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Abstract We present the lessons learned about the degradation observed in
several space solar missions, based on contributions at the Workshop about On-
Orbit Degradation of Solar and Space Weather Instruments that took place
at the Solar Terrestrial Centre of Excellence (Royal Observatory of Belgium) in
Brussels on 3 May 2012. The aim of this workshop was to open discussions related
to the degradation observed in Sun-observing instruments exposed to the effects
of the space environment. This article summarizes the various lessons learned
and offers recommendations to reduce or correct expected degradation with the
goal of increasing the useful lifespan of future and ongoing space missions.

Keywords: degradation, solar instruments, space environment, calibration, con-
tamination, solar mission.

1. Introduction

Investigation and analysis of the degradation of space instruments are crucial
parts of achieving the scientific goals of all such instruments. Remote–sensing
instrumentation exposed to the space environment usually degrades due to the
harsh environment in which the instruments are expected to operate. Solar
instruments – telescopes, spectrographs and radiometers – are particularly vul-
nerable because their optical elements are exposed to unshielded solar radiation.
For example, such instruments have historically suffered substantial degrada-
tion due to a combination of solar irradiation and instrumental contamination
that can cause polymerization of organic material and, subsequently, irreversible
deposition of this material on the instruments’ optical surfaces.

Different methods and approaches have been used to assess and monitor the
evolution of these instruments’ degradation. In order to reach a better under-
standing of how to both monitor and study this degradation, the Solar Terrestrial
Centre of Excellence (STCE) at the Royal Observatory of Belgium organized a
workshop on this subject on 3 May 2012, in Brussels, Belgium. Representatives
from several active space-based solar instruments (see Table 1) contributed to
this workshop.
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2 A. BenMoussa et al.

Table 1. List of the solar space instruments used. The acronyms used in this table are defined
in their corresponding section.

Mission/ Telescope (T) Spectral range Mission length

instrument Spectrometer (S) [nm] ( ... – present)

Radiometer (R)

SOHO/SUMER T-S 66 – 161 Dec. 1995

SOHO/CDS S 15 – 79 Dec. 1995

SOHO/EIT T 17 – 30 Dec. 1995

SOHO/CELIAS-SEM R-S 0.1 – 50 Dec. 1995

SOHO/DIARAD R Total Solar Irradiance Dec. 1995

HINODE/EIS T-S 17 – 29 Sep 2006

STEREO/HI1A HI1B T 630 – 730 Oct 2006

ISS/SOLSPEC R-S 165 – 3080 Feb 2008

PROBA2/SWAP T 17.4 Nov 2009

PROBA2/LYRA R 0.1 – 70 121.6 190 – 222 Nov 2009

SDO/EVE: R-S 0.1 – 105 121.6 Feb 2010

EPS, MEGSA1-A2-B-P

Picard/PREMOS R 210 215 266 535 607 782 June 2010

Picard/SODISM T 215 393 535 607 782 June 2010

In this article we present analyses of these instruments’ degradation (or non-

degradation), the causes of degradation when they could be identified, the con-

sequences of degradation, and methods by which the impact of degradation can

be mitigated. We also provide a summary of the lessons learned and recommen-

dations for best practices with the hope that this information will help scientists

and engineers to prevent – or cope with – degradation of active and future
space-based solar instruments.

2. Solar Instruments onboard SOHO

The Solar and Heliospheric Observatory (SOHO: Fleck et al., 1995) is a suc-

cessful solar mission that includes – among other instruments – radiometers,
spectrometers and an extreme-ultraviolet (EUV) imager, and has operated for

more than 16 years at the Lagrangian L1 point. SOHO was launched in De-

cember 1995 and began routine operations in January 1996. At the beginning

of the development phase of SOHO, the degradation processes were analyzed

and appropriate procedures and design concepts were developed to eliminate

them. During the design phase of SOHO’s instruments and spacecraft, a metic-
ulous cleanliness program was implemented to control molecular and particle

contamination (Pauluhn, Huber, and von Steiger, 2002). A substantial part of

the success of SOHO is due to the thoughtful design of the spacecraft, payload

module, and instruments and a strict material selection process.
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On-Orbit Degradation 3

2.1. Cleanliness and Calibration Stability of the SUMER Spectrograph

Among the suite of remote-sensing instruments onboard SOHO are three spec-
trographs operating in the vacuum and extreme ultraviolet (VUV–EUV) range.
The Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instru-
ment is a telescope/spectrometer. The detailed design has been described by
Wilhelm et al. (1995). In brief, it consists of a single telescope mirror and a
spectrograph. The reflective optics, the telescope mirror, the collimator and
wavelength scan mirror, and the grating are made of silicon carbide. The spec-
trograph carries two detectors with an instantaneous spectral range of 4 nm in
first order (the second order spectrum is superposed). A wavelength-scanning
mechanism selects the displayed spectral band in the range from 66 up to 161
nm.

2.1.1. Cleanliness Program

During the design phase of SUMER, a thorough cleanliness control program
was implemented (Schühle, 1993). The cleanliness requirements were estimated
by model calculations of contaminants on the optical system. Particle fallout
rates in cleanrooms published at that time were used to calculate exposure
time of flight hardware inside cleanroom environments. With the results of the
studies, a cleanliness control plan was established that contains the cleanliness
requirements, handling practices for all hardware, and the control procedures
and verification of cleanliness. The main features of the cleanliness program,
however, were cleanliness design, material selection, cleaning, and bake-out for
space conditioning.

2.1.2. Cleanliness Design

The SUMER structural housing is made of aluminum that could be thoroughly
cleaned and hermetically sealed when it was assembled. Only an aperture-door
mechanism could open the optical compartment to the environment at any time
of the assembly, integration, tests, and validation phases. The spring-loaded door
lid provided the functionality of a valve that opens during launch for depressur-
ization. A transparent window inside the door lid provided heat input by the Sun
to the primary mirror when the door was closed. In this way, the primary mirror
stays the hottest element inside the instrument. Internally, the telescope and
spectrograph form two compartments separated by walls containing the spec-
trograph entrance slit. The two compartments were connected by large venting
holes, to avoid a pressure difference between them and to prevent gas flowing
through the slit. Electronic components inside the housing are minimized. Apart
from the optics, the mechanical driving mechanisms contain ultra-high vacuum
motors and position encoders, temperature sensors, and limit switches. To deflect
the majority of the solar-wind particles, deflector plates are implemented inside
the entrance baffle, far ahead of the mirror.

SOLA: degradation.tex; 17 September 2018; 21:34; p. 3



4 A. BenMoussa et al.

2.1.3. Material Selection

It was established that the usual outgassing properties of known space-qualified
materials – the Total Mass Loss (TML) and the Collected Volatile Condensable
Materials (CVCM) values – were not adequate to determine whether outgassing
of organic material were sufficiently low to be acceptable. A contamination study
was carried out to simulate the deposition of organic material and its polymeri-
sation under vacuum and UV radiation. In addition, outgassing investigations
of materials and components were conducted with gas-chromatography/mass-
spectrometry (GC/MS) analysis to determine the outgassing of organic species
as a function of temperature and time. The species were enclosed in a glass vial
that allows the specimen to be heated in an oven and purged by clean gas over
extended periods of time, while occasionally gas samples were drawn for GC/MS
analysis. This procedure was particularly useful as it revealed either the rejection
or the acceptance of the component. The specimens were heated to the highest
temperature compatible with their specifications and the duration was extended
until acceptance was achieved, usually when the outgassing of organic molecules
was near the detection limit. Since this method is more sensitive than residual-
gas analysis under high vacuum, it was adopted to design the bake-out procedure
in a similar way.

2.1.4. Cleaning and Bake-out

Generally, all hardware used for assembly was precision cleaned before entering
the cleanroom facilities. The cleaning procedures included, with only a few
exceptions, an ultrasonic bath with detergent and ultra-clean water. Solvent-
compatible items were also cleaned with isopropyl alcohol and acetone. A special
procedure was applied to cables before production of harnesses with methyl–
ethyl ketone (now replaced by a special detergent), to remove possible residues of
silicons inside the cable insulation. After wet cleaning, items selected for integra-
tion were subjected to a bake-out procedure and transferred to the clean area in
double bags. The bake-out oven consists of a chamber with a controlled heating
system and vacuum port for pump-out. All items were baked at the highest
temperature compatible with the material of construction. Sub-assemblies were
either baked at component level before assembly or, if subjected to an outgassing
test as described above, baked at the temperature and duration determined by
the test. This bake-out procedure replaced the usual space conditioning under
high vacuum with heating and collecting contaminants at cold plates.
To guarantee the cleanliness of the six motor-driven mechanisms on SUMER,
only dry lubrication of bearings with sputtered molybdenum disulphide (MoS2)
was considered acceptable. The motor coils were baked in an oven under clean gas
purging (N2 grade 5.0) at 200 ◦C for 48 hours before assembly of the component.

2.1.5. Ground Calibration

The responsivity of SUMER was characterized in the laboratory with a trans-
fer source standard calibrated by the Physikalisch-Technische Bundesanstalt

SOLA: degradation.tex; 17 September 2018; 21:34; p. 4



On-Orbit Degradation 5

(PTB) at the Berlin Electron Storage Ring for Synchrotron Radiation (BESSY
II: Hollandt et al., 1996). The transfer source is based on a hollow cathode (HC)
discharge source, operated with inert gases to deliver a number of spectral lines
inside the SUMER spectral range. However, the range could not be covered
continuously and this left some gaps in the calievebrated wavelength range
(Schühle et al., 1994). Recently, the PTB has opened an electron storage ring,
the Metrology Light Source (MLS: Klein et al., 2008 and Gottwald et al., 2010),
which operates with a continuous spectrum and with capabilities to calibrate
space instruments.

2.1.6. Onboard Calibration Tracking

It is very important to track any degradation during the time of the mission. For
SUMER it was possible to observe repeatedly UV-bright stars that come into
the field of view (FOV) every year (Lemaire, 2002). Another way of tracking is
the observation of the radiance of quiet-Sun areas not affected by active regions
with large variability. The radiance of these quiet-Sun areas have been shown to
vary only slowly over time periods of a solar-activity cycle (Schühle et al., 1998).
By observing the same objects simultaneously in common wavelength ranges,
this method can be used for inter-calibration between instruments. This has
been done successfully over several years between UV instruments on SOHO
(Pauluhn, Huber, and von Steiger, 2002). The Coronal Diagnostic Spectrometer
(CDS) and SUMER spectrometers have made such common observations from
the start of their operational phases. Figure 1 (taken from Pauluhn et al., 2001)
depicts clearly that, by common observation of the quiet Sun, the degradation
of the two instruments could be well accounted for, such that the remaining
variation of the signal is not a systematic error of the instrumental throughput.
This common intercalibration procedure, however, does not take into account
longer-term effects on the CDS responsivity, discussed in the following section.

2.2. The Calibration of CDS

CDS is composed of a normal incidence spectrometer (NIS) and a grazing inci-
dence spectrometer (GIS : Harrison et al., 1995). The two instruments share a
Wolter–Schwarzschild type II grazing-incidence telescope, a scan mirror, and a
set of different slits. There is no entrance filter. GIS uses a spherical grating that
disperses the incident light into four spiral anode (SPAN) microchannel plate
(MCP) detectors.
The NIS is composed of two stigmatic toroidal gratings that disperse the ra-
diation into two wavebands (NIS 1: 30.8 – 37.9 nm and NIS 2: 51.3 – 63.3 nm).
The NIS detector comprises an MCP Philips model G12-33 with pores of 12µm
diameter. The EUV photons are converted into electrons via the photoelectric
effect on the front face of the MCP, and then amplified at about 756 V. The
electron cloud is proximity focused onto a P-20 phosphor coated on a fiber-
optic output window. The visible phosphorescence is focused via a lens onto a
Tektronix 1024×1024 charge-coupled device (CCD) with square pixels of 21µm.
The CCD is running cold, at a nominal temperature of -70 ◦C.

SOLA: degradation.tex; 17 September 2018; 21:34; p. 5



6 A. BenMoussa et al.

Figure 1. Common observations of the Mgx spectral line emission at 62.4 nm in quiet-Sun
areas by CDS (asterisks) and SUMER (squares) during the first years of SOHO operations
(Pauluhn et al., 2001).

