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We study the effects of finite size and of vacancies on the photonic band gap recently predicted
for an atomic diamond lattice. Close to a Jg = 0 → Je = 1 atomic transition, and for atomic
lattices containing up to N ≈ 3 × 104 atoms, we show how the density of states can be affected
by both the shape of the system and the possible presence of a fraction of unoccupied lattice sites.
We numerically predict and theoretically explain the presence of shape-induced border states and
of vacancy-induced localized states appearing in the gap. We also investigate the penetration depth
of the electromagnetic field which we compare to the case of an infinite system.

PACS numbers: 42.50.Ct, 67.85.d, 71.36.c

I. INTRODUCTION

That of waves propagation in periodic potentials con-
stitute a problem shared by several domains of classical
and quantum physics, ranging from the study of electron
motion in metals [1], to that of X- and γ-ray scatter-
ing by crystals [1–3], and of light by photonics crystals
and metamaterials [4]. Periodicity leads to an organiza-
tion of modes according to bands, and to the possible
presence of band gaps, i.e. energy intervals where modes
are absent. A periodic system is by definition infinitely
extended, hence not physical. Nonetheless, predictions
made on the base of infinite systems can become really
satisfactory for systems large enough, as in solid-state
physics, and present the advantage to benefit from the
Bloch theorem, and to be solved in the reciprocal space
avoiding typical real space oscillating functions. Mod-
els based on infinite systems may however present some
subtleties related to the way in which the infinite limit-
ing process is performed, often requiring ad hoc Ewald’s
summations type strategies.

The recent experimental realization of a Mott phase
with ultracold atomic gases [5, 6], i.e. of artificial crys-
tals made by single atoms trapped at the nodes of laser
optical lattices, leads to the necessity of understanding
the features of the band structure of light interacting
with such systems. The peculiarity of this new system
is that it presents several remarkable features: incident
light scatters on point-like elementary quantum objects
with an internal energy level structure, and a quantum
delocalized position in space [7]; the lattice periodicity
is of the order of the incident light wavelength, allowing
the exploration of the entire Brillouin zone and hence of
possible band gaps [8]; experiments reached a remarkable
accuracy and control, permitting the realization of ultra-
precise atomic clocks [9–11]. First attempts toward the
description of such a system overlooked divergence prob-
lems, resulting in non correct prediction of band gaps
[12, 13], or were based on a ad hoc ultraviolet regularisa-

tion procedure allowing to explore only a particular class
of lattice geometries not presenting any band gap [14].
Photonic band gaps of 1D cold atomic vapors have been
realized [15], and exploited to generate optical paramet-
ric oscillation with distributed feedback [16]. Scattered
photons have been suggested as a signature of the Mott
insulator and superfluid quantum states [17], and studied
in the framework of polaritons [18], excitons and cavity
polaritons [19] . Recently, by exploiting a microscopic
theory of light-atom interaction [20], and by explicitly
introducing the presence of the unavoidable atomic quan-
tum motion, it was possible to naturally regularize the
divergences in a way independent of the lattice geometry,
and at the same time to study the quantitative effects of
the quantum atomic motion on the band structure [7].
The explicit dependence of the photonic band structure
on quantum features, as the atomic internal energy lev-
els and the external atomic quantum motion, allows to
consider this artificial structure as an example of quan-
tum metamaterial [21]. In the framework of the Fano-
Hopfield self-consistent quadratic theory [3, 18, 22], it
was also possible to find an exact solution valid for the
full Brillouin zone and for arbitrary Bravais and non-
Bravais lattices, allowing the prediction of the diamond
as the first 3D atomic lattice geometry presenting a com-
plete photonic band gap [8] [32]. Further investigations
suggested to add external magnetic fields to open band
gaps in other geometric structures [25].
In cold atom realizations of 3D optical lattices, the

atomic Mott state extends over 10 − 20 lattice sites, so
a natural question regards the features of the band gap
in this finite size system. A further question concerns
the effects of an imperfect finite portion of a lattice con-
taining site defects, i.e. a fraction of vacancies resulting
in a not complete filling of the lattice. The experimental
interest of these issues is related to the fact that both the
finite size and vacancy effects, separately, could in prin-
ciple drastically affect the presence and the experimental
visibility of the band gap due to the appearance of states
in the gap region. The main questions we address in
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this paper are: What does happen to the band gap for
systems of realistic sizes and of different shapes? What
is the fraction of vacancies which still permit to have
a reasonable band gap visibility? What is the value of
the penetration depth of an electromagnetic wave in the
atomic diamond lattice for finite and infinite systems, i.e.
how is it affected by finite size effects? Even if we discuss
in detail the case of a diamond lattice, we will present a
general formulation and will discuss main features which
will remain valid for other lattice geometries.

The paper is organized as follows. In section II we illus-
trate the model we use, and the resulting main equations
we solve. In section III we present and discuss a numeri-
cal study on the density of states and on the penetration
length in a finite size system, possibly in presence of im-
perfections due to vacant sites in the lattice. In section
IV we provide an analytical analysis to support and illus-
trate some of the main features of the numerical findings.
We conclude in section V.

II. THE MODEL

We consider a system made by a collection of N iden-
tical atoms having fixed positions and an optical dipolar
transition between a Jg = 0 electronic ground state and
a Je = 1 electronic excited state [26]. Such a transition is
available in appropriate atomic species, such as strontium
where it was already used to study coherent propagation
of light in an atomic ensemble [27]. In our model, the
atomic dipoles are coupled by the electromagnetic field
they radiate, and in the regime of low atomic excitations,
the resulting eigenmodes of the mean atomic dipoles are
given by the solutions of the eigenvalue problem [12, 20]

(

~ω0 − i
~Γ

2

)

di,α +

N
∑

j=1
j 6=i

∑

β=x,y,z

gαβ(ri − rj)dj,β =

~(ω − iγ)di,α. (1)

Here di,α is the component along the direction α = x, y, z
of the mean dipole carried by the atom i, ω − iγ is the
mode eigenfrequency (it is complex in general with γ > 0,
and may be measured as suggested in [7]), ω0 and Γ
are the single atom resonance frequency and spontaneous
emission rate. The tensor gαβ(r) gives the α component
of the electric field at the position r radiated by a dipole
oscillating along the direction β at the origin of coordi-
nates, Eα(r) = −gαβ(r)dβ/d

2, d being the atomic dipole
moment such that Γ = d2ω3

0/(3πε0~c
3). Here we con-

sider the case where ω − iγ is very close to ω0, so that
gαβ can be evaluated for a dipole oscillating at the reso-
nance frequency; introducing the vacuum wavenumber

k0 =
ω0

c
(2)

we take

gαβ(r) = −3~Γ

4k30
[(k20δαβ + ∂rα∂rβ )

eik0r

r
+ 4πδαβδ(r)]
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3

4
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k0r

[(

−1− i

k0r
+

1

(k0r)2

)

δαβ

+

(

1 +
3i

k0r
− 3

(k0r)2

)

rαrβ
r2

]

. (3)

