that the amount of oxygen

dissolved in the river is limited. A relevant modeling introduces a non-linear reaction in order to

slow down an hypothetical strong growth of the (bod) density b(·, ·). The term R(b) = R(1 + ̺|b|)

, known as the logistic non-linearity. The semi-linear partial differential equation to deal with

henceforth is

∂tb− (Db′)′ +R(1 + ̺|b|)b = f(t)δx−s(t) in QT . (20)

The logistic parameter ̺ is a positive real-number and so is R. Another example of non-linearity

is the Michaelis-Menten reaction R(n) = ̺
K+|n| . The constant K is the Michaelis constant and ̺ is

the maximum rate reaction. The Michaelis-Menten Fisher’s equation reads therefore as

∂tn− (Dn′)′ +
̺n

K + |n|
= f(t)δx−s(t), in QT . (21)

The fate of ammonia nitrogen may be modeled by this equation (see [9]). The point-wise source

describes a nitrogen contamination. Another example picked-up in chemical physiology is that the

oxygen uptake in a cell is governed by equation (21) (see [19]).

Now, considering that the function f(·) is known and signed, the inverse problem of identifying

the source location s(·) from data hζ(·), recorded by only one sensor located at the point ζ, is

expressed exactly as in (6). Establishing the identifiability of point-wise sources in Fisher’s equa-

tion may be achieved after combining the methodology followed here and the technical approach

presented in [4]. The first result suffer form some limitations when the source is mobile. Indeed,

the methodology fails in the general case. In particular, we need to work with an intensity func-

tion f(·) that belongs to L∞(0, T ). This does not seem to be a strong assumption. The stringent

one however is involved with the diffusion coefficient which should be constant. Following [4], the

constancy of D is mandatory. Under these restrictions we have the

Proposition 5.3 Assume the diffusion parameter D is a positive constant and let f(·) be in

L∞(0, T ) with f(·) ≥ 0. Then problem (6), for the logistic Fisher equation (20) or the Michaelis-

Menten Fisher equation (21), has at most one solution.

6 Conclusion

Results proven here represent substantial enhancement in the identifiability chapter in the detec-

tion of point-wise sources location for parabolic equations. The forthcoming complementary part
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consists in tackling the identification issue to assess numerically the predictions supplied here, in

particular the minimality and the position of the observations necessary to locate a finite number

of point sources. The simulation and validation of the detection process of point-wise sources are

part of the Ph. D. thesis of S. Khiari (see [15]). The scalar contaminant transport equation and

the dispersive deoxygenation-reaeration model will be both investigated. Hopefully, the numerical

counterpart of the current paper may be achieved sometime during the thesis.
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