2.2.1. Calibration

About two years before launch, the CDS instrument was calibrated end-to-end
at the Rutherford Appleton Laboratory (RAL) against a “transfer” source that
was absolutely calibrated using synchrotron emission. Details can be found in
Lang et al. (2000). Immediately after launch, it became obvious that large depar-
tures (factors of two to three) from the pre-launch calibration were present. On 15
May 1997, a National Aeronautics and Space Administration (NASA)/Laboratory
for Atmospheric and Space Physics (LASP) rocket carried an EUV Grating
Spectrograph (EGS) that had been calibrated against synchrotron emission. On
the same day, NIS measurements were performed and compared to the EGS
ones (Brekke et al., 2000), providing one key element in the long history of
the in-flight calibration; see Del Zanna et al. (2010) for a summary. Further
information on the NIS 1 was obtained with the Solar EUV Rocket Telescope
and Spectrograph (SERTS)-97 rocket flight (Del Zanna et al., 2001). The only
in-flight radiometric calibration of all the nine CDS channels (three second-
order) was obtained by Del Zanna et al. (2001) with the line ratio technique. The
various NIS first-order calibrations were consistent, within 30% to 50%, with the
SUMER calibration, as discussed during two ISSI workshops (Lang et al., 2002),
and as summarized in the previous section. Further EGS rocket flights were flown
in 2002, 2003, and 2004 but were not useful for the CDS calibration. An update
to the CDS radiometric calibration was instead made possible by two Extreme-

SOLA: degradation.tex; 17 September 2018; 21:34; p. 6



On-Orbit Degradation 7

Ultraviolet Normal-Incidence Spectrograph (EUNIS) rocket flights which took
place in 2006 and 2007 (Wang et al., 2011).

2.2.2. Detector Degradation and Long-Term Aging

MCPs are known to suffer a drop in gain owing to the exposure to solar radiation.
For the NIS, this results in a depression at the core of the lines caused by
exposures with the 2 arcsec or 4 arcsec slits (the so-called “burn-in” of the
lines). This effect can be corrected by looking at the burn-in in 90 arcsec slit
exposures of the quiet-Sun (Thompson, 2000).

Figure 2 shows such a burn-in effect in a 13-year long series of near si-
multaneous spectra taken with the narrow 2 arcsec and the wide 90 arcsec
slits.

It was thought that exposing with the 90 arcsec slit would significantly reduce
(by more than a factor of three over 13 years) the responsivity at the wavelengths
where the stronger lines in the spectra are present (Thompson, 2000; 2006).
However, as shown in a series of articles (see references in Del Zanna et al.,
2010), this assumption turned out to be incorrect, in that an overall decrease
across all wavelengths of about a factor of two in 13 years was measured. Some
wavelength-dependent effects turned out to be minor.

The overall decrease and its magnitude over more than 13 years of monitoring,
are readily apparent in the spectra shown in Figure 2. Note in the top panel of
Figure 2 the discontinuity due to the temporary loss of contact with SOHO that
occurred in June through September 1998. The resulting exposure to rather
extreme and uncontrolled environmental conditions during that time interval
caused significant changes in the characteristics of CDS, as of most other SOHO
instruments. Figure 3 illustrates this effect on the NIS sensitivities and shows
the measured aging in various wavelengths of the NIS 2 channel from 1996 to
September 2010. The coefficients of the fits to these data have been adopted as
the default long-term radiometric correction in the latest version of the CDS
analysis software. Figure 3 is similar to Figure 4 of Del Zanna et al. (2010), but
shows data processed after the publication of that article, until September 2010.
The curves shown in Figure 3 therefore reflect the most up-to-date estimates of
the long-term variation of the CDS/NIS sensitivity, as currently included in the
CDS analysis software.

The characterisation of the long-term aging was found by Del Zanna et al.
(2010) assuming that the quiet-Sun radiances in low-temperature lines are con-
stant over time. Some support for this assumption comes from ground-based
measurements of equivalent widths of photospheric and chromospheric lines (e.g.
Ca ii) over the quiet Sun (often Sun-center), which have provided firm evidence
that the basal photospheric-chromospheric emission has not changed over the
past three solar cycles (Livingston et al., 2007; 2010).

The validity of the assumption has been confirmed by the overall agreement
found between the CDS and the Solar Dynamics Observatory/EUV Variability
Experiment (SDO/EVE) 2008 prototype irradiances (Del Zanna et al., 2010)
and by a direct CDS-EUNIS rocket flight comparison of radiances (Wang et al., 2011).
Note that this assumption does not necessarily contradicts reports of an intrinsic

SOLA: degradation.tex; 17 September 2018; 21:34; p. 7



8 A. BenMoussa et al.

Figure 2. Top: the 13 years of CDS 90 arcsec NIS 2 data over the quiet-Sun; the last spectrum
shown here was taken on 7 April 2009. Middle: A sample of averaged 90 arcsec spectra at three
different epochs. Bottom: The corresponding 2 arcsec spectra. Notice the overall decrease in
the count rates [C] in both 2 arcsec, and 90 arcsec spectra, and the marked decrease of count
rates corresponding to the core of strong lines such as, for example, the ion He I 58.4 nm line.
Figure adapted from Del Zanna et al., 2010.

variation of the solar source (see Section 2.1.6), whose magnitude typically is

much smaller than the extent of the long-term instrumental degradation, and

might be affected by the increase in solar activity in the 1996 – 2001 period

considered by those studies (e.g. by Pauluhn and Solanki, 2003).

Del Zanna and Andretta (2011) proposed a new calibration for the He ii line,

providing CDS irradiances in excellent agreement with those measured by the

SDO/EVE prototype and by EUNIS (Wang et al., 2011). As described by Kuin and Del Zanna

(2007), there were gain-depression effects that lowered the spectral resolution in

the strongest GIS lines. However, overall no signs of a decrease in responsivity
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Figure 3. Time-dependence of average radiances in various wavelengths from CDS 90 arcsec
quiet-Sun observations in the NIS-2 channel. Line radiances from individual spectra were
grouped in bins of 90 days, obtaining an estimate of the mean and standard deviation in each
time bin (points and bars). Black curves represent fits to these data. The two vertical dashed
lines represent the times of loss (25 June 1998) and recovery (25 September 1998) of contact
with SOHO, respectively.

were observed over a time period of ten years. This suggests that the grazing-
incidence optics (telescope, common to the NIS) and the GIS grating have not
suffered any contamination. It is therefore likely that the slow decrease in re-
sponsivity experienced by NIS is due to an overall decrease in the reflectivity of
the normal-incidence gratings, or to a lower sensitivity of the detector, either in
the CCD or in the phosphorous coating on the anode in front of the MCP.

2.3. In-Flight Evolution of EIT

The Extreme Ultraviolet Imager (EIT) onboard SOHO is a Ritchey–Chretien
telescope observing the Sun in four passbands of the EUV spectrum: 17.1 nm
(Fe ix/x), 19.5 nm (Fexii), 28.4 nm (Fexv) and 30.4 nm (He ii, Sixi). Four
different multilayer coatings on the primary and secondary mirrors are used to
select the passbands. A sector wheel at the front of the instrument is used to
select one of the four quadrants. Thin film aluminum (Al) filters at the entrance
of the instrument suppress the incoming visible and infrared (IR) radiation.
Additional filters at the focal plane and on a filter wheel provide redundancy.
The 1024 × 1024 CCD detector is passively cooled to about -70℃. A shutter
is used to time the exposures. A detailed description of the instrument can be
found in Delaboudinière et al. (1995). Since its first light in January 1996, EIT
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Figure 4. Average flux in the He ii 30.4 nm band of EIT as a function of time before (top)
and after (bottom) correction of the degradation.

has provided revolutionary views of the EUV Sun (Moses et al., 1997). Its ob-
servations have been affected by serious degradation issues, but the degradation
process could be understood and corrected for. A detailed analysis of the in-flight
performances of EIT is given by Defise (1999).

2.3.1. Detector Degradation and In-Flight Correction

The total flux in EIT images rapidly showed strong variations that were obvi-
ously uncorrelated from the solar activity, as shown in Figure 4.

We see an initial rise of the signal followed by a steep decrease and periodic
discontinuities. The initial rise is attributed to rapid outgassing of the instrument
following the opening of its sealed door. There are two causes for the subsequent
decrease: absorption by a contaminant on the detector surface and radiation-
induced degradation of its charge collection efficiency (CCE). For operational
reasons, the partial pressure in the vacuum vessel was not low enough at launch
so that immediately after launch, water condensed on the rapidly cooling de-
tector. Modeling showed that the observed absorption could be explained by
a thin layer of water, which is consistent with insufficient pumping at launch
(Defise, 1999). Other contaminating compounds could, of course, also be present,
but we have no way of identifying them in-flight, while water is known to be
present in the residual atmosphere present in the vacuum vessel at launch. For
stray-light protection, the CCD is isolated from the rest of the telescope by a
flange and the only outgassing path to space is two labyrinths of low conductance.

The detector was regularly baked out to evaporate the water but because of
the low conductance to the outside, most of the water simply condensed on the
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On-Orbit Degradation 11

Figure 5. Evolution of EIT’s calibration lamp images during the first two years of the SOHO
mission (from Defise, 1999).

Figure 6. Left: white-light flat field for 8 February 2001. Middle: corresponding EUV flat
field deduced from an offpoint of SOHO. Right: scatter plot of EUV vs. visible.

walls of the back end and went back to the CCD when it was cooled again.
This cycle is one cause for the oscillating response seen in Figure 4. The second
component of detector degradation is illustrated in Figure 5. The four images
show the evolution of calibration lamps (a light bulb illuminating the focal plane
with visible light). We see the progressive imprinting of a negative average image
of the EUV Sun, with the limb brightening and active-region bands clearly visible
in the last image.

This is due to loss in the CCE of the detector. EUV light creates positive
charges at the interface between the silicon (Si) and the silicon oxide (SiO2) layer
that thicken the dead layer. As consequence, in the regions that are on average
the most illuminated, the CCE is decreased. By baking out the CCD regularly
to about 20℃, the dead layer is thinned and homogenized, thus restoring part of
the original sensitivity (Defise et al., 1997). These detector degradation effects
have been understood and empirically modeled using calibration lamp images.
However the images of Figure 5 cannot be used directly to correct the data, firstly
because they are white-light images, and secondly because the light source does
not illuminate the detector uniformly. What has to be used is the ratio between a
calibration-lamp image and an initial-lamp image taken before the first light with
a pristine detector. This gives a visible-light flat field. This can then be converted
into an EUV flat field if one knows the relationship between visible and EUV
degradation. To derive this relationship we used several off-point maneuvers of
the SOHO spacecraft to derive the EUV flat field.
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The set of displaced images taken during the maneuvers was processed using
the algorithm of Kuhn and Lorantz (1991) to separate the solar image from
the flat field features. Figure 6 shows the white-light flat field derived from
calibration lamps for the date of the 8 February 2001 off-point (left), the EUV
flat field (center), and the relationship between the two (right). A fit to this
relationship (see Figure 8.7 of Clette et al., 2002) is used to convert white-light
calibration-lamp images taken regularly (about every two weeks) into EUV flat
fields used to correct the images (see Figure 7). Calibration lamps have proven to
be essential to the calibration of the EIT instrument. The key to their successful
use is the acquisition before the first light of a good reference image.

Applying this to all images, we obtain a corrected EUV times series. The
instrumental effects are taken out, revealing the solar variability. However, the
corresponding time series of integrated fluxes still exhibit semi-periodic fluc-
tuations, which indicates that not all of the degradation is accounted for by
this procedure. Indeed, since the contaminant (be it only water or a mix of
several compounds) is very thin, it is practically transparent to visible light, and
therefore not revealed by the calibration lamp images. The onboard flat fielding
thus corrects only for the CCE degradation, which is however the dominant
effect in the response of EIT.

By comparing EIT and the Solar EUV Monitor (SEM) data, we concluded
that the contaminant (probably essentially trapped on the cold detector) repre-
sents about 20% of the total degradation (Clette et al., 2002). To take out this
remaining variation, it was chosen to tie the EIT fluxes to the Mg ii center to
wing ratio index. For each period between two successive bake-outs, the CCE-
corrected EIT integrated fluxes are correlated with the Mg ii index and detrended
using a linear fit. Details about the procedure are given by Clette et al. (2002). It
is important to emphasize that this does not force the EIT fluxes to match a solar
index; it only forces a linear relationship between the two, and the correction is
20% at most.