Our first expression in (3) for gαβ(r) differs by a scalar
δ(r) contribution from the usual expression for the elec-
tric field radiated by a dipole, see Eqs. (4.20,9.18) of [28];
this ensures compatibility with our previous works and it
is of course irrelevant here since atoms are never at the
same position [33]. The first expression is particularly
useful to directly extract its Fourier transform, needed
in the Bloch-description of infinite systems (see section
IV), while the second one (which differs from the first one
by another scalar δ(r) contribution) has the well know
dipole-dipole interaction form, and will be used in nu-
merical calculations on finite-size systems in section III.
Equation (1) allows one to determine the density of

states of the system. In case an infinite number of atoms
are periodically arranged at the nodes of a diamond lat-
tice, it has been shown that the system may exhibit an
omnidirectional photonic band gap [8]. Here, by numer-
ical solution of (1) we investigate the fate of such a gap,
in situations close to realistic experimental ones, where
the number of atoms is finite and/or there are vacan-
cies in the lattice. A further interesting quantity related
to the occurrence of a gap is the so-called “penetration
depth” ξ: an incident electromagnetic wave at a fre-
quency in the band gap cannot penetrate the medium,
and its amplitude will decay exponentially over a char-
acteristic distance ξ. In order to calculate such a length
we consider a point-like dipolar source immersed in the
atomic medium, and we extract ξ from the total field and
the induced dipole spatial profiles: we fix at the position
rs a forced dipole dsα = ďsα e−iωst, the atomic dipoles at
the positions ri will reach a steady state di,α = ďi,α e−iωst

given by the linear system

−
[

~(ωs − ω0) + i
~Γ

2

]

ďi,α+

N
∑

j=1
j 6=i

∑

β=x,y,z

gαβ(ri−rj)ďj,β =

−
∑

β=x,y,z

gαβ(ri − rs)ď
s
β . (4)

III. NUMERICAL RESULTS FOR A FINITE

SIZE SYSTEM

In this section we study a system of N atoms at the
nodes of a diamond lattice. We recall that the diamond
lattice is formed by the superposition of two copies of the



3

same Bravais lattice: the fcc lattice of lattice constant a,
generated by the three basis vectors

e1 = (0, a/2, a/2), e2 = (a/2, 0, a/2), e3 = (a/2, a/2, 0),
(5)

and a second fcc lattice obtained by translating the first
lattice by the vector (a/4, a/4, a/4). The corresponding
basis of the reciprocal lattice is

ẽ1 = (−2π/a, 2π/a, 2π/a), ẽ2 = (2π/a,−2π/a, 2π/a),

ẽ3 = (2π/a, 2π/a,−2π/a). (6)

In our simulations, the atoms occupy a finite region in
space, which can be a ball or a cube centered at the
origin of the coordinates. From the numerical solution
of (1) we extract the density of states for the case of a
unit filling factor (section III A) and for the case with a
low concentration of vacancies (section III B). Finally,
we analyze the penetration depth in section III C solving
(4).

A. Finite size effects on the density of states

In this section we discuss the density of states obtained
by solving equation (1) for a finite size diamond lattice,
in the absence of vacancies. In particular, in Fig. 1 we
show the density of states ρ(ω) for a number of atoms
corresponding to typical experimental realizations N ≈
2.5 × 104. Here ρ(ω) is defined as the distribution of
the real part ω of the complex spectrum of equation (1),
normalized as

∫

ρ(ω)dω = 6/VL, where VL = a3/4 is the
volume of the direct lattice primitive cell, in order to
facilitate the comparison with the infinite system results
of [8], plotted as a bar histogram in the figure. If the
atoms occupy a ball (see the black solid line) we observe
partial filling of the spectral gap, most pronounced in
the upper region. On the contrary the region close to the
lower border of the gap remains relatively weakly affected
by the finite size of the system, considering the sharp rise
of ρ(ω) to the left of this border. The remaining part of
the density of states remains very close to the one of
the infinite system. If the atoms occupy a cube (see the
red solid line) the finite size effects are quite different.
Two peaks appear, a very pronounced one in the middle
of the gap (at (ω − ω0)/Γ ≈ −3.2), and a second one
(at (ω − ω0)/Γ ≈ 0.5). We investigated the nature of
the states belonging to the peak in the gap, by looking
at 10 successive eigenstates of (1), finding that they are
“border states”: they reach their maxima in a spherical
shell of radius ≈ 5a, and decay exponentially towards the
center of the cube with a law

|di|2 ≡
∑

α=x,y,z

|di,α|2 . e−22+4.6ri/a (7)

where the dipole eigenvectors are normalized to the maxi-
mum value of their modulus equal to unity. This suggests
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Figure 1: (Color online) Density of the real part of the eigen-
frequencies ρ(ω) obtained from Eq.(1), in the absence of va-
cancies and for k0a = 2 where a is the fcc lattice constant.
Red solid lines: finite system with a cubic shape of side of
length 14a, and N = 2.7×104 . Black solid lines: finite system
with a spherical shape of diameter 18a, and N = 2.4 × 104.
The histogram provides the same quantity for an infinite sys-
tem [8]. Each of the three curves is composed of 250 bins. VL

is the volume of the direct lattice primitive cell. The inset is
a magnification.

a value of the penetration depth of the order of 0.5a, in
agreement with the calculation done in section III C.
In Fig. 2 we show the distribution of the eigenvalues of

Eq.(1) in the complex plane, restricted to small values of
γ/Γ. In this region, the figure shows that the band gap
is not filled, apart from two narrow intervals of values of
ω, in the center and close to the upper border of the gap.
Then, in the finite size system, the partial filling of the
gap is mostly due to eigenvalues with larger values of γ/Γ.
The smallest values of γ/Γ we obtained are ≈ 2 × 10−5.
The real part of the corresponding eigenvalues are located
on the borders of the band gap for the infinite system,
marked in the figure by vertical dashed lines, and on the
upper bound of the values of ω represented in Fig. 2 for
the finite system, i.e. around (ω − ω0)/Γ = 9.5.

B. Effects of vacancies on the density of states

In this section we address the case where the finite
size diamond lattice in not perfectly filled, presenting a
concentration 1− p of defects made by the presence of a
random uniform distribution of not-occupied lattice sites.
In Fig. 3 we show the density of states ρ(ω) obtained solv-
ing Eq. (1) for atoms occupying a ball, as a function of
the lattice filling factor p. The figure, and its inset, show
that already a small concentration of vacancies equal to
1−p = 0.99 (red solid line) produces a remarkable signa-
ture in the density of states manifested by the appearance
of a pronounced peak in the middle of the band gap, at
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Figure 2: (Color online) Complex eigenvalues ω− iγ obtained
from Eq.(1). The system is of finite size, in the absence of
vacancies, for k0a = 2, with a spherical shape of diameter
18a, and N = 2.4 × 104 atoms. The two vertical red dashed
lines give the borders of the band gap of the infinite periodic
system.

(ω − ω0)/Γ ≈ −3.08. We explain the nature of the peak
with the presence of single-vacancy states localized at
the vacancy position. Since the vacancy concentration
is small, most frequent vacancy states have a single-site
nature. In section IVC we theoretically calculate the
value of the single-vacancy state frequency, signaled in
the inset by a black vertical dotted line, which seems
to coincide quite satisfactorily with that of the numeri-
cally observed peak. By increasing the vacancy concen-
tration, Fig. 3 shows for 1− p = 0.05 the occurrence of a
clear second peak in the gap, which seems to match quite
well the frequency of a two-vacancy in-gap state calcu-
lated in section IVC, see the red vertical dotted line at
(ω − ω0)/Γ ≃ −4. Peaks corresponding to other two-
vacancy states predicted in section IVC are less visible
(see the other vertical dotted lines in the inset of Fig. 3).
Further increase of the concentration of vacancies pro-
duces a gradual filling of the band gap, whose visibil-
ity completely deteriorates for a vacancy concentration
around 1− p = 0.2.
In Fig. 4, for exactly the same spherical system with

a vacancy concentration of 1 − p = 0.2, we show the
distribution of the eigenvalues of Eq.(1) in the complex
plane, restricted to small values of γ/Γ. The figure shows
that the band gap is completely filled. The states filling
the gap, for such a large vacancy concentration, are com-
pletely delocalized over the entire system size, and have
a spectral imaginary part mostly concentrated around
γ/Γ ≈ 10−2, with γ/Γ ≥ 10−3.
In Fig. 5 we study the effect of vacancies on a system