Hock and Eparvier (2008) used the Thermosphere Ionosphere Mesosphere
Energetics (TIMED) / Solar EUV Experiment (SEE) spectral irradiance mea-
surements instead of the Mg ii index to correct the variations remaining after
CCE correction. They argue that TIMED/SEE observations would be better
suited because Mg ii is not sensitive to coronal temperatures. However, the
authors show that the Mg ii corrected EIT fluxes agree with the TIMED/SEE
measurements within the uncertainties of the two instruments. Furthermore, this
index has the advantages of being available continuously for the entire SOHO
lifetime and of being determined independently from several sources.

2.3.2. Filter Degradation

The Al filters at the front of the instrument and at the focal plane did not
survive the launch even though the telescope was launched under vacuum to
avoid acoustic vibrations. Tears developed, which produced light leaks that were
fortunately localized to the edges of the detector so that they did not significantly
affect the image quality (Figure 8, left). However, in February 1998, after two
years in orbit, the light leaks suddenly (from one image to the next) became
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Figure 7. EIT 171 images taken during an off-point manoeuvre before and after correction.

Figure 8. Visible light leaks in EIT images. Left: after launch. Right: after the micrometeorite
event of February 1998.

much larger and the images were swamped by white light (Figure 8, right).
The most probable explanation for this is a micrometeorite hit that produced
a large pinhole in the front filters. Large amounts of white light could thus
reach the focal plane, and reach the detector through the pinholes that formed
in the back filter during launch. The solution to this problem was to insert
in the beam one of the extra Al filters held by the filter wheel. Without this
mechanism, EIT images would be almost unusable after 1998. This lesson should
be remembered for future long-duration missions. Not only can the launch be
harmful to these filters, but sudden degradation can occur at any time, especially
if the spacecraft encounters harsh environments. In this case, the redundancy
provided by a mechanism is essential.

2.3.3. Conclusion

Sixteen years of EIT observations have given us many examples of the issues
that can be encountered during the lifetime of an EUV telescope. EIT shows
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no significant changes in its spectral selectivity, but variability of the detector
sensitivity was a major hurdle. Part of this problem (the contamination by water)
could have been avoided if the pressure in the vacuum vessel had been maintained
low enough up to the launch. This illustrates the importance of maintaining
cleanliness during the whole lifetime of the instrument. The contaminants were
also trapped in the back end of the telescope due to insufficient conductivity
to the telescope section and to space. This issue was solved on Solar TErres-
trial RElations Observatory/Extreme UltraViolet Imager (STEREO/EUVI) by
adding vents close to the detector and this practice should be maintained for
future telescopes. Comparing with other instruments, like CDS or SEM onboard
SOHO, we concluded that most of the variability of the instrument response
(70%) is explained by the degradation of the detector. This behavior is different
from that of SEM, even though the two instruments observe in comparable
wavelength bands. The degradation observed in SEM is explained in terms
of a carbon deposit on the front filter, while on EIT there is no evidence of
variation in the EUV response of either the filters or the multilayer coatings.
This difference may find its source in a combination of factors such as different
designs, materials, contamination control plans, locations on the spacecraft, etc.

2.4. SOHO/CELIAS-SEM

The Solar and Heliospheric Observatory / Charge, Element, and Isotope Analysis
System - Solar EUV Monitor (SOHO/CELIAS-SEM: Judge et al., 1998) is a
simple transmission grating spectrophotometer using an entrance Al filter to
restrict the bandpass incident on the grating, and defining the bandpass of the
zero-order signal. Detectors in the first-order are positioned to measure the 26 –
34 nm region of the solar spectrum, including the He ii emission at 30.4 nm.

The SEM showed steady degradation of the first-order signal over the first
seven years of operation, and after that the degradation has remained almost
constant as shown in Figure 9. The degradation has been tracked by a series
of sounding-rocket underflights with a copy of the SEM instrument that is
calibrated at the National Institute of Standards and Technology (NIST) with
the Synchrotron Ultraviolet Radiation Facility (SURF) before and after flight.
This way the calibration of the sounding rocket can be applied to the on-orbit
SEM, and the degradation measured.

It is postulated that the degradation seen by SEM is due to the build-up
of a contamination layer on the front filter of the instrument. As no spectral
information is available, it has been assumed that the major element causing
contamination is carbon. Hydrocarbons from spacecraft outgassing, fuel return
etc. can hit the front filter; a certain proportion will “stick” and can become
polymerized by the solar UV radiation. As this layer grows, the EUV signal is
more strongly attenuated. Figure 9 shows the degradation as measured by the
sounding-rocket underflights and the modeled thickness of carbon required to
cause this level of attenuation in the 26 – 34 nm band.

2.5. Long-Term Exposure Correction of VIRGO/DIARAD

TheDifferential Absolute Radiometer (DIARAD: Dewitte, Crommelynck, and Joukoff,
2004), is one of the radiometers of the Variability of solar IRradiance and Grav-
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Figure 9. Degradation of the SOHO/CELIAS-SEM 26 – 34 nm band (blue, solid line) as
measured by sounding-rocket underflights of a NIST calibrated copy of the SEM (diamonds).
The degradation is modeled as the build-up of a layer of carbon (red, dotted line). This is an
updated version of the degradation trending first presented by McMullin et al. (2002).

ity Oscillations (VIRGO: Fröhlich et al., 1995) package on SOHO developed at
the Royal Meteorological Institute of Belgium. VIRGO/DIARAD has measured
the Total Solar Irradiance (TSI) since 1996. The instrument is a dual-channel,
side-by-side, self-calibrating absolute radiometer. Each channel is composed of a
detector assembly, a cylindrical black-painted cavity with its associated precision
aperture, a baffling system, a limiting aperture, and a shutter. Both cavities are
mounted on a common heat sink. The DIARAD working principle is based on
the compensation of heat in one channel’s cavity while its shutter opens and
closes every three minutes (Dewitte, Crommelynck, and Joukoff, 2004). When
the shutter of the measuring channel is open, part of the solar radiation is
absorbed by the cavity. Its induced heat flux is measured by the detector.
When the shutter closes, a servo system compensates for the deficit of radia-
tive power by dissipating an equivalent electrical power. When measuring with
one channel, the other channel is used as a reference and its shutter is kept
closed. For a detailed description of the instrument, see Crommelynck (1982),
Crommelynck and Dewitte (1999), and Mekaoui et al. (2010).

2.5.1. Degradation Monitoring Strategy

The instrument being symmetric, each channel can be used as an indepen-
dent measuring device with its own electrical, thermal, geometrical, and op-
tical characteristics. These characteristics are the main parameters in deter-
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mining the absolute value of the TSI. This last topic is still a matter of de-
bate (Mekaoui et al., 2010; Fröhlich, 2011; Kopp, Harber, and Heuerman, 2011;
Kopp and Lean, 2011; Fehlmann et al., 2012). While each channel of DIARAD
is electrically self-calibrating, assuring the stability of the measurements of the
absolute TSI value, the thermo–optical properties are subject to degradation
and changes due to the long-term exposure to solar radiation.
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Figure 10. Temporal variation of TSI measurements from VIRGO/DIARAD. Green symbols:
daily mean TSI measurements from the left channel; Black curve the 25-minutes average of
the TSI measurements made each month with the right channel; Red symbols the daily mean
aging-corrected TSI measurements.

This type of degradation is monitored and corrected by ground processing.
To achieve it, the left-channel has measured the TSI every three minutes, since
1996. During the three minutes, the left shutter is open for only half of the
time. As a consequence, the total induced aging effect from the start of the
measurements in 1996 – assuming its unique dependence on the exposure time
– is caused by around 8.5 years of cumulative exposure to solar radiation. The
right channel is operated for only 45 minutes every month. It is exposed for half
of the time to solar radiation. Its total exposure accounts for three days from
the start of the mission. Figure 10 shows the daily mean TSI measurements
from the left channel (in green) and the 30-minute average of the right-channel
measurements (in black, the first 15 minutes are excluded due to a transient
effect). In this figure, the right-channel measurements have been adjusted to the
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Figure 11. DIARAD right minus DIARAD left TSI measurements. The offset is removed at
the beginning of the mission. The black curve is the computed aging correction from a variable
nine-point running mean over the right–left difference.

left-channel measurements at the begining of the mission in 1996. In 2012, the
difference between the two channels measurements is around 1.2Wm−2 due to
the degradation of the left-channel.

2.5.2. Degradation Correction Implications

The less-exposed channel gives valuable information on the long-term TSI evo-
lution. From Figure 10, the right channel indicates that the difference between
TSI minima in 2009 and 1996 is 0.15±0.17Wm−2. This suggests that no signif-
icant increase is measured between Solar Cycle 23 minima. Alternatively, these
measurements can be used to correct the nominal (left-channel) for its aging.

For each monthly measurement with the right channel, left-channel measure-
ments are made before and after. These measurements are then interpolated
and compared to the right-channel measurements (simultaneous measurements
with the right and the left channel are not possible). In order to reduce the
uncertainty, it is important to compare the same means. Indeed, the right-
channel measurement is a 25-minute average and so should be the left-channel
measurements before the interpolation. Figure 11 shows the difference between
the right-channel measurements and the interpolated left-channel measurements.
A fitted curve is used to smooth the difference. The values of this curve are then
added to the left channel measurements to take into account its degradation.
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This exposure-dependent aging is the only correction applied by the team of
the Royal Meteorological Institute who developed the instrument. Additional
corrections are applied by the VIRGO PI-team. These non-exposure dependent
corrections are based on the comparison with other radiometers (Fröhlich, 2003).
These results are still a matter of debate and have yet to be reproduced on the
ground.

3. Degradation of the Hinode/EIS Detectors after Five Years in
Orbit

The Hinode satellite was launched in September 2006 and is still operational.
Hinode is a Japanese satellite with payloads funded by JAXA–ISAS, NASA,
ESA and UKSA (previously STFC). Hinode is in a Sun-synchronous low-Earth
orbit (altitude ≈ 600 km), which allows for continuous observing of the Sun.
There are three solar telescopes on-board Hinode; the Solar Optical Telescope
(SOT: Tsuneta, 2008), the X-Ray Telescope (XRT: Golub et al., 2007), and the
Extreme-UV Imaging Spectrometer (EIS: Culhane et al., 2007).

The Extreme-UV Imaging Spectrometer (EIS) has a large effective area in two
EUV spectral bands; 17 – 21 nm and 25 – 29 nm. There are two CCDs, one for
each wavelength range. The CCDs are e2v device type CCD 42-20, which have
an array size of 2048×1024 pixels, a pixel size of 13.5×13.5µm2, are thinned
for back-illumination, and employ multi-pinned phase (MPP) technology in
asymmetric inverting mode operation (AIMO) which allows for low dark-current
levels without excessive cooling (see Culhane et al., 2007 for the EIS instrument
article).

The in-orbit operating temperature range of the CCDs is ≈ −36 ◦C to −46 ◦C;
the variation is due to the perihelion and aphelion of the orbit. The assembly and
pre-launch calibration of EIS were performed at RAL (UK). The components of
EIS (entrance filters, primary mirror, slit/slot mechanism, shutter, grating and
CCDs) are housed in a carbon-composite structure. Post-launch, a pixel shift of
eight – nine pixels in the spectral direction was observed when compared with
the pre-launch calibration. The shift was attributed to the thermal stabilisation
and out-gassing of the instrument, and a correction was made in the software
to accommodate the shift. Regular calibration studies are run weekly, monthly
or quarterly depending on the type of study, which include: dark exposures,
Light Emitting Diodes (LEDs) flat-fields, synoptic, quartz crystal microbalance
(QCM), and full CCD spectral scans.