of cubic shape. The figure shows that for a concentration
of vacancies 1 − p = 0.01 (red solid line) two peaks are
present in the band gap. They have a different origin:
the first one, that at smallest energy, in nothing but the
peak related to shape-induced states, already present in
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Figure 3: (Color online) Density of the real part of the eigen-
frequencies ρ(ω) obtained from Eq.(1), for different concentra-
tions of vacancies, that is for various filling factors p, and for
k0a = 2. The finite system has a spherical shape of diameter
18a, and N = 2.4×104 for p = 1. The histogram provides the
same quantity for an infinite system with no vacancies [8]. VL

is the volume of the direct lattice primitive cell. The inset is
a magnification, where the vertical dotted lines correspond to
frequencies of the single vacancy in-gap state (black, central)

and to two-vacancy in-gap states (R̆2 − R̆1 = e1, µ̆1 = µ̆2 = 1

in red, outer; R̆2 − R̆1 = aex, µ̆1 = 2, µ̆2 = 1 in blue, inner;
these quantities are defined in appendix B) theoretically pre-
dicted in section IVC. Decreasing values of p correspond to
increasing values of ρ(ω) in the band gap.

the absence of vacancies (see black solid line, and the
discussion in section IIIA). The second peak is instead
the signature of single-vacancy localized states, and its
position is the same of that shown in Fig. 3 for spherical
shape at the same vacancy concentration.

C. Penetration depth

To numerically calculate the penetration depth ξ for
a diamond finite-size atomic lattice we numerically solve
the forced dipole equation (4) for a point-like dipolar os-
cillating source dsα = ďsα e−iωst at the position rs (ap-
proximately at the center of the system), and with ωs in
the band gap. Solutions of Eq.(4) provide the induced
atomic dipoles amplitudes ďi,α at the lattice positions ri.

We extract ξ according to different methods. The first
method is based on the direct analysis of the induced

dipoles, and consist in averaging the norm
√

∑

α |ďi,α|2
on spherical shells of radius ≈ u = ||r − rs|| centered
at the source position. We then obtain an average real
dipole function D(u) that we fit in a certain range of u
(where the behavior of d(u) is clearly exponential over
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Figure 4: (Color online) Complex eigenvalues ω− iγ obtained
from Eq.(1). The system is of finite size, in presence of va-
cancies, that is with a filling factor p = 0.8, for k0a = 2, with
a spherical shape of diameter 18a, and N = 1.9× 104 atoms.
The two vertical red dashed lines give the borders of the band
gap of the infinite periodic system.
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Figure 5: (Color online) Density of the real part of the eigen-
frequencies ρ(ω) obtained from Eq.(1), for two concentrations
of vacancies, that is for the filling factors p = 1 and p = 0.99,
and for k0a = 2. The finite system has a cubic shape of side
14a, and N = 2.7×104 for p = 1. The histogram provides the
same quantity for an infinite system with no vacancies [8]. VL

is the volume of the direct lattice primitive cell. We note the
double peak structure for p = 0.99 (see text). The vertical
dotted line corresponds to the frequency of the single vacancy
in-gap state theoretically predicted in section IVC.

several decades) as

D(u) = C
e−u/ξ

u
(8)

where ξ and C are the two fitting parameters. The fac-
tor 1/u in (8) is introduced to take into account the di-
rect effect of the source which is dominant at small dis-
tances, allowing to fit the function on a larger range. This

method provides the results presented by red squares in
Fig. 6. Its specialisation to the analysis of the penetra-
tion depth along some given direction (without averaging
over spherical shells) is straightforward, and leads to the
filled diamonds and circles in Fig. 7a and b, respectively.
The second method is based on the calculation of the

total electric field amplitude generated by the source and
induced dipoles obtained by (4) :

Ěα(r) = −
∑

β

gαβ(r− rs)
ďsβ
d2

−
N
∑

i=1

∑

β

gαβ(r − ri)
ďi,β
d2

,

(9)
We evaluate Ěα(r) on three lines, parallel to the Carte-
sian axes and passing trough the source position rs. We

first average the norm
√

∑

α |Ěα(r)|2 on the two direc-

tions (±) of the three axes α, then we obtain and fit the

six corresponding average real electric functions E(±)
α (u)

as

E(±)
α (u) = K(±)

α

e−u/ξ(±)
α

u
, (10)

obtaining six values of ξ
(±)
α , whose average is presented

by empty black circles in Figs. 6 and 7b.
In Fig. 6, it is apparent that the extractions of the pen-

etration depth from Eq. (8) and from Eq. (10) give differ-
ent values. This shows that ξ is not isotropic, it depends
on the considered direction of space, a property that will
be recovered analytically in section IVB. Whereas use of
Eq. (10) is expected to give the penetration depth along
x axis, the first method, when it involves a directional
average as in Eq. (8), is expected to pull out the max-
imal penetration depth (maximized over the directions
of space). A second property, apparent in Fig. 6a, is
the divergence of ξ at the borders of the infinite-medium
forbidden gap (represented by vertical dashed lines at
frequencies ωinf , ωsup). Fig. 6b even suggests that κ van-
ishes there with a vertical slope. We indeed find that κ2

vanishes linearly with ωs (not shown), as also predicted
analytically in section IVB. By a linear extrapolation
of κ2 as a function of ωs, we get for the borders of the
forbidden bands:

(
ωinf − ω0

Γ
,
ωsup − ω0

Γ
)
Eq. (10)≃ (−4.748,−1.962) (11)

Eq. (8)≃ (−4.747,−1.948) (12)

which are indeed quite close to the infinite medium re-
sults [8]:

(
ωinf − ω0

Γ
,
ωsup − ω0

Γ
) ≃ (−4.743,−1.962). (13)

To better put in evidence the vanishing of κ at the band
edges, and to more easily compare the various methods,
we show κ as a function of (ωs − ωinf)/(ωsup − ωs) in
Fig. 7, with the band edges ωinf and ωsup deduced for
the finite-size simulations by linear extrapolation of κ2
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Figure 6: (Color online) Penetration depth ξ in (a) and its in-
verse κ in (b), as functions of the dipole source frequency ωs.
Symbols (the lines are a guide to the eye) correspond to the
numerical solution of Eq.(4) for a finite system of spherical
shape, diameter 18a, filling factor p = 1, k0a = 2, and con-
taining N = 2.4 × 104 atoms. Red squares and black circles
correspond to values obtained using the methods of Eq.(8)
and of Eq.(10), respectively. The vertical dashed lines cor-
responds to the borders (13) of the band gap for the infinite
periodic system.

[34]. This change of variable on ωs has the advantage
of mapping the band edges to 0 and +∞, respectively,
which is then combined with a log-scale representation on
both figure axes. This figure was produced for two par-
ticular directions of penetration, along the direct lattice
basis vector e1 in Fig. 7a, and along the Cartesian axis
direction ex in Fig. 7b. First, in Fig. 7b, it appears that
the two extraction methods for the penetration depth in
the finite-size system (the first method from the dipoles,
see the filled circles; the second method from the electric
field, see the empty circles) give compatible results if they
are applied along the same direction (here ex, which is
equivalent to ey or ez due to symmetry of the diamond
lattice). Second, in Fig. 7a and b, the results of the finite-
size systems are compatible with the ones (stars) for the
infinite system in section IVB, and even if they do not
cover a as large range for κ, they do nicely follow the
analytical prediction (dashed lines) for the vanishing of
κ close to the band edges.
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Figure 7: Inverse penetration depth κ = 1/ξ along direction
e1 in (a) and direction ex in (b), as a function of the source
frequency ωs expressed through a change of variable mapping
the band gap [ωinf , ωsup] onto R+. Same physical parameters
as in Fig. 6. Filled diamonds in (a) and filled circles in (b):
finite size system with first extraction method; empty circles
in (b): finite size system with second extraction method; for
those data, ωinf and ωsup were obtained by linear extrapo-
lation of κ2 to zero. Stars: for the infinite medium from a
numerical evaluation of Eq. (30). Dashed lines: analytical
predictions, close to the band borders, deduced from Eq. (42)
(see text). Note that the x and y axes are in log10 and log2

scale.

IV. THEORY FOR THE INFINITE SYSTEM

We show in this section that several features of the
numerical simulations, such as the sharp rise of ξ close
to the band gap borders and some peaks induced by va-
cancies in ρ(ω), can be interpreted analytically for an
infinite system. In this case, a reformulation of (1,4)
in Fourier space is more appropriate. It is known how-
ever that the resulting series over the reciprocal lattice
present subtle convergence issues [14] that were over-
looked in [12, 13]. These issues were solved in [8] by
coupling each atomic dipole to a spatially smoothed ver-
sion Ē⊥(r) =

∫

d3uE⊥(r−u)χ(u) of the transverse elec-
tromagnetic field operator E⊥(r), where the smoothing
function χ(u) may be taken as a positive rotationally in-
variant function of unit integral and of small width b.
This cuts off the dipolar coupling at high wavenumber
field modes and regularizes the theory for the infinite
system.

One then finds that two changes have to be applied to
Eqs. (1,4). First, the function gαβ(r) has to be replaced
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by the smoothed function ḡαβ(r) such that

ḡαβ(ri−rj) =

∫

d3ui

∫

d3ujgαβ(ri+ui−rj−uj)χ(ui)χ(uj).

(14)
In Fourier space, the convolution products take a simple
form so that

˜̄gαβ(k) =
3π~Γ

k30

k2δαβ − kαkβ
k20 − k2 + i0+

χ̃2(k) (15)

where ˜̄gαβ(k) =
∫

d3r e−ik·rḡαβ(r) is the Fourier trans-
form of ḡαβ and χ̃(k) is the one of χ(r). Second, the
spontaneous emission rate Γ in Eqs. (1,4) has to be re-
placed by

Γ̄ = Γχ̃2(k0) (16)

where k0 is a vector of modulus equal to k0 and of ar-
bitrary direction. If one would treat the atomic motion
quantum mechanically, as in [7], for atoms trapped at
the nodes of an optical lattice, χ(u) = φ2(u) would
be the probability distribution of the fluctuations u of
the atomic position around a node ri, where φ is the
underlying atomic center-of-mass wavefunction. Then
Eq. (14) would have a straightforward physical interpre-
tation. Also Γ̄ would simply be the elastic spontaneous
emission rate, where the atomic center-of-mass after de-
cay to the electronic ground state remained in the wave-
function φ. In practice, a Gaussian choice for χ is conve-
nient, which corresponds to

χ̃(k) = e−k2b2/2. (17)

It is useful to know to which extent the results from the
spatially smoothed model differ from the original model.
For the Gaussian smoothing function, one then has the
remarkable result that, when the width b is much smaller
than all interatomic distances |ri − rj |, one has the ap-
proximate relation

ḡαβ(ri − rj) ≃ e−k2
0b

2

gαβ(ri − rj) (18)

with an exponentially small error in 1/b2 [7], that is one
has the same Gaussian factor as for Γ̄. For the eigenvalue
problem (1), this shows that the eigenvalues ω̄ − iγ̄ of
the spatially smoothed model may be related to the ones
ω − iγ of the original model by

ω̄ − ω0 − iγ̄ ≃ e−k2
0b

2

(ω − ω0 − iγ) (19)

within an exponentially small error in 1/b2. For the
steady state problem (4), it is found that the forced
dipoles of the spatially smoothed model will (within an
exponentially small error) coincide with the ones of the
original model if one takes in the smoothed model the
modified source frequency such that

ω̄s − ω0 = e−k2
0b

2

(ωs − ω0). (20)

A. Density of states for the infinite periodic

system

In this subsection, we show how to recover Fourier
space results of [8] for the density of states in the infi-
nite periodic system, starting from the smoothed version
of the real space Eq. (1).
According to Bloch theorem, solutions of (1) can be

taken of the form di,α = d
(µ)
α eiq·R, where q is the Bloch

vector, R is a vector of the Bravais lattice, the index
µ labels primitive cells (for the diamond lattice, given
by the combination of two shifted fcc Bravais lattices,
µ assumes two values), so that all atomic positions can
be written as ri = R + r(µ), where r(µ) is the position
with respect to the Bravais lattice vector R. Injecting
this ansatz in Eq. (1) modified according to Eqs. (14,16),
gives the eigenvalue problem

∑

β,ν

P̄αµ,βν(q)d̄
(ν)
β = ~(ω̄ − ω0 − iγ̄)d̄(µ)α (21)

with

P̄αµ,βν(q) = −
[

ḡαβ(0) + i
~Γ̄

2
δαβ

]

δµν

+
∑

R∈L

ḡαβ(R+ r(µ) − r(ν))e−iq·R. (22)

Here indices α, β and µ, ν label the direction and primi-
tive cell, respectively, and eigenvalues ω̄−iγ̄ and eigenvec-

tors d̄
(ν)
β depend on the choice of the cut-off smooth func-

tion χ(u), hence for the Gaussian choice as in Eq.(17),
they depend on the value of b. By considering the first
contribution of Eq.(22), inside the square brackets, it is
found from the inverse Fourier transform of (15) that the
tensor ḡαβ(0) is scalar (it is proportional to δαβ); fur-
ther, using 1/(X + i0+) = P 1

X − iπδ(X) and (16), one
finds that the imaginary part of ḡαβ(0) exactly cancels
with the Γ̄ term. The second contribution, that is the
sum over the Bravais lattice in (22), can be transformed
with the Poisson summation formula. For the Gaussian
smoothing function (17), the real part of ḡαβ(0) can be
calculated explicitly; one obtains as in [8]:

P̄αµ,βν(q) =
~Γ

2
δαβδµν

[

1 + 2(k0b)
2

2π1/2(k0b)3
− Erfi (k0b)e

−k2
0b

2

]

+
1

VL

∑

K∈RL

ei(K+q)·(r(µ)−r(ν)) ˜̄gαβ(K+ q) (23)

where the wavevectors K run over the reciprocal lattice
of the Bravais lattice, and Erfi is the imaginary error
function. As expected for an infinite system, the matrix
P̄ is hermitian, so that γ̄ = 0.
Turning back to the original problem (1), that is in the

absence of any smoothing function, we conclude for the
infinite periodic system that the spectrum is real (γ = 0)
and that ~ω−~ω0 is any of the eigenvalues of the matrix

P(q) = lim
b→0

P̄(q), (24)
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as in the perturbative limit of [8] [that is for the eigen-
frequencies close to ω0 when ω2

p/ω
2
0 → 0, ωp being the

plasma frequency]. The resulting density of states is

ρ(ω) =
∑

n

∫

D

d3q

(2π)3
δ(ω − ωq,n) (25)

where the integral over q is taken in the unit cell D =
{∑3

i=1 Qiẽi,− 1
2 ≤ Qi < 1

2} of the reciprocal lattice of
basis (ẽi)1≤i≤3, the sum over n runs over the all the
eigenvectors of P(q) and ωq,n is the corresponding eigen-
frequency.
For the Gaussian smoothing function, the limit of the

band structure for b → 0 is computed in practice from
the relation

P̄αµ,βν(q) ≃ Pαµ,βν(q)e
−k2

0b
2

(26)

which holds within an exponentially small error in
(dmin/b)

2 ≫ 1 where dmin is the minimal interatomic
distance [7, 8]. Note that this relation, obtained for the
particular case of a periodic system, is consistent with
the general result (19), and implies that the eigenvectors
of P̄(q) essentially coincide with the ones of P(q). For the

diamond, dmin = a
√
3/4. We used typically b = 0.05a, to

which we applied the above b → 0 extrapolation formula
to obtain the histogram in Figs. 1,3,5.