3.1. Hot and Warm Pixels

The hot and warm pixels are defects in the CCDs where rates of charge leakage
are higher due to defects in the Si. A few exist in the as-manufactured device,
and radiation damage accumulated over time adds to these. In the EIS orbit, the
radiation effects are dominated by passages through the South Atlantic Anomaly
(SAA). The hot and warm pixels are seen as spikes in the data which need to be
calibrated out, e.g. using eis prep (an IDL routine available in the EIS Solarsoft

SOLA: degradation.tex; 17 September 2018; 21:34; p. 18



On-Orbit Degradation 19

distribution). The positions of the warm and hot pixels are mapped and the
information provided to eis prep. The distinction between hot and warm pixels
is somewhat arbitrary. Pre-launch, hot pixels were defined as pixels where the
room-temperature dark current rate was above 25 000 electron s−1 pixel−1, for
consistency with the criterion used by e2v in device screening and characterisa-
tion. In orbit, it has been found that radiation damage also causes pixels with
lower charge-generation rates, but which are still above the CCD noise level,
and so have to be taken account of. These are termed warm pixels, and the
criterion used is that the dark signal is > 5σ above the mean for a 100 second
dark exposure. The hot and warm pixels generally follow the usual exponen-
tial temperature dependence of dark current in silicon, so cooling is effective
in reducing the impact on the data. For EIS, the CCD temperature is higher
than the pre-launch prediction of below −50 ◦C, so the hot and warm pixels are
greater in number. The XRT instrument on Hinode has the same type of CCDs
as EIS but they operate at a much colder temperature (≈–80 ◦C) and therefore
do not have a problem with warm pixels. The increase in hot pixels follows an
approximately linear trend over time and as of April 2012 the number of hot
pixels per each CCD quadrant was ≈ 7800, which is equivalent to 1.5% of the
imaging area. The rate of increase of the warm pixels changes significantly and
is temperature dependent, due to the dark-current variation with temperature
(annual variations in the CCD temperature are due to aphelion and perihelion),
as shown in Figure 12.

As of March 2012, the average number of warm pixels for each CCD quadrant
was ≈ 108 thousand (which is ≈ 21% of the imaging area). The warm pixels are
currently in a decreasing phase (CCD temperature is decreasing). The number
of warm pixels in December of each year (hottest point) is increasing by ≈ 16
thousand per year. Based on this assumption the number of warm pixels will be:

• ≈ 136 thousand (26% of the imaging area) in December 2012,
• ≈ 152 thousand (29% of the imaging area) in December 2013.

When a 30% warm pixel level is reached the spectral-line-fit parameters will
be affected (Private communication, P. Young 2012). When the number of warm
pixels (per CCD quadrant) reaches 157 286 the 30% level will have been reached.
The highest number recorded so far was 120 312 on 5 January 2012 (on the short
wavelength CCD).

3.2. Flat Field and EIS Sensitivity

The sensitivity levels for the EIS CCDs are monitored by using the data from
LEDs flat-field images. The LEDs are blue, λpeak ≈ 430 nm, which approxi-

mately matches the absorption depth for the EUV photons. The flat fields show
that the intensity levels have not changed significantly since launch (Figure 13),
therefore indicating that any contamination is not on the CCDs.

A synoptic observation is run weekly, which observes a patch of quiet-Sun.
The record of He ii observations shows that the EIS sensitivity decay rate is
slowing (Figure 14).
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Figure 12. Number of warm pixels for the EIS CCDs. The (upper) black curve is the number
of warm pixels and the (lower) blue curve is the corresponding CCD temperature.

The best-fit expression is now an exponential plus a constant. It is not yet
clear whether some of the flattening is due to solar-cycle effects. Figures 13 and
14 indicate that the sensitivity decay is due to contamination/degradation of
the optical elements rather than the CCDs. The sensitivity changes are factored
into the EIS analysis software (eis prep).

The QCM (located at the entrance aperture) readings for EIS have been taken
at weekly intervals since launch and provide an indication of the contamination
levels of the critical instrument surfaces. The QCM data has shown a slight
increase year to year which is to be expected. The QCM data from 2010 to
2011 saw a smaller increase compared to previous years. This agrees with the
sensitivity measurements, which show that the decay rate is slowing (i.e. less
contamination).

3.3. CCD Annealing

The plan so far has been to hold off from doing a CCD anneal or bake-out (heat-
ing the CCDs to around +35 ◦C) for as long as possible, as it presents a small
risk to the instrument (heaters require a high-power mode). Discussions at the
recent EIS team meeting (April 2012) concluded with an annealing estimated for
December 2013 which will be after seven years in orbit. Initially it was planned
to perform a bake-out when the optical performance degraded but the flat-field
intensity levels suggest that there is no contamination on the CCDs (Figure 13),
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Figure 13. Flat-field intensity levels for the EIS CCDs using EIS LEDs (averaged over a
450×450 pixel area). The (upper) black curve is the intensity level and the (lower) blue curve
is the corresponding CCD temperature.

and therefore a bake-out will not improve the optical performance. The current
driver for an anneal is the number of warm pixels, and not contamination. The
warm pixels will compromise the science when a 30% level is reached. The warm
pixels are also impacting the EIS data compression; the effect being that the
EIS telemetry allocation is reached as estimates are wrong (data compression
degradation). The data-compression factors for EIS have been reduced by 10%
(five years into the mission). Until now, this reduction is only for the hot season
(October to April) – when warm pixels are increasing. Data compression factors
will be returned to nominal in the cooler season (April to October) when warm
pixels are decreasing. It is hoped that, following bake-out, the data compression
performance will revert to the post-launch level. The EIS operations team will
have to experiment with anneal temperatures (+35 to +45 ◦C) and durations to
maximise recovery prospects of the hot and warm pixels.

3.4. Conclusion

The EIS instrument behaviour is nominal for a Low-Earth Orbit (LEO) space
mission of its age. The CCDs are sustaining radiation damage as expected,
although the amount of dark current per damaged pixel is higher than originally
predicted due to the higher operating temperature (planned around −60 ◦C,
achieved around −45 ◦C). The warm pixels will impact the science operations
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Figure 14. EIS sensitivity rate using He ii observations (courtesy J. Mariska, NRL).

once their level reaches 30% of the imaging area. At present they are mapped
and removed via EIS processing software. It is hoped that a bake-out (≈ +35 ◦C)
will recover most of the warm pixels. Bake-out is currently planned for the end
of 2013. The data compression performance was affected when the warm pixels
reached a 25% level (five years into the mission). EIS compression factors are
now reduced by 10% during the hot season. The optical performance degradation
is better than expected (compared to similar missions and duration in orbit) –
it is expected that 1/e will be reached in seven years.

4. Long-term Stability of the Photometric Response of the
STEREO/HI-1

The twin Solar TErrestrial RElations Observatory (STEREO) spacecraft, which
were launched in October 2006, are in heliocentric orbits at approximately 1 AU,
with each spacecraft separating from the Earth by 22.5◦ per year. STEREO-A
is leading the Earth in its orbit, whilst STEREO-B is trailing the Earth.

The Heliospheric Imager (HI: Eyles et al., 2009) instruments form part of
the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI:
Howard et al., 2008) suite of remote-sensing instruments aboard each of the
STEREO spacecraft. They are primarily designed to observe coronal mass ejec-
tions (CMEs) as they propagate from the solar neighbourhood to Earth-like
distances and beyond. Each HI instrument consists of two visible-light cameras,
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HI-1 and HI-2, having field-of-view (FOV) diameters of 20◦ and 70◦ respec-
tively, and whose optical axes are aligned with the ecliptic plane in orientations
providing an overall coverage of 4 – 88.7◦ solar elongation. The HI-1 and HI-2
telescopes consist of CCD cameras with fairly conventional transmission optics,
and which are “buried” within complex baffle systems in order to provide the
necessary high levels of solar stray-light rejection for imaging the faint emission
from CMEs. The spectral band passes are 630 – 730 nm and 400– 1000 nm for
HI-1 and HI-2, respectively. The CCDs are passively cooled to below −70 ◦C.

4.1. Initial Photometric Calibration

The initial photometric calibration of the HI-1 telescopes (Bewsher et al., 2010)
was based on data from the start of STEREO mission operations up to December
2008. The intensities of stars with R magnitudes ≤ 12 and within 100 pixels
radius from the center of the FOV were measured using aperture photometry.
The stars and their spectral types were identified from the NOMAD catalogue
(Zacharias, 2004). Predicted intensities were calculated by folding standard stel-
lar spectra S(λ) (Pickles, 1998) through an optimised model of the instrument
response function. The model of the instrument response was optimised using
all available pre-flight calibration data, CCD and optics manufacturers response
specifications, etc.

Figure 15 shows the measured versus predicted intensities for large popula-
tions of stars. Apart from a few outliers at high intensities (due to detector
saturation effects), the stars lie close to a fitted straight line of slope µ, i.e.
Cmeasured = µCpredicted.
The photometric calibration factor [µ] represents an overall normalisation error
in the instrument response, the value µ = 1 representing a perfect calibration.
The values obtained for µ were 0.93 and 0.99 for HI-1A and B respectively, with
the total number of stars fitted being 903 and 541. No significant differences in
µ were found according to spectral type, confirming the validity of the model of
the instrument spectral response.

4.2. Stability of the Photometric Response

In order to evaluate the stability of the photometric response, the above analysis
was performed separately for each of the complete orbits of the STEREO space-
craft. The derived values for µ are shown in Table 2. The values for orbits 1 – 4
relative to the background star field are taken from Bewsher, Brown, and Eyles
(2012), and the values for orbit 5 and the overall value of µ are new to this
article. As previously, µ was determined using stars within 100 pixels radius
from the center of the FOV (Bewsher, Brown, and Eyles, 2012). Complete orbits
were used in order to avoid any possible systematic effects due to different star
populations being used in each case.

It is clear from Table 2 that there are no systematic changes in the photo-
metric response of either instrument at a level of 1% or better. The analysis
was also repeated for various selected regions of the FOV and again the re-
sponse was found to be stable to 1% or better, although some variations at
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Figure 15. Measured versus predicted intensities (in DN s−1) for a large number of stars in the
HI-1A (top) and HI-1B (bottom) initial photometric calibrations. Updated from Bewsher et al.
(2010).
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Table 2. The photometric calibration factor [µ], and the number of stars
used to determine µ.

Orbit 1 Orbit 2 Orbit 3 Orbit 4 Orbit 5 Overall

HI-1A 0.926 0.933 0.927 0.930 0.935 0.930

No. stars 430 418 433 424 428 2141

HI-1B 0.998 0.987 0.989 0.993 0.981 0.989

No. stars 387 384 455 417 368 2029

the level of 2 – 3% in the value of µ for different regions of the FOV were
found, indicating some small systematic errors in the HI-1 flat-field corrections
(Bewsher, Brown, and Eyles, 2012).

4.3. Conclusions

We have shown that from the start of mission science operations until the end of
the fifth orbit of the two spacecraft relative to the background star field (5 Dec
2011 and 18 July 2012 for STEREO A and B, respectively), the photometric
response of the HI-1 cameras has remained stable to 1% or better. This is sig-
nificantly better than the long-term stability of the white-light coronagraphs on-
board the SOHO mission, where Thernisien et al. (2006) found a decrease of sen-
sitivity of the Large Angle and Spectrometric Coronagraph (LASCO) C3 instru-
ment by 3.5% over eight years of operation, whilst Llebaria, Lamy, and Danjurd
(2006) reported a degradation of the LASCO-C2 instrument by 0.7% per year.
Whilst white-light instruments are not as sensitive to degradation as UV in-
struments, the excellent stability of the HI instruments vindicates the extensive
precautions taken during their design and development.