B. Penetration depth for the infinite periodic

system

In this subsection we wish to derive, for an infinite
system, the value of the penetration depth ξ and to con-
firm that it depends on the considered direction of the
direct space and that it diverges at the band edges, both
properties having already been observed for a finite-size
system in section III C.
Hence, we have to solve Eq. (4) in presence of a forcing

source dipole dsα = ďsα e−iωst placed in rs. The solutions
we look for are the steady state dipole amplitudes ďi,α =

ď
(µ)
R,α on each diamond lattice site of position ri = R +

r(µ), where R belongs to the Bravais direct lattice. Since
the scope is to determine the penetration length ξ, we
restrict ourselves to the case where the source frequency
ωs is in the band gap. Then the dipole amplitudes are
expected to decay exponentially at large distances, and
one may introduce the Fourier transform

ď(µ)q,α =
∑

R∈L

ď
(µ)
R,αe

−iq·R. (27)

One applies this Fourier transform to the spatially
smoothed version of Eq. (4); for a Gaussian smoothing
function, the source frequency is actually chosen to be ω̄s

given by Eq. (20), which ensures that the forced dipole
amplitudes are essentially unaffected by the smoothing.
In what follows, we can thus omit the bar (indicating the

spatial smoothing) over the dipoles and the penetration
depth. After calculations that closely resembles the ones
of section IVA:

− ~(ω̄s − ω0)ď
(µ)
q,α +

∑

β,ν

P̄αµ,βν(q)ď
(ν)
q,β =

− 1

VL

∑

K∈RL

ei(K+q)·(r(µ)−rs)
∑

β

˜̄gαβ(K+ q)ďsβ . (28)

One writes the formal solution of this linear system in
terms of the inverse of the matrix P̄(q) − ~(ω̄s − ω0)11,
where 11 is the identity; this inverse exists for all q since
ω̄s is in the band gap of the spatially smoothed model.
Then applying the inverse Fourier transform

d
(µ)
R,α =

∫

D

d3q

VRL
d(µ)q,αe

iq·R, (29)

and using K ·R = 0 modulo 2π, one obtains the forced
dipole amplitude on each lattice site:

ď
(µ)
R,α = −

∑

β,γ,ν

∑

K∈RL

∫

D

d3q

(2π)3
ei(K+q)·(R+r(ν)−rs)

{

[

P̄(q)− ~(ω̄s − ω0)11
]−1

}

αµ,βν
˜̄gβγ(K+ q) ďsγ . (30)

A first application of Eq. (30) is to evaluate the dipole
amplitudes from a numerical integration over q and, fit-
ting them in a region of large values of R in some direc-
tion u, to extract the penetration depth in that direction.
Using up to 2563 points in the numerical integration over
q, this leads to the stars in Fig. 7, that compare well to
the penetration depth extracted from the simulations on
a finite size system in section III C. Furthermore this ap-
proach is numerically more efficient close to the borders of
the band gap, where the penetration depth diverges and
the finite size effects of the simulations become stronger.
A second strategy to obtain the penetration depth from

Eq. (30) is to use the residue theorem. Since K+q spans
R3 when K spans the reciprocal lattice and q spans its
unit cell D, and since P̄(q) = P̄(q +K), Eq. (30) can be
rewritten as

ď
(µ)
R,α = −

∑

β,γ,ν

∫

R3

d3k

(2π)3
eik·(R+r(ν)−rs)

{

[

P̄(k) − ~(ω̄s − ω0)11
]−1

}

αµ,βν
˜̄gβγ(k) ď

s
γ . (31)

To take the large R limit in the direction u, we set

R = ru+O(1) with r > 0. (32)

We split the integration over k into an integral over the
component k‖ of k along u and over the transverse com-
ponents k⊥ of k. Then k⊥ ·R remains bounded, whereas
u ·R is divergent.
First, we consider the integral over k‖ ∈ R for a fixed

k⊥. The integrand involves the exponential factor eik‖r;
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since r > 0 we close the integration contour with a half-
circle (of diverging radius) in the upper complex plane
[35]. Whereas the equation for k‖:

ω̄k‖u+k⊥,n = ω̄s, (33)

where ω̄k,n is the dispersion relation of the n-th band of
eigenfrequencies for the spatially smoothed periodic sys-
tem, has for sure no real solution since ω̄s is in the band

gap, it may have complex solutions k
(0)
‖ with a positive

imaginary part. Due to the occurrence of the inverse
matrix involving P̄(k) in the integrand, such complex so-
lutions provide poles in the half upper plane, which ac-
cording to the residue theorem lead to the damped expo-

nential exp(ik
(0)
‖ r). If (33) admits several roots, or roots

for various band index n, one has to keep the value n0

of n and the root k
(0)
‖ leading to the smallest imaginary

part, that provides the leading contribution in the large
r limit.
Then one has to remember that there is still an integral

over k⊥, and that k
(0)
‖ depends on k⊥. We thus face an

integral of the form

ď
(µ)
R,α =

∫

R2

d2k⊥
(2π)2

e
ik

(0)

‖
(k⊥)r f(k⊥)

∂k‖
ω̄
k
(0)

‖
(k⊥)u+k⊥,n0

(34)

where the derivative of the band dispersion relation in
the denominator originates from the residue of the pole

in k
(0)
‖ (k⊥) and the r-independent function f in the nu-

merator is easily reconstructed from Eq. (31). To ob-
tain an asymptotic equivalent of the integral (34) in the
large-r limit, we use the saddle-point method: Eq. (34)
is dominated by the contribution of the vicinity of the

stationary point of the “phase”, that is k
(0)
⊥ such that

[36]

∂k⊥k
(0)
‖ (k

(0)
⊥ ) = 0. (35)

As we shall see, in general k
(0)
⊥ has complex coordinates

(in the plane orthogonal to u) and one has to deform
the integration domain of (34) to let the integration go
through the stationary point [37]. Then one quadratizes
the variation of the pole around the stationary point:

k
(0)
‖ (k

(0)
⊥ +δk⊥) = k

(0)
‖ (k

(0)
⊥ )+δk⊥·Bδk⊥+O(δk3⊥), (36)

where the relevant deviations of k⊥ from the stationary
point scale as 1/r1/2. One finally gets the equivalent

ď
(µ)
R,α ∼

r→∞

e
ik

(0)

‖
(k

(0)
⊥ )r

f(k
(0)
⊥ )

∂k‖
ω̄
k
(0)

‖
(k

(0)
⊥ )u+k

(0)
⊥ ,n0

∫

R2

d2δk⊥
(2π)2

eirδk⊥·Bδk⊥

(37)
where the Gaussian integral provides a factor 1/r. The
inverse of the penetration depth in direction u is thus

κ(u) ≡ 1

ξ(u)
= Im

[

k
(0)
‖ (k

(0)
⊥ )

]

. (38)

In general, this procedure is however difficult to use,
even numerically, as one has to look for poles of the dis-
persion relation for a wavevector k(0) with three complex
coordinates. An important and manageable limiting case
is for a source frequency ω̄s very close to the lower bor-
der ω̄inf or the upper border ω̄sup of the band gap. The
penetration depth is then expected to diverge, so that
the imaginary components of the wavevector are small
and its real components are close to the location q0 in
the Bloch vector space of the band gap border (such that
ω̄q0,n0 is equal to ω̄inf or ω̄sup). One can then quadratize
the dispersion relation around the location of the border:

ω̄q0+δq,n0 = ω̄q0 + δq · Āδq+O(δq3) (39)

where Ā (resp. −Ā) is a positive definite matrix for the
upper (resp. lower) border of the band gap. Note that,
according to Eq. (26), Ā is related to its zero-b limit A,
that is to the matrix A of the original model, by

Ā ≃ e−k2
0b

2

A (40)

within an exponentially small error in 1/b2. Then the
solution of (33) obeying the stationarity condition (35)
can be obtained analytically:

k(0) ≡ k
(0)
‖ (k

(0)
⊥ )u+ k

(0)
⊥ ≃ q0 + iκ(u)

Ā−1u

u · Ā−1u
(41)

with the expression for the inverse penetration depth

κ(u) =
[

(ω̄q0 − ω̄s)u · Ā−1u
]1/2

(42)

where Ā−1 is the inverse of the matrix Ā. In practice,
one may find that the band gap border is obtained for
several values of q0, due to symmetry properties (as it
shall be the case for the diamond lattice). At fixed direc-
tion u, one then has to select the value of q0 leading to
the minimal value of κ(u) in Eq. (42). Eqs. (41,42) are
derived in the Appendix A, where the complete resulting

expression for ď
(µ)
R,α is also given.

A simple consequence of (42) is the asymptotic ex-
pression for the maximal penetration depth at a given
frequency ω̄s, i.e. maximised over the direction u, close
to a band gap border:

ξmax ∼
ω̄s→ω̄bord

(

Āmax

ω̄bord − ω̄s

)1/2

, (43)

where Āmax is the eigenvalue of the matrix Ā of maximal
modulus.
We have explicitly evaluated the prediction (42) in the

vicinity of the upper border of the band gap. Irrespective
of the value of k0a, we find that the frequency ω̄sup of
this upper border is reached on the so-called L point of
the first Brillouin zone of the lattice, corresponding to
q0 = (ẽ1 + ẽ2 + ẽ3)/2 = (π/a)(ex + ey + ez) [see Eq. (6)
for the values of the ẽi], as it was already suspected in [8].
This point is so symmetric that all the six components of
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the corresponding eigenvector of the matrix P̄ are equal,
which leads to the quite explicit expression

ω̄sup − ω0 =
Γ

2

[

1 + 2(k0b)
2

2π1/2(k0b)3
− Erfi (k0b)e

−k2
0b

2

]

+
2πΓ

k30VL

∑

K∈RL

∑

ν

cos[K′ · (r(µ) − r(ν))]
K ′2e−K′2b2

k20 −K ′2

(44)

where K′ = K + q0. However, this frequency is also
exactly reached for 13 other values of q0, so that

ω̄q0 = ω̄sup for 2q0 ∈ {±ẽ1 ± ẽ2 ± ẽ3,±ẽ1,±ẽ2,±ẽ3}.
(45)

For a given direction u, one thus calculates the 14 corre-
sponding matrices Ā, which are all similar, and one keeps
the one giving the smallest contribution to Eq. (42). For
u = e1 and u = ex this leads to the dashed line in
the right part of Fig. 7a and Fig. 7b respectively, in ex-
cellent agreement with the numerical evaluation of (30)
and in good agreement with the finite-size simulations.
Furthermore, for k0a = 2 as in the simulations, the di-
rection e1 corresponds to the twice degenerate, maximal
modulus eigenvalue Āmax of some of the 14 matrices Ā
(the ones associated to q0 = ± 1

2 ẽ2 and q0 = ± 1
2 ẽ3) so

that the maximal penetration depth ξmax is obtained in
that direction e1. Remarkably, for k0a large enough (but
smaller than the value k0a ≃ 5.14 leading to a closure of
the gap), we find that the conclusion changes, and that
the maximal penetration depth is now obtained in the
direction (ex + ey + ez)/

√
3. This change suggests that

there exists a magic value of k0a such that the matrix Ā
is scalar and, close to the upper bord of the band gap,
the penetration depth is isotropic, which is confirmed by
the diagonalisation of Ā that leads to [38]:

(k0a)
sup
iso ≃ 2.8632. (46)

We have also explicitly evaluated the prediction of
Eq. (42) in the vicinity of the lower border of the band
gap. We have found that the frequency ω̄inf of this lower
border is obtained in 12 values q0 of the Bloch vector,
that weakly depend on k0a and that can be parameter-
ized in terms of a single positive dimensionless unknown
quantity σ:

ω̄q0 = ω̄inf for q0∈{±σ(ẽ1−ẽ2),±σ(ẽ1−ẽ3),±σ(ẽ2−ẽ3),

± [σ(ẽ1 + ẽ2) + (2σ − 1)ẽ3],±[σ(ẽ1 + ẽ3) + (2σ − 1)ẽ2],

± [σ(ẽ2 + ẽ3) + (2σ − 1)ẽ1]} (47)

where the basis vectors of the reciprocal of the fcc lat-
tice are given by Eq. (6). Note that the last six elements
of (47) have a σ-independent component ±2π/a in the
Cartesian basis, along ez, ey, ex respectively, and their
components along the other two Cartesian axes are equal;
these six elements are thus located on the straight line
XU , where X and U are standard remarkable points of
the first Brillouin zone of the diamond lattice. For the

value k0a = 2 taken in the figures, we numerically ob-
tained σ ≃ 0.330 346. For those 12 values of q0, we have
determined the 12 similar matrices Ā describing the lo-
cal quadratization of ω̄q and we have kept, for a given u

equal to e1 or ex, the one giving the smallest contribution
to Eq. (42). This has led to the dashed line in the left
part of Fig. 7a and Fig. 7b respectively, again in excel-
lent agreement with the numerical evaluation of (30) and
in good agreement with the finite-size simulations. For
k0a = 2, it is also found that e1 is the eigenvector of two
of the 12 similar Ā matrices [the ones corresponding to
the last two elements of (47)] with the non degenerate,
largest modulus eigenvalue Āmax, so that the maximal
penetration depth ξmax is actually achieved in that di-
rection, close to the lower border of the band gap. For
larger values of k0a, the situation can change to a maxi-
mal penetration depth obtained along direction ex. This
change occurs for the magic value

(k0a)
inf
change ≃ 2.9412 (48)

where σ ≃ 0.353 740 and the maximal modulus eigen-
value Āmax of the matrices Ā is twice degenerate.