5. SOLSPEC: A Spectrometer With Onboard Control of Aging

The SOLar SPECtrum (SOLSPEC) is a spectrometer, that flew several times
on the Space Shuttle, and its twin instrument was placed on the European
Retrievable Carrier (EURECA) platform for ten months. The Shuttle flight has
gathered data to build the Atmospheric Laboratory for Applications and Science
(ATLAS) 1 and 3 spectra (Thuillier et al., 2009), which comprised the Upper
Atmospheric Research Satellite (UARS) / Solar Ultraviolet Spectral Irradiance
Monitor (SUSIM) and Solar Stellar Irradiance Comparison Experiment (SOL-
STICE) data from lyman-α (121.6 nm) to 200 nm, and ATLAS-Shuttle Solar
Backscatter Ultraviolet (SSBUV), SUSIM, and SOLSPEC from 200 to 400 nm,
ATLAS-SOLSPEC from 400 to 850 nm, and EURECA- SOlar SPectrum (SOSP)
from 800 to 2400 nm. The ATLAS spectra are calibrated into the absolute
radiometric scale of the black-body radiator of the Observatory of Heidelberg,
NIST standards spectral irradiance (tungsten and deuterium lamps). The SOL-
SPEC instrument has been upgraded for operations onboard the International
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Space Station (ISS) by implementing several changes given the lessons learned
from the previous missions and by adding several new components in order to
provide an instrument able to operate for several years in the space environment.
SOLSPEC has now been in operation on board the ISS since February 2008. To
cover the 165 – 3080 nm range, three double spectrometers are used which are
equipped with concave holographic gratings made by Jobin–Yvon. By rotating
the six gratings mounted on the same mechanical axis, the range 165 – 3080 nm
is scanned in ten minutes with a mechanical precision corresponding to 0.01 to
0.1 nm, from the UV to the IR channels. To reduce the flat-field effect, diffusers
are placed between the entrance pre-slit and spectrometer first slit. As the ISS
environment could not always be clean in terms of contamination, and as the
diffusers could degrade by EUV solar radiation, two wheels each carrying a
hole and two quartz plates can be placed alternatively in front of the entrance
pre-slit. These plates allow protection of the entrance slits from contaminants
deposition, which can be ultimately polymerized by the solar EUV. In that case,
the quartz-plate transmission decreases; however, it can be measured in-flight
by using the ratio of solar observations with and without the quartz plate in
front of the entrance slit. One plate is mainly used for each observation. Using
the Sun, its transmission is compared to the not frequently used quartz-plate
transmission. For each spectrometer, a wheel is equipped with second-order
and/or neutral filters. The latter are used to reduce the signal given by the
instrument responsivity and the solar irradiance variation with wavelength.

5.1. Pre-Flight Absolute Calibration

SOLSPEC has been calibrated at the PTB using a black-body radiator. One of
these black-body sources (BB3200pg) represents the primary standard for the
realization of the spectral irradiance scale (Sperfeld et al., 1998). Taking into
account the distance between the black-body source and the SOLSPEC entrance
slit, the size of the entrance slit, the black-body aperture, and the black-body
temperature, the spectral irradiance is calculated for any given wavelength using
the Planck law. The black-body cavity temperature is around 3000K and it
is known to within 0.44K. The black-body emission being calculated, and its
ratio to the count number recorded by SOLSPEC, allows the solar signal to be
converted to absolute irradiance. Below 200 nm, the black-body source does not
generate enough signal, and hence deuterium (D2) lamps provided by the PTB
were used. During the calibration campaign, several spectra using the internal
lamps were recorded as a reference in the relative scale. For the whole spectral
range, the accuracy of SOLSPEC stays within 3%. The SOLSPEC instrument
is described in detail by Thuillier et al. (2009).

5.2. Onboard Calibration Means and Instrument Degradation in Space

D2 and tungsten ribbon lamps are used for checking the instrument stability
with time. The light from these sources is carried by using optical fibres, mir-
rors, and lenses. The relationship between the gratings mechanical position and
wavelength is measured by using a hollow cathode (HC) lamp filled with argon
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Figure 16. Transmission degradation of the quartz plate used for the UV–VIS solar spectrum
measurements. The transmission is measured by comparing the signal with and without the
quartz plate.

(Ar) delivering lines in the UV, visible, and near IR. These lines also allow the
measurement of the instrument slit function and the dispersion law (relationship
between the grating position and wavelength).

Degradation in visible and IR domains is of about a few percent, and can
be corrected by measuring the transmission of the quartz plates and by using
the internal ribbon tungsten lamps. As expected, the degradation in the UV is
significant.

Figure 16 shows the transmission loss of the most frequently used quartz
plate. The instrument responsivity change is derived from comparison of the
transmission of the second quartz plate (infrequently used), direct quartz-plate
transmission measurements, and D2 lamp data. After the D2 lamp power-supply
failure, we used the HC lamp lines intensity based on the following principle:

• In the laboratory, as well as in orbit, we have verified that the lines emitted
by the HC lamp have a covariance intensity change in time. In other words,
the ratio of line intensity at two different wavelengths is constant, i.e.
independent of the line intensity, which slowly decreases likely due to a
gas leakage.

• As there is a corrected aging (as explained above), in the visible (or IR)
spectrometer, the HC-lamp lines intensity can be corrected and the per-
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centage of correction is in particular applied to the UV lines providing data
to correct the UV spectrometer responsivity.

5.3. Conclusion

google The SOLSPEC design has been validated by the SpaceLab I, ATLAS 1,
2, 3 and EURECA missions. However, the duration of these missions were about
one week except for EURECA, which lasted ten months. For a mission aiming
to operate for several years, it was necessary to design an instrument having its
own capability to provide data for aging corrections given its location in space.

6. Solar Instruments Onboard PROBA2

The Project for On Board Autonomy (PROBA) satellites are part of ESA’s
In orbit Technology Demonstration Programme, i.e. missions dedicated to the
demonstration of innovative technologies through small satellites. On 2 Novem-
ber 2009, PROBA2 was launched into a Sun-synchronous polar orbit allowing
quasi-permanent solar observation. Two solar observation experiments, the Sun
Watcher with Active Pixels and Image Processing (SWAP: Seaton et al., 2012;
Halain et al., 2012) and the Large-Yield RAdiometer (LYRA: Hochedez et al.,
2006) on PROBA2 are test platforms for new technologies.

The absolute radiometric response of the two instruments, through collabo-
ration between the Max-Planck-Institut für Sonnensystemforschung (MPS) and
the PTB, has been established before flight at the primary radiometric source
standard, the synchrotron radiation beamline of PTB at the Berlin Storage Ring
for Synchrotron Radiation II (BESSY II).

6.1. A Characterization of SWAP Degradation

SWAP is a single-band EUV telescope which observes the solar corona in a
passband centered on 17.4 nm and with a 54×54 arcmin FOV, has a novel off-axis
Ritchey–Chretien design with two mirrors with multilayer coatings for EUV re-
flectivity and a complementary metal-oxide-semiconductor (CMOS) active pixel
sensor (APS). A scintillator coating (P43) converts EUV photons into visible
photons to which the detector is sensitive. Spectral selection is achieved by the
combination of multilayer coatings and two Al-foil filters, one of which is located
at the entrance aperture and the other in front of the focal-plane assembly.
SWAP has operated essentially continuously since shortly after PROBA2’s in-
jection into its polar Sun-synchronous orbit in November 2009 at an approximate
altitude of 725 km. Additionally, since SWAP does not have a door or shutter, its
optical and electronic systems are continuously exposed to EUV input from the
corona. We characterize SWAP’s degradation in three ways: first, we compare
the total response of the instrument to well-calibrated spectral measurements
from the Extreme Ultraviolet Variability Experiment (EVE: Woods et al., 2012;
Didkovsky et al., 2012) onboard theSolar Dynamics Observatory (SDO) space-
craft; second, we measure the number of improperly performing pixels in SWAP’s
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Figure 17. Comparison of SWAP measured intensity (dashed) and SDO/EVE computed
intensity (solid). The top panel shows the variation of intensity with time due to changes in
solar irradiance near 17.4 nm, the lower panel shows the ratio of the two values over time.
Adapted from Halain et al. (2012).

1024×1024 pixel CMOS detector; and finally, we roughly measure the evolu-
tion of SWAP’s flat-field using a set of onboard LEDs. Further information on
the ground-based calibration from PTB/BESSY II is discussed by Seaton et al.
(2012), and the in-flight calibration by Halain et al. (2012).

6.1.1. Spectral Response

Since it is not possible to obtain in-orbit EUV images of a standard and well-
calibrated source, degradation in the SWAP response function must be measured
indirectly. In order to do this, we compared the mean SWAP response per pixel
for solar images obtained regularly throughout the mission to corresponding
spectra from EVE. To achieve this comparison, EVE spectra are first converted
from units of total flux per wavelength to photon flux, then modulated by the
laboratory-measured SWAP response function, and integrated across SWAP’s
entire bandpass. This procedure yields a single value with units of DN s−1 pixel−1

that we can compare to the mean instrumental response in images obtained at
the same time as the corresponding spectrum.

We then compare the evolution of these two values over time to assess the rate
of degradation of SWAP’s overall response over the course of the mission. Note
that a multiplicative factor of 1.11 is applied to the EVE-based curve before
our analysis. The need for such a factor is probably the result of a combination
of uncorrected degradation of EVE in orbit and error in measuring the SWAP
response in the laboratory; the factor to be used was measured empirically, and
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could be the result of many different contributions. Figure 17 shows this com-
parison; although the two curves are closely correlated, driven by the variation
in coronal irradiance near 17.4 nm, they diverge at the end of 2011, the reason
for which is still unclear.

6.1.2. Detector Degradation

A potentially more significant problem for SWAP is the breakdown of electronic
components, especially those associated with its CMOS–APS detector, which
is the first of its kind used for an EUV solar telescope. A complete discus-
sion of SWAP’s detector and its on-ground performance testing was given by
De Groof et al. (2008). Unlike CCD detectors, which have been used in nearly
all solar imaging missions for decades, each pixel in a CMOS–APS detector has
its own analog (amplifier) readout electronics, so a failure of these electronics
can render only individual pixels inoperable. We monitor detector performance
primarily by tracking the number of hot pixels removed by the de-spiking rou-
tine in SWAP’s image-calibration software. This value is strongly influenced
by the evolution of detector temperature, so to separate changes in detector
performance from the thermal evolution of SWAP, we model the temperature
dependence of hot pixels using an empirically determined polynomial model and
normalize the evolution of spikes in time using this model. Figure 18 shows both
the normalized and unnormalized curves for a period of about 700 days after the
end of PROBA2’s commissioning period. In the normalized plot, the number of
spikes clearly increases linearly in time at a rate of about 13 spikes day−1 or
about 4800 spikes year−1. This corresponds to a loss of only about 0.45% of
all detector pixels per year. We note that this linear increase in pixel damage is
consistent with the results ground-based radiation exposure tests described in
the detector datasheet produced by Cypress (formerly FillFactory), the detector
producer. The large jump around day 300 (Figure 18 lower panel) is due to
a refinement in SWAP calibration procedures. The two dips in the number of
spikes near December and January of 2010 and December 2011 are the result of
PROBA2’s reduced operating temperature during the spacecraft’s eclipse season.

6.1.3. Image Quality Degradation

The final type of degradation that can affect SWAP is the degradation of intrinsic
image quality due to losses of efficiency in the optical components as a result of
EUV “burn-in” or deposition of contaminants on optical surfaces. This type
of degradation is the most difficult to measure, since, as is the case for all
space-based EUV telescopes, there is no standard EUV source available with
which to measure SWAP’s flat-field while in flight. However, this type of degra-
dation was the principal cause of loss of quality in images from EIT on SOHO
(Clette et al., 2002) so it is worthwhile to study its role in SWAP degradation to
the extent that we can do so. Although the production of a true gain calibration
for SWAP is very difficult, SWAP carries two visible LEDs that can help to
reveal strong variations in image quality. For this analysis we compare the ratios
of LED brightness at the beginning of PROBA2’s mission with more recent
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Figure 18. Spikes detected in SWAP images versus time. The top panel shows the rate of
increase in detections with the effects of temperature variation removed. The lower panel shows
the variation including temperature effects. The dotted curve in both panels shows the effect
of a linear increase in spikes with a rate of 13 spikes per day. In the lower panel this has been
adjusted to reflect temperature variation as well, showing that the linear increase is indeed a
good match for actual detector behavior. Adapted from Halain et al. (2012).

observations of the LEDs. Since the LEDs are located close to SWAP’s focal
plane assembly (FPA), we cannot characterize any changes in filter or mirror
performance with this measurement. However, any significant changes in the
performance of the optical path would likely show up in our analysis of SWAP’s
spectral response. Nonetheless, it is worth pointing out that this analysis applies
only to the FPA components and LEDs themselves. We compared LED images
obtained as part of a bi-weekly calibration campaign performed throughout
the mission to study changes in image quality over time. By computing the
pixel-by-pixel ratio of LED images from the beginning of the mission to LED
images from the end of the mission, we can determine whether any spatially
coherent degradation has occurred. Comparing images from April 2012 to LED
images from the early-mission commissioning phase revealed a small, ring-shaped
decrease in detector response, roughly coincident with the location of the solar
limb, where the brightest coronal emission occurs, in nominal SWAP images.
This suggests that there has been some degree of burn-in over the course of the
mission. However, the decrease was only a few DN per pixel, which corresponds
to a net decrease in instrumental response of less than 0.1% of total signal in
well-exposed images. Since this level is far below instrumental noise levels and, as
a result of image compression, is in fact undetectable in nominal science images,
we conclude that this type of degradation is not a significant concern for SWAP.
Additional discussion of the use of LED images to diagnose SWAP degradation,
including a figure that shows this effect, is given by Halain et al. (2012).
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6.1.4. Conclusion

SWAP has a dual role; it is both a scientific instrument and a test platform for
new technology. While many such space-based EUV instruments have experi-
enced significant degradation during the initial years in orbit, SWAP has shown
itself to be remarkably robust against degradation of any kind. This analysis
suggests SWAP has only experienced one significant type of degradation: failures
in the detector electronics, which have occurred at a rate of less than 5000 out
of approximately 106 pixels (less than 0.5%) every year. The lessons learned
from SWAP’s simple, efficient, and robust design are especially applicable to
instruments intended primarily for space weather monitoring such as the pro-
posed EUV Solar Imager for Operations (ESIO) instrument. Such instruments,
which often are expected to operate with limited resources, must be long-lived
and dependable and thus must be highly robust against adverse conditions in
the space environment to which they will be exposed.

6.2. LYRA Degradation after Two Years in Orbit

The Large-Yield RAdiometer (LYRA), observes the Sun in four spectral bands
that range from UV to soft X-ray. It consists of three units that are redundant
but not technically identical. While each unit consists of the same four spectral
channels covering a wide emission temperature range, these channels are realized
by different filter–detector combinations. Three types of detectors were used,
conventional Si photodiode detectors (AXUV type from IRD), as well as two
types of diamond detectors, which have the advantage of being radiation resistant
and insensitive to visible light (BenMoussa et al., 2006). Another advantage of
LYRA is its high observation cadence, up to 100 Hz. LYRA uses two calibration
LEDs per detector to individually monitor the possible detector degradation
over the mission lifetime.

LYRA channel 1 (lyman-α) covers a narrow band around 120 – 123 nm, plus,
unfortunately, a major contamination caused by longer wavelengths. LYRA
channel 2 (herzberg) covers the interval 190 – 222 nm in the Herzberg continuum.
LYRA channel 3 (aluminum) covers the 17 – 70 nm Al filter range including
the strong He ii 30.4 nm line, as well as soft X-ray contribution below 5 nm.
LYRA channel 4 (zirconium) covers the 6 – 20 nm Zr filter range with the highest
solar variability, as well as soft X-ray contribution below 2 nm. For a detailed
description of the mission, see Hochedez et al. (2006).

Since PROBA2 is a combined science and technology mission, the goal was not
only to provide scientific data for the study of solar flares, space weather, and
aeronomy, but also to observe the performance of new technologies in space.
Thus, the observation of the instrument’s degradation and its causes is an
important part of the mission goal.

6.2.1. Calibration

The spectral response of the twelve possible filter–detector combinations was
tested before launch with a standard source (PTB/BESSY II); for details see
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BenMoussa et al. (2009a). The various nominal spectral intervals were defined
accordingly, such that they cover at least 95% of the response. This does not ap-
ply for the lyman-α channel, since the unwanted longer-wavelength contributions
to this channel depend on the detector technology.

LYRA is continuously observing the Sun, basically with its unit 2, for more
than two years. The data presented on the PROBA2 website (proba2.sidc.be)
include daily plots, three-day plots, monthly overviews, flare lists, and a com-
parison with the soft X-ray of NASA’s Geostationary Operational Environmen-
tal Satellites (GOES) satellites. LYRA data are available in daily FITS files;
users can chose between uncalibrated and calibrated time series in full temporal
resolution, and calibrated data averaged in one-minute intervals.

6.2.2. Degradation

LYRA unit 2 consists entirely of new diamond detectors to be tested in space. It
is therefore selected to be the “nominal” unit and ihas been used, almost without
interruption, since 6 January 2010, the day that LYRA first opened its covers.
Unit 1 and unit 3 are only opened and used sporadically, for limited campaigns
and for calibration purposes. Consequently, unit 2 degraded quite fast, especially
in its longer-wavelength channels; see Figure 19.

LYRA’s original spectral response, as measured in the laboratory, can only be
compared in a reasonable way to other space instruments when data of the first-
light day are used, i.e., before heavy degradation set in. It was thus decided to
calibrate LYRA with the help of a combined solar spectrum observed on 6 Jan-
uary 2010 by SOLSTICE onboard the Solar Radiation and Climate (SORCE)
and the SEE (Solar EUV Experiment) on the TIMED mission. The calibration
is then extended by adding the estimated loss by temporal degradation. This
method has the advantage of leaving the flare components within the shorter-
wavelength channels untouched, since it is observed that these signals do not
degrade. In addition, the shorter-wavelength channels react more to long-term
solar variability; therefore this variability has been adjusted with the help of
ch3-4 (i.e. unit 3, channel 4), the zirconium channel of unit 3, which is assumed
to be non-degrading.

By mid-March 2012, unit 3 had been open to the Sun for approximately 375
hours. It could thus be compared with the first 375 hours of open unit 2, which
was reached around 05 February 2010, within the commissioning phase. The
result is shown in Figure 20 and Table 3.

The loss percentage for the short-wavelength channels is calculated under
the assumption that the solar irradiance had dropped by 2% within the period
covered by unit 2, and that it had increased by 55% in the period covered by
unit 3; this is observed by LYRA ch3-4 (unit 3, channel 4). It is furthermore
assumed that the solar variation as reflected in ch2-3, ch2-4, ch3-3, and ch3-4 is
linearly dependent, and that ch3-4 is not degraded.

The loss in ch3-1, a channel which has significant contributions from visible
and IR radiations (Si detector), appears to be smaller than in ch2-1, which only
has a significant contribution from UV, apart from the Lyman-α line. Ch3-3,
after removal of the solar variation, appears to degrade initially as fast as the
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Figure 19. Temporal degradation and estimation of future trends for LYRA unit 2.
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Table 3. Relative signal losses (to the output signal on 6 Jan. 2010:
first light) in the four LYRA channels of unit 2 and unit 3, each after
375 hours of open covers (dark currents subtracted). To remove the
solar variation contribution in the shorter wavelength(*), ch2-3, ch2-4
and ch3-3 were adjusted relatively to ch3-4, which is assumed to be
non-degrading.

LYRA-unit2 degradation [%] LYRA-unit3 degradation [%]

ch2-1 58.3 ch3-1 28. 3

ch2-2 32.5 ch3-2 30.9

ch2-3 28.7* ch3-3 45.2*

ch2-4 10* ch3-4 0*

Figure 20. Comparison of the first 375 hours of unit 2 (quasi-continuous 6 January 2010 –
5 February 2010) and unit 3 (campaigns 6 January 2010 – 15 March 2012).

longer-wavelength channels, while channel 4 appears to degrade slower than the

others. Meanwhile, it is observed by regular calibration campaigns – using the

LEDs with covers closed – that the photodetectors made on diamond do not

show any degradation while the Si AXUV detectors a slight increase of its dark

current.

As can be seen in the unit-3 part of Figure 20, the degradation slows down

after sixty hours, which corresponds to campaigns around the end of 2010, i.e.

after approximately one year of operations.
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6.2.3. Comparison with EURECA/SOVA

Taking these results into account, it appears that the degradation of LYRA is
basically not due to detector loss, but it is due to molecular contamination on
the front optical-filter surface. It is interesting to compare this to another space
instrument, Solar Oscillation and Variability (SOVA) onboard EURECA, which
experienced both kinds of losses.

The SOVA experiment has three channels at around 335 nm (UV), 500 nm
(visible), and 862 nm (NIR). Its sunphotometers (SPM) were operated in space
for eleven months onboard EURECA. SOVA was launched and retrieved with
shuttles in 1992/93, and inspected at the Physikalisch-Meteorologisches Obser-
vatorium Davos/World Radiation Center after retrieval in 1994. They found a
yellow–brownish stain of unknown composition on the quartz windows and the
apertures. For a more detailed description, see Wehrli, Fröhlich, and Romero
(1996).

The UV detectors of SOVA faced a degradation – an immediate loss of ≈
70% – that appeared to be caused by radiation in space, independent of open-
cover duration. Indeed high proton energies (from the SAA) induced secondary-
particle generation when passing through the cover. In this case, the cover
shielding is no longer effective. This can be distinguished from the LYRA degra-
dation and compared to the complementing LYRA channels in the UV range.
Figure 21 shows the degradation of the four LYRA unit-2 channels together with
the three SOVA SPM-A channels, after 200 days of sunlight exposure. The solar
spectra are plotted to demonstrate where the largest variability is, and what
points or intervals the LYRA and SOVA channels actually correspond to. The
heaviest loss occurs in the UV around 200 nm; compared to this, the losses in
the IR and SXR appear negligible.

By connecting LYRA and SOVA data points, we suggest that there is probably
a common mechanism responsible for the degradation of LYRA and SOVA,
most likely the contaminant deposited on the filters. The extreme degradation
observed in the 20 – 500 nm range, mainly caused by some molecular contami-
nants, implies further studies and strong requirements on mission preparation
in order to avoid it in future long-term UV solar observations.

LYRA appears to have avoided detector degradation by exploiting a different
technology. Apart from this, the window degradation – obviously caused by UV-
induced polymerization of contaminants on the filter surface – has remained a
problem since the times of SOVA. The experience with SOHO, launched in 1995,
shows that it could have been avoided with an extensive cleanliness program.

7. SDO/EVE Instrument Degradation

The Solar Dynamics Observatory / Extreme Ultraviolet Variability Experiment
(SDO/EVE: Woods et al., 2012; Didkovsky et al., 2012) are solar EUV spec-
trometers, which show degradation of the EUV signal due to various mechanisms.

The SDO/EVE instrument comprises several channels using different tech-
nologies. The EUV spectrophotometer (ESP) is very similar to the SEM (cf.
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Figure 21. Normalized instrument response degradation as experienced by LYRA and SOVA
after 200 days of open covers vs. spectral ranges of their individual channels. The two curves
show two typical solar spectra on a log–log scale, one from a quiet-Sun, and one from maximum
sunspot activity with Sun actively flaring, and are in arbitrary units.

Section 2.4) using a transmission grating and photodiodes to provide zeroth-
order and first-order measurements in the bands: 0 – 7 nm (zeroth-order), 17 –
22 nm, 24 – 28 nm, 26 – 34 nm and 34 – 38 nm in first-order. Again an Al filter
is used to restrict the bandpass incident on the grating. A separate Ti filter is
used to further limit the bandpass seen by the zero-order detector. A Mg filter
in front of the detector blocks second-order grating diffraction.

All channels of the ESP have shown degradation as shown in Figure 22.
This degradation has been shown to be due to front-filter contamination, as
there are three Al filters on a filter wheel. The primary filter is used for most
observations. The secondary filter is exposed for about five minutes a day to
track the degradation of the primary filter, and a tertiary filter only exposed for
five minutes a week tracks the degradation of the secondary filter. There is also
a sounding rocket campaign that provides an independent determination of the
degradation about once a year. Again, the degradation is consistent with a C
layer forming on the front filter, and the thickness of C is appropriate for the
degradation seen in all the wavelength channels. The 36 nm channel shows a
different form of degradation due to a drastic reduction in the shunt resistance
of the photodiode detector. It is not known what caused this failure, but the
36 nm channel has not returned useful data since launch.