C. States in the gap due to vacancies

We now create a single vacancy in the periodic system
(still using the spatially smoothed version), by removing
the atom at the location ri0 = R0 + r(µ0), that is at the
lattice site R0 on the sublattice µ0. The eigenspectrum
of the spatially smoothed version of (1) is expected to re-
main real (γ̄ = 0) but there may now be eigenvalues with
ω̄ in the band gap of the periodic system, corresponding
to states exponentially localized around the vacancy. As
we will see, the corresponding ω̄ are given by Eq. (53).
To look for such in-gap states, we use the following

trick: Starting from a periodic system in presence of a
source dipole in rs (of imposed frequency ω̄s and ampli-
tudes ďsα), we imagine that the vacancy on site ri0 results
from the coalescence of the corresponding forced dipole
ďi0,α with the source dipole in the limit where the source
location tends to the location of the vacancy:

lim
rs→ri0

ďi0,α = −ďsα, ∀α. (49)

In this case, the total dipole carried by the vacancy site
vanishes, as if there was indeed a vacancy there. Ob-
viously, condition (49) can be satisfied only for specific
values of ω̄s in the band gap of the spatially smoothed
model, that we now determine.
Writing Eq. (30) for R = R0, µ = µ0, rs = R0+ r(µ0),

and replacing ď
(µ0)
R0,α

with −ďsα, we obtain the homoge-
neous linear system

ďsα =
∑

β,γ,ν

∫

D

d3q

VRL

{

[P̄(q) − ~(ω̄s − ω0)11]
}

αµ0,βν

× Q̄βν,γµ0(q)ď
s
γ (50)
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where we used (2π)3 = VRLVL and we called Q̄αµ,βν(q)
the non-scalar contribution to P̄αµ,βν(q), that is the sec-
ond contribution in the right-hand side of Eq. (23). In
terms of matrices,

P̄(q) = Λ11 + Q̄(q), (51)

where Λ is the coefficient of the scalar contribution, that
is of the first term in Eq. (23), Λ = −[ḡαα(0) + i~Γ̄/2]
(this is independent of the direction α). We recognize
a matrix product in Eq. (50), related to the sum over ν
and β; we then use

[P̄(q)− ~δ̄11]−1Q̄(q) = 11+ (~δ̄−Λ)[P̄(q)− ~δ̄11]−1, (52)

with δ̄ = ω̄s − ω0. The contribution to (50) of 11 in
that expression exactly reproduces the term ďsα of the
left-hand side of (50), since the integral over q on the
primitive cell D of the reciprocal lattice is equal to VRL.
Simplifying the remaining contribution by the factor ~δ̄−
Λ, it remains

0 =

∫

D

d3q

VRL

∑

γ

{

[P̄(q)− ~(ω̄s − ω0)11]
−1

}

αµ0,γµ0
ďsγ , ∀α.

(53)
This must have a non-zero solution for the source dipole,
which is equivalent to requiring that the ω̄s-dependent 3×
3 hermitian matrix in (53) has a zero eigenvalue. To show
that the condition (53) is not only sufficient, but also
necessary, we have performed an alternative calculation,
presented in Appendix B, that has also the advantage of
including the case of several vacancies.
For the diamond lattice, we have evaluated numerically

the integral over the Bloch vector q in Eq. (53). We
then find that the resulting 3 × 3 hermitian matrix is
scalar. As the eigenvalues of that matrix are increasing
functions of ω̄s, as can be shown with the Hellmann-
Feynman theorem, this implies that there is at most one
solution for ω̄s in the band gap. Numerically, we find that
there is a solution, whose value [after extrapolation to
b → 0 using Eq. (19)] for k0a = 2 is indicated by a vertical
dotted line in Fig. 3, in agreement with a peak location
in the density of states in the numerical simulations.
In the case of several vacancies, we can extend our anal-

ysis as described in appendix B. By numerical solution
of Eq. (B7), we have then investigated the in-gap states

for two vacancies on sites separated by R̆2−R̆1 = 0, e1 or
aex, being either on the same sublattice (µ̆1 = µ̆2) or on
different sublattices (µ̆1 6= µ̆2). In most cases, we have
found allowed frequencies close to the one of the single-
vacancy state, within the width of the central peak in the
inset of Fig. 3; those states can not be resolved in that
figure and we have not indicated them. For the two ge-
ometries specified in the caption of Fig. 3, we have found
frequencies of two-vacancy states that are clearly out of
the central peak, see the red and blue vertical dotted
lines; in particular, the prediction with (ω−ω0)/Γ ≃ −4
seems to match quite well the very clear secondary peak
that emerges in the figure for increasing concentration of
vacancies.

V. CONCLUSION

Three-dimensional periodic arrangements of extended
scattering objects leading to an omnidirectional band gap
for light have been known since the 90’s, starting from the
diamond lattice configuration of dielectric microspheres
of [30]. In the case of a periodic ensemble of point-like
scatterers, the technical issues affecting the calculation of
the band structure of light have been solved only recently
[7, 8, 14], which has allowed to show that the diamond
lattice can also lead to a photonic band gap in the point-
like case [8].
With cold atom experiments, a diamond-like ensemble

of point-like scatterers is in principle realizable, provided
that one produces, in the appropriate optical lattice ge-
ometry [8, 24], a high quality Mott phase of atoms [5, 6]
having an optical transition between a spin zero ground
state and a spin one electronic excited state [31]. In prac-
tical realizations, there will be of course unavoidable de-
viations from the ideal infinite periodic case, that we have
quantified in the present work with numerical solutions
of linearly coupled dipoles equations with about 3× 104

particles.
A first issue is due to effects of the finite size of the

atomic medium. Rather than having a band structure,
light has a continuous spectrum of scattering states; by
analytic continuation to the lower half of the complex
plane, however, it is more physical to consider, as we have
done, the discrete complex eigenfrequencies ω− iγ of the
resonances of the system. In the distribution function of
ω, the forbidden gap remains visible in our simulations.
It remains actually quite visible if one restricts to the
resonances with a half decay rate γ much smaller than
the free space single atom spontaneous emission rate Γ;
such a filtering of the resonances could be realized exper-
imentally by performing a frequency measurement after
an adjustable time delay, during which the short-lived
resonances decay and are suppressed. Amusingly, a nar-
row peak in the distribution function of ω was observed
close to the center of the infinite system band gap, when
the finite size atomic medium has a cubic shape; such a
peak, absent when the medium has a spherical shape, is
a very clear finite size effect.
A second issue is due to vacancies inside the atomic

medium. For a concentration of a few per cent of vacan-
cies, narrow peaks emerge in the distribution function
of ω inside the gap. We were able to identify several
of these peaks as corresponding to the frequencies of lo-
calised states around one or two close vacancies in an
otherwise infinite periodic medium. At higher concen-
trations of vacancies, e.g. 20%, with no filtering on γ,
the gap disappears.
From our finite size sample, we have shown that one

can quite accurately extract the penetration depth ξ of
the light in the medium, and that the obtained values
compare well with independent calculations in a periodic
medium. Away from the borders of the band gap, ξ as
a function of the imposed field frequency ωs exhibits a
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plateau at a remarkably low value, between 0.5a and a,
where a is the lattice constant of the underlying fcc lat-
tice. Close to the borders ωbord of the band gap, one can
even directly observe, in our finite size system, the onset
of the divergence of ξ as 1/|ωs − ωbord|1/2, with a pref-
actor close to our analytical predictions. We have also
observed from the simulations that ξ is anisotropic (it de-
pends on the direction of space), in agreement with our
theoretical analysis, and that this anisotropy becomes
quite pronounced close to the lower border of the band
gap.
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Appendix A: Penetration depth

In this Appendix, for the spatially smoothed model,
we derive the results (41,42) for the penetration depth
in the direction u at a frequency ω̄s close to a border of
the band gap, which justifies the use of the quadratized
dispersion relation (39) around the Bloch vector q0, and
we give the large-distance equivalent of the forced dipole
amplitude, as obtained from the saddle-point method.
As short-hand notations, we introduce z = k‖−q0‖ and

x = k⊥−q0⊥ as the components along u and in the plane
orthogonal to u of the vector k− q0. We also introduce
the frequency deviation from the nearest band border,
∆̄ ≡ ω̄q0 − ω̄s. Then Eq. (33) reduces to a degree-two
equation for z:

z2u · Āu+ 2zx · Āu+ x · Āx+ ∆̄ = 0 (A1)