The multiple EUV grating spectrograph (MEGS) channels on EVE cover the
6–105 nm range with 0.1 nm resolution in three bands: MEGS A1, A2 and
B. MEGS A1and A2 share a single grazing incidence mirror and grating. Two
separate slits illuminate the grating each with separate thin-foil filter (also of
each type in a filter wheel. The A1 channel is optimised for the 5 – 18 nm range
with a C–Zr–C filter. The A2 is optimised for 17 – 36 nm with a Al–Ge–C filter.
The A2 channel shows degradation very similar to that experienced by ESP
(Figure 23, bottom), and a similar layer of C also explains the wavelength-
dependent degradation. What is very interesting is that the A1 channel (only a
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Figure 22. Degradation of the SDO-ESP channels. The ESP has three science filters in a filter
wheel. By exposing the backup filters for only a very short amount of time, the degradation
of the primary filter can be measured on-orbit. The calculated degradation is checked with
rocket underflights.

few mm from A2) shows insignificant degradation (Figure 23, top) even at 17 nm
where there is overlap in the wavelength range between A1 and A2. There must
therefore be something about the filter that causes contamination accumulation
on the Al filter and not on the Zr.

The MEGS-B channel is designed to operate in the 36 – 106 nm range. It is
a cross-dispersed normal-incidence spectrometer, again with a CCD detector,
nominally identical to the MEGS-A detector. MEGS-B does not use a filter-
wheel filter for normal operation. MEGS-B showed dramatic degradation from
the NIST-calibrated response at first light. Responsivity above 60 nm showed
a steady drop and is about 90% degraded at 105 nm (Figure 24). This “first-
light” degradation could not be recovered by heating the detector to +17 ◦C
(as hot as possible) for several days. The degradation continues to worsen with
solar exposure, and flat-field images show “burn-in” of the brighter lines. It is
thought that this degradation is due to back-side charging of the CCD. The
initial charging was due to proton damage as SDO spent significantly longer in
the geo-transfer orbit than planned, and this orbit dips into the inner proton
belt twice a day, delivering a significant proton dose. The CCDs have a p-type
implant to provide about a 7 nm dead layer of Si between the SiO2/Si interface
and the charge collection region of the CCD. This was expected to provide
enough isolation from back-side charging for the SDO mission life. However,
once the potential due to surface charging exceeds that of the doping layer,
degradation will be evident and will follow the penetration depth of Si (as seen
in MEGS-B), and as the charging due to incident photons is dependent on the
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Figure 23. SDO/MEGS-A degradation.Top: MEGS-A1 C–Zr–C filter shows insignificant
degradation. Bottom: MEGS-A2 shows degradation very similar to that of ESP. Updated
from Hock, 2012.

exposure time, this mechanism also explains the “burn-in”. In order to maintain

sensitivity of the MEGS-B channel it is only exposed for a short time each day,

although campaign modes can be organized if continuous data is required. A

similar effect is just beginning to be seen in the MEGS-A CCD, especially for

the 30.4 nm line. However as the penetration depth of photons is deeper for the

shorter wavelengths the effect is much less significant.

Finally MEGS-P is a lyman-α monitor. The zero-order from the first grating

of MEGS-B is incident on an Acton 122XN interference filter to isolate the

121.6 nm lyman-α line. This is then measured by a photodiode. There is no

noticeable degradation of this channel at all, which suggests that the MEGS-B

first grating (exposed to the full solar spectrum) is not degrading either.
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Figure 24. Degradation of the SDO/MEGS-B channel at first light. Updated from Hock,
2012.

8. Solar Instruments Onboard Picard

Picard is a scientific microsatellite (140 kilograms) that was launched on 15
June 2010. Picard is devoted to solar variability observation through imagery
and radiometric measurements, with the aim of providing data for solar-physics
investigation, and for the assessment of the influence of solar variability on
the Earth’s climate variability. The PREcision MOnitoring Sensor (PREMOS:
Schmutz et al., 2009) and SOlar Diameter Imager and Surface Mapper (SODISM:
Meftah et al., 2010), the evolution of which is described in this article, are ra-
diometers used to measure the solar irradiance and an imaging telescope to
determine the solar diameter and asphericity, respectively.

8.1. Operational Modes and Degradation of PREMOS

PREMOS onboard the French satellite Picard comprises two experiments: one
experiment is measuring the Total Solar Irradiance (TSI) with absolute ra-
diometers, the other observing solar spectral irradiance at six different wave-
lengths with filter radiometers (given in Table 4). We report below on the
second experiment. The optical and near-IR filters are identical to those in the
Picard/SODISM instrument as well as the 215 nm filter, while the 210 nm filter
was chosen to match the Herzberg channel implemented on the PROBA2/LYRA
instrument. The PREMOS filter radiometer therefore covers an important part
of the spectral range, which influences the chemical composition of the ter-
restrial atmosphere. The operational routines began on 6 September 2010 and
PREMOS filter radiometers have provided continuous data since, even during
eclipse season. Using a total of twelve channels divided into three instruments of
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Figure 25. Normalized time series for all channels of Head A since the beginning of the
PICARD mission.

four channels, a redundancy strategy has been established in order to estimate
sensitivity loss due to exposure time to sunlight.

One channel (Head A) is operated continuously (six measurements per minute
with a integration time of 9.9 seconds for the normal mode), while its back-up
channel (Head C) is exposed only once per day for three minutes. Finally, the
Head B channel is a self-consistent system with duplicate channels; the first pair
is exposed every fourth orbit for one minute, while the second pair is exposed
once per week for about two minutes.

As displayed in Figure 25, Head A has experienced a pronounced degradation
since it has lost more than 99% of the signal for the UV channels and about 35%
for the visible channel, while more than 86% of the signal remains for the near-
IR channel. We assume that this degradation is induced by the polymerization
of contaminants on top of filters under the solar UV exposure. We are currently
investigating why the degradation is not a decreasing function for the visible
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Table 4. Wavelength characteristics of the PREMOS filter
radiometers.

channel 1 channel 2 channel 3 channel 4

HEAD A 210 nm 535 nm 782 nm 266 nm

HEAD B 215 nm 607 nm 215 nm 607 nm

HEAD C 210 nm 535 nm 782 nm 266 nm

and near-IR channels. Head C has been exposed for only 40 hours since the
beginning of the mission. For the UV channels (Head C), we estimate the loss
of sensitivity to be about 10% and 5% respectively. It is much more difficult,
however, to estimate the degradation of the visible and near IR channels. The
operational channels of Head B have been exposed to the Sun for approximately
sixty hours, while the back-up channels have been exposed for less than four
hours. We are currently using the channels of Head B to model the degradation
for all UV channels.

8.2. Aging of the Picard Payload Thermal Control: Impact on SODISM

SODISM is an 11-centimeter Ritchey–Chretien imaging telescope developed by
the French Centre National de la Recherche Scientifique (CNRS). SODISM mea-
sures the solar diameter and limb shape, and performs helioseismic observations
to probe the solar interior. The solar diameter is measured at three wavelengths
i.e. 535, 607 and 782 nm in the photospheric continuum. Images in the Ca ii line
(393 nm) are used to detect active regions near the solar limb, which may alter
the diameter measurements. These images are also used to measure the solar
differential rotation as well as to monitor space weather, together with images
at 215 nm wavelength.

Throughout the mission, thermal control ensures that each instrument or
equipment unit is maintained at temperatures consistent with nominal opera-
tion. Most of the instruments only operate correctly if maintained at the right
temperature and if temperature changes are within acceptable limits. Thermal
control surfaces and optics of the payload are exposed to space environmental
effects including contamination, atomic oxygen, UV radiation, and vacuum tem-
perature cycling. The elements of SODISM that are regulated and not exposed
to the Sun (e.g. CCD, interference filters, mechanism, structure) remain stable
with changes in temperature. In flight, the temperature of the SODISM’s CCD
(2028×2048) is very stable, within 0.1 ◦C.

Materials having low solar absorptance are often used for reflective surfaces
designed to minimize heat absorption, but UV radiation degrades these materials
by exponentially increasing the solar absorptivity of exposed surfaces. The pres-
ence of contamination on thermal control surfaces alters absorptance/emittance
ratios and changes the thermal balance leading to an increase of the temperature
of the payload. Contamination in optical instruments, on the other hand, reduces
the signal throughput thus further reducing performance. The Picard payload
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Figure 26. Thermal effect on the solar limb measurement at 535.7 nm.

thermal-control system includes several temperature-control techniques, such

as reflective covers, coatings, insulation, and heat sinks. Aging of the covers,

coatings, and insulation was observed and expected to be cumulative with time.

The SODISM entrance window and the front of the instrument facing the Sun

have a significant temperature increase. A general aging of the thermal-control

system is observed as well.

The temperature of the SODISM front face varies greatly during an orbit and

its temperature variation depends strongly on latitude and on the day of the

year (variation and effect of incident fluxes). This temperature evolution of the

instrument front face principally impacts the main entrance window and consid-

erably degrades the measurement of the intensity profile’s first derivative at the

solar limb, and consequently the measurement of the solar limb as illustrated in

Figure 26.

Despite the establishment of an active thermal control, there are also envi-

ronmental effects on the SODISM instrument. We observed that the CCD is
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Figure 27. Temporal evolution of the SODISM CCD image intensity.

strongly affected by SAA. The SODISM images, intensity (normalized to 1 AU)
is shown in Figure 27 and evolves over time with:

• Intensity oscillation at 535.7 nm, 607.1 nm and 782.2 nm,
• Intensity oscillation and important degradation at 215 nm and 393.37 nm.

These effects might be caused by the combination of contamination and degra-
dation at the detector surface. To outgas the accumulated contaminant on the
CCD surface, a bake-out heater is installed on SODISM; this allowed periodic
heating to +20 ◦C during three days, but it was not effective. Another approach
should be developed.

Thermal control, especially, for a payload suite, is crucial to mission success.
For SODISM, a deterioration of the thermal-control system was observed in the
long term (in particular in the front face of the telescope). The measurements
show a complex behavior with thermal and contamination effects as well. For
the long-term evolution on SODISM measurements, we suspect a degradation
of its CCD response, caused by contamination and energetic-particle issues, and
transmission filters at the entrance window of SODISM. Up to now, there is a
good repeatability in measurements but most of the calibration requires thermal
and/or optical corrections. Thermal coatings chosen for the Picard payload are
adequate for maintaining temperatures in the acceptable range, but the use of
radiators (white paints) facing the Sun is not the proper solution, a Sun shield
with back-surface mirror should be used. Moreover, metrology missions, such as
Picard, require more dimensionally stable spacecraft structures. Because there
is a predominant effect between the latitude and the measurement of the solar
radius, low-mass spacecraft in low orbits should be avoided.

9. Lessons Learned and Recommendations

The degradation of space instruments can be complex; their causes and mech-
anisms are, in many instances, difficult to understand, since they are often the
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result of the combination of several independent degradation processes. This
fact is an especially important issue in establishing recommendations for best
practices in developing and operating spaced-based solar instruments. However,
as demonstrated by the contributions of this article, the presence of contaminant
species (organics and water) and exposure to radiation (both ionization and
displacement-damage effects) are often the main reason for instrument degrada-
tion, and their impact is frequently underestimated. Contaminants can originate
not only from spacecraft propellant, but also from outgassing or evaporation
by all organic material used in the construction of these instruments. Further,
once instruments are in space, the means to recover from degradation are very
limited. For example, items that have collected contaminants while operating
under cryogenic temperatures can be heated – to an extent limited by electrical
power available – to desorb weakly bound molecules. However, once molecules
have settled by UV-polymerization, cleaning is very nearly impossible. Although
methods to recover from degradation have been established and successfully been
used in the laboratory such as, e.g., UV-Ozone cleaning, such a method has
not been implemented in a space mission. Presently, there is no alternative to
mitigation of contamination in space.

Our survey shows that three complementary strategies can dramatically min-
imize degradation and mitigate the effects of ongoing degradation:

• ensuring extreme cleanliness control during instrument development and
launch, including careful material selection, minimization of organic mate-
rial, and conditioning by bake-out,

• monitoring the stability of the radiometric calibration using sophisticated
methods,

• identifying development needs for critical components (for example, im-
agers, photodetectors, optics, coating, electronics, etc.).