Furthermore, z has to be stationary with respect to a
variation of k⊥, see Eq. (35). Differentiating the trino-
mial (A1) with respect to x, and using ∂xz = 0, one
obtains the vectorial equation zQĀu+QĀQx = 0 where
Q projects orthogonally to u. The solution is

x = −z(QĀQ)−1Āu (A2)

where the matrix inverse is intended within
the vectorial plane orthogonal to u. Insert-
ing this solution into Eq. (A1) and using
[PĀP − PĀQ (QĀQ)−1 QĀP ]PĀ−1P = P where
P = 1−Q is the orthogonal projector on u (see relation
(B.23) of §III.B.2 in [29]), one obtains

z = iκ(u) with κ(u) given by Eq. (42) (A3)

Similarly, injecting the closure relation P + Q =
1, one finds Ā[u − (QĀQ)−1Āu] = [PĀP −
PĀQ (QĀQ)−1 QĀP ]u = (PĀ−1P )−1u = u/(u · Ā−1u).
This gives as in Eq. (41):

u− (QĀQ)−1Āu =
Ā−1u

u · Ā−1u
(A4)

To determine the residue appearing in (37), one takes
the derivative of the trinomial (A1) with respect to z for
a fixed x. Using the previous relations one obtains

∂k‖
ω̄k(0),n0

= 2zu · Āu+ 2x · Āx =
2iκ(u)

(u · Ā−1u)
. (A5)

Next, we determine the matrix B in Eq. (37) originating
from the quadratization of z around the stationary point
x. A first order variation δx induces a second order vari-
ation δz. Performing these variations in Eq. (A1) up to
second order in δx and up to first order in δz, and using
the previous relations, we obtain

B =
i

2κ(u)
(u · Ā−1u)QĀQ. (A6)

We conclude that the matrix iB appearing in the Gaus-
sian integral (37) is negative, which justifies the fact that
the saddle point is approached along the real axis direc-
tion as in (37). If one performs the Gaussian integral,
Eq. (37) reduces to

ď
(µ)
R,α ∼

r→∞

e−κ(u)rf(k
(0)
⊥ )

4iπr
[det(QĀQ)]−1/2. (A7)

The determinant in that expression is conveniently trans-
formed as det(QĀQ) = (u·Ā−1u) det Ā using the expres-
sion of the matrix of Ā−1 in terms of the comatrix of Ā
(in an orthonormal basis containing the direction u).
To obtain our final asymptotic form for the forced

dipole amplitude, we note that, for any acceptable vec-
tor k(0) of the pole plus saddle-point analysis, k(0) +K

is again acceptable, where K is any vector of the recipro-
cal lattice; this is due to the periodicity of the dispersion
relation ω̄k,n0 . We also include a sum over possibly de-
generate Bloch vector q0 leading to the same value ω̄q0,n0

(as discussed in the main text). We also note that, when
R → +∞,

||(Ā−1∆̄)1/2(R+r(ν)−rs)|| = −i(k(0)−q0)·(R+r(ν)−rs)

+ o(1) (A8)

which gives a simple physical interpretation to the ex-
pression (41) of k(0): The apparently obscure correction
to q0 in (41) simply originates from the fact that what
more precisely matters in the asymptotic behavior of the
dipole amplitudes is not ru but really the vectorial dis-
tance R+r(ν)−rs between the considered lattice site and
the source. Finally, we obtain, for ω̄s close to a border
of the band gap, the asymptotic equivalent for R → ∞:

ď
(µ)
R,α ∼ −

∑

q0

(

∆̄

det Ā

)1/2
eiq0·Re−||(Ā−1∆̄)1/2(R+r(ν)−rs)||

4π~||(Ā−1∆̄)1/2(R + r(ν) − rs)||

×
∑

β,µ,ν

∑

K∈RL

ei(q0+K)·(r(ν)−rs)φ(n0)
αµ φ

(n0)∗
βν

˜̄gβγ(q0+K)ďsγ ,

(A9)
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where φ
(n0)
αµ are the components of the normalized eigen-

vector of P̄(q0) of eigenvalue ω̄q0,n0 , we approximated

k(0) by q0 in the argument of ˜̄gβγ , and the square root

(Ā−1∆̄)1/2 of the matrix Ā−1∆̄ is well defined since this
matrix is positive. Note that the second line of (A9) does
not depend on R.

Appendix B: A general vacancy calculation

We consider here the infinite periodic system, with a
finite number of vacancies at nodes (R̆i, µ̆i), 1 ≤ i ≤ n,
where we recall that R belongs to the fcc Bravais lattice
and µ labels the sublattices. The scope is to determine
the frequencies ω̄ of the localised states that can exist,
due to the presence of the vacancies, in the band gap of
the periodic system, in the spatially smoothed version of
the model.
The idea is to formally introduce, in the coupled equa-

tions for the dipoles, fictitious dipoles carried by the
vacancies. Among the physical dipoles, the spatially
smoothed version of Eq. (1) holds:

0 = (Λ− ~δ)d
(µ)
R +

′
∑

R′,µ′

ḡ(R+ rµ −R′ − rµ′ )d
(µ′)
R′ . (B1)

Here the prime over the summation symbol means that
the sum is restricted to the physical dipoles, δ̄ = ω̄−ω0 is
the detuning from the atomic resonance, Λ is defined be-
low Eq. (51), and we have used for conciseness an implicit
vectorial notation for the dipoles and an implicit matrix
notation for ḡ. For the fictitious dipoles, the equation is
that they are equal to zero:

0 = (Λ− ~δ̄)d
(µ̆i)

R̆i
, ∀i ∈ {1, . . . , n}. (B2)

This allows to formally extend the sum in Eq. (B1) to
the fictitious dipoles, that is one can remove the prime
over the summation symbol. One can then merge the
two series of equations using the usual plus-minus trick:
for all R in the Bravais lattice and for all sublattices µ,
one requires that

0 = (Λ − ~δ̄)d
(µ)
R +

∑

R′,µ′

ḡ(R+ rµ −R′ − rµ′)d
(µ′)
R′

−
n
∑

i=1

δ
R,R̆i

δµ,µ̆i s̄i (B3)

where δ is the Kronecker symbol and we have introduced
the auxiliary unknowns

s̄i ≡
∑

R′,µ′

ḡ(R̆i + rµ̆i −R′ − rµ′)d
(µ′)
R′ . (B4)

Then taking the Fourier transform (27) of Eq. (B3) and
using (22):

0 =
∑

µ′

[P̄(q) − ~δ̄11]µµ′d(µ
′)

q −
n
∑

i=1

e−iq·R̆iδµ,µ̆i s̄i. (B5)

Since the frequency ω̄ is in the gap, the matrix is in-
vertible, and taking the inverse Fourier transform, one
obtains

d
(µ)
R =

n
∑

i=1

∫

D

d3q

VRL
eiq·(R−R̆i){[P̄(q) − ~δ̄11]−1}µµ̆i s̄i.

(B6)

Expressing the fact that the fictitious dipoles are all
equal to zero, we find the homogeneous system of equa-
tions:

n
∑

i=1

∫

D

d3q

VRL
eiq·(R̆j−R̆i){[P̄(q)−~δ̄11]−1}µ̆j µ̆i s̄i = 0, (B7)

to be satisfied ∀j ∈ {1, . . . , n}. The acceptable in-
gap frequencies are such that the system admits a non-
identically zero solution (s̄i)1≤i≤n, that is the determi-
nant of the corresponding 3n × 3n matrix must vanish.
In the case of a single vacancy, this reproduces Eq. (53).

Finally we have performed the consistency check that,
if one replaces in Eq. (B4) the dipoles in terms of the
auxiliary unknowns s̄j , as given by (B6), one recovers
exactly the same system as (B7), using Eqs. (22,51) and
the fact that the integral over q on the primitive cell D
of the reciprocal lattice is equal to its volume VRL.
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(ẽ1 + ẽ2 + ẽ3)/2, and (−ex + ey + ez)/
√
3 for q0 = ẽ1/2.