9.1. Extreme Cleanliness Control

The cleanliness efforts for SOHO described in Section 2 were very successful;
they were not excessive but neither were they completely perfect. This became
evident when the SOHO spacecraft was lost and then recovered after four months
in 1998. As the inter-calibration observations were resumed after the recovery of
SOHO, the degradation corrections for several instruments had to be completely
remeasured because the temperature excursions during the phase of uncontrolled
thermal environment released contaminants that had been residing for a long
time on cold surfaces and resulted in a redistribution of contaminants and, thus,
accelerated instrumental degradation that had now to be taken into account.
So, while contaminants were still present onboard, the on-ground cleanliness
activities reduced the potential for degradation considerably.

Our conclusion, therefore, is that stringent cleanliness efforts are an abso-
lute prerequisite for calibration stability. The main ingredients of a successful
cleanliness program are the establishment of a cleanliness review board, inter-
calibration working group, and instrument and spacecraft cleanliness control
plans.

The most important preventive measures for space instruments identified
were:
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i) Determination of the contamination sensitivity (also at spacecraft level) by
modeling,

ii) Design of the instrument to maximize cleanliness:

• including design features such as purging concepts with large vent-
ing holes in the structural housing, the addition of vents and heaters
close to the detector for bake-out (> +35 ◦C), door mechanisms, filter
wheels with redundant filters to track front-filter contamination, con-
tamination sensors (QCM), cold cup around the detector, solar-wind
deflector plates, valves for depressurization during launch, etc.

• selecting high-radiation tolerance and ultra-high vacuum quality ma-
terials with the lowest outgassing values available (the total mass loss,
TML, and the collected volatile condensable materials, CVCM, plus
an additional parameter: the water vapor regained, WVR).

iii) Stringent cleanliness procedures of all hardware:

• assembly in cleanroom (class ISO 5) with active charcoal filters,
• use of oil-free vacuum systems during tests,
• double bagging and continuous purging with pure and dry N2 (grade

5.0) at instrument level up to the launch,

iv) Extensive use of vacuum bake-outs at the component, sub-assembly, and
final-assembly level:

• baking at the highest temperature (> +100 ◦C) compatible with the
material under clean gas purging,

• bakeout durations determined by mass spectrometer and temperature-
controlled QCM monitoring of cleanliness level,

• gas-chromatography/mass spectrometry (GC/MS) analysis for accep-
tance/rejection of the components.

It should be added that the ground-support equipment that will be in direct
contact with the flight hardware must be submitted to the same rules. As an
example, cleanliness of vacuum chambers must be monitored by QCM or residual
gas analysers.

9.2. Stability of the Instrument Radiometric Calibration

The careful and extensive radiometric calibration of the instruments prior to
launch forms the basis of the success of spaced-based solar instruments. In most
cases, opportunities for instrument-level tests and calibration are strongly lim-
ited by pre-launch scheduling constraints, but such testing is important enough
that it warrants special consideration. Pre-flight calibration can be achieved with
detectors and transfer radiation-source standards, both traceable to a primary
standard source found in synchrotron-radiation facilities, while the instruments
themselves can be calibrated at the synchrotron facility or locally, at the instru-
ment test facility, by transporting a transfer source standard to that facility. The
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latter option further reduces the possibility of contamination by exposing the
instrument to an environment whose cleanliness cannot be sufficiently regulated.

Once a spacecraft is in orbit, the stability of calibration can be monitored
by carefully planned observations, but absolute calibration is often impossible.
Thus, a careful initial calibration and meticulous tracking of the evolution of
instrumental calibration are both very important. Several different methods
of calibration may be required to achieve this goal (Schühle et al., 2002). Fur-
thermore, qualified personnel and perhaps external expertise are often useful
in the interpretation of data obtained, both on the ground and in-flight, in
order to accurately assess the evolution of the degradation of a space-based
solar instrument.

9.2.1. Onboard Calibration

Onboard-calibration light sources have been essential to the success of many solar
payloads and similar devices should always be included in the design of spaced-
based solar instruments. Multiple calibration light sources (lamps or LEDs) may
be carried onboard, and should be operated and exposed regularly to maintain
an established calibration status. It is worth noting that the value of calibration
light sources is significantly reduced without pre-flight or pre-degradation refer-
ence data obtained during the on-ground calibration and in-flight commissioning
phases of the mission.

However for EUV-VUV and X-ray instruments, for which calibration sources
in the primary range of EUV instrumental sensitivity are not available, the
onboard visible-light flat-field that such onboard light sources provide can be
used to monitor instrumental degradation if the relationship between visible and
EUV degradation is known. Although such lamps were used with great success in
the in-flight calibration of EIT, these successes seem to be the exception rather
than the rule. Ideally, however, it should be possible to establish the relationships
between visible and EUV degradation, as well as the potential for degradation
of the light sources themselves, before flight by irradiating engineering devices.
Additionally, we strongly recommend the use of blue or near-UV LEDs that have
photon penetration depths similar to or lower than the EUV photons observed
by the instrument, and that every effort should be made to ensure complete and
uniform detector illumination by these lamps on future EUV telescopes.

9.2.2. Calibration Updates and Inter-Calibration

Alternatively, it is possible to track instrumental calibration by inter-calibration
using observations from occasional rocket underflights using similar instruments
that can be carefully calibrated on the ground both before and after the flight.
Another option for establishing absolute calibration using in-flight observations
is the use of invariant sources – assuming they are accessible by the instrument
– such as observations of celestial standard sources, or of Sun-center during
quiet periods, or by inter-calibration of identical variable sources using differ-
ent instruments with similar, corresponding wavelength sensitivity. In the case
of visible-light imaging instruments, observations of the background star field

SOLA: degradation.tex; 17 September 2018; 21:34; p. 47



48 A. BenMoussa et al.

can also be used to monitor long-term degradation, as has been done very
successfully in the case of STEREO/SECCHI’s HI-1 imager. Note, however,
that for inter-calibration measurements, off-point and roll maneuvers of the
spacecraft platform may be required to correct for the effects of spatial and
spectral dependent degradation patterns (i.e. flat field and stray light).

9.2.3. Redundancy Concept

Redundancy can be implemented at either component or instrument levels (such
as LYRA and PREMOS). Past experience shows that redundancy is useful in
recovery from degradation and damage from different causes. For example, the
degradation of thin-film filters typically occurs during launch, but impact by
debris or micrometeoroids (see, for example, EIT) can cause irreparable damage
if redundant parts are not available. For radiometers, the use of several spare
units – the number may depend on the projected lifetime of the mission – with
separate door covers is strongly recommended. In addition to protecting against
potential single-unit failures, observations by less-exposed units with a low duty-
cycle – for example, a few minutes per week – can provide valuable information
on the long-term evolution of the instrument.

9.3. Identification of Development Needs

Specific design and technological development is particularly important for UV
instruments. For the SOHO UV instruments, the optical systems were quite
stable during flight (Schühle, 2003), but the detectors remained a source of
instability (Thompson, 1999). This was partly due to the temperatures of CCD
detectors and partly due to the effect of irradiation on the Si devices, while
detectors with multichannel-plate intensifiers suffered from gain depletion during
exposures.

This detector-degradation issue is frequently foreseen before launch, but both
its importance and severity often underestimated. A list of all proven tech-
nologies and their degradation levels is beyond the scope of this article, but
one especially important recommendation concerns the use of back-illuminated
detectors (and affects both CCDs and CMOS APS detectors equally). The com-
monly used detector interface (Si/SiO2) is very sensitive to radiation damage
(both by protons and UV photons) in space, which leads to a decline in detector
sensitivity over time. However, proper surface passivation of the backside of
existing detectors can reduce the impact of radiation exposure, and intensive pre-
flight characterization can help mitigate the damage that cannot be controlled.
It would be worthwhile to explore the use of both alternative oxides with greater
radiation tolerance (e.g. Al2O3) and non-oxide passivation layers.

In most cases, CCDs should be kept at the lowest possible operating tem-
perature in order to reduce dark current, the effects of radiation damage, and
the appearance of hot, warm, and flipping pixels. Our analysis suggests that
operating temperatures should be lower than −60 ◦C for non-inverting mode
operation (NIMO) or −40 ◦C for asymmetric inverting mode operation (AIMO)
CCDs.
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Finally, even while research and development in space technology is widely
acknowledged as essential for designing future long-lifetime space missions, we
recommend intensified efforts to develop advanced photon radiation detection
systems, in particular:

9.3.1. Next-Generation CMOS-APS

We expect that many future instruments will make use of highly efficient CMOS-
APS detectors similar to the one used by SWAP. In fact, the Extreme Ultraviolet
Imager (EUI), the Heliospheric Imager (SoloHI), and the Polarimetric and He-
lioseismic Imager (PHI) onboard the Solar Orbiter mission are all expected
to incorporate the next-generation of CMOS-APS detectors with significantly
improved characteristics (see BenMoussa et al., 2013 for the detector prototypes
development of EUI).

9.3.2. Thoroughly Tested UV Filters

There is a great need for optical elements of all kinds (filters, grazing reflec-
tors, and mirrors) with both improved radiation tolerance and spectral pu-
rity. This need is demonstrated by the rapid degradation of the UV filters
on both PROBA2 and Picard. For successful future missions, both modeling
and complete test campaigns for UV and visible filters (including radiation and
contamination simulations tests) are basic requirements.

9.3.3. Radiation-Hardened UV-Sensitive Materials

Radiation hardness against UV photons or protons is also a primary concern for
upcoming long solar missions residing several years in space. There are promising
alternatives to the commonly used silicon-based imagers and photodetectors
based on wide band-gap materials such as the diamond detectors used in LYRA.
Details of these next-generation detectors are discussed by BenMoussa et al.
(2009b). A proof-of-concept AlGaN imager (256× 256 pixels), sensitive only to
UV and operating at room temperature, has been recently demonstrated by the
Blind to Optical Light Detectors project (BOLD: Malinowski et al., 2011).

9.3.4. Onboard Data Processing

Given the issues that remain in providing high data-flow for nearly all space-
based instruments, and, in particular, issues with the optimization of data-flow
for spacecraft in low-telemetry orbits, future systems must be capable of high-
performance onboard computing, which, in turn, requires high-performance,
radiation-hardened field-programmable gate arrays (FPGAs) that can perform
automated onboard calibration. For some missions it will be necessary to update
detector-calibration maps and perform onboard image correction such as high-
quality cosmic-ray removal in order to prevent unrecoverable distortion caused
by low-quality image compression or a very poor lossless compression ratio.
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10. Conclusion

The workshop that took place in the Solar Terrestrial Centre of Excellence
(STCE) in Brussels, Belgium on 3 May 2012, provided an excellent starting
point for dialog between experts and facilitated the exchange of much experience
gained during space-based solar missions. The outcomes of this meeting and
discussion, together with the written contributions of the different mission teams,
have sparked this article focusing on the major lessons learned about in-orbit
degradation of solar instruments.

Although this article addresses scientists and, perhaps more specifically, en-
gineers involved in spaced-based solar instrument development, all stakeholders
of any project should be deeply involved in the assessment and monitoring of
any degradation, and, since the consequences of degradation can be quite severe,
should take the issue extremely seriously.

There are several approaches to assessing and monitoring the degradation of
spaced-based solar instruments that give good results, many of which we have
discussed above. A prime conclusion of this work is that there is no single best
method, but rather that a combination of methods must be critically selected,
taking into account the applicability of the methods given both the mission
targets and instrumental design itself. It is therefore important to continue to
share regular and open information about what is working and what is not, in
order to learn from the community’s shared experiences.

In particular, identifying the lessons learned from past projects is of special
value to both the community and instrument teams themselves. Unfortunately,
project teams often move quickly from project to project, and identifying the
lessons learned rarely seems to be a priority. With this article, we hope to address
this problem directly. We have identified the lessons learned by a broad range of
instruments and missions that comprise a vast range of solar-physics objectives
and span nearly two decades of experience. We hope that these lessons can be
ingested by new instrument development teams and, in turn, can prevent both
current and future missions from repeating past mistakes. It is the motivation of
each individual (scientist and engineers) to learn, share, and change what makes
the lesson learned successful. Prevention is far better and much cheaper than
cure.
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Defise, J.-M., Clette, F., Moses, J.D., Hochedez, J.-F.E.: 1997, Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series 3114, 598.
De Groof, A., Berghmans, D., Nicula, B., Halain, J.-P., Defise, J.-M., Thibert, T., Schühle,

U.: 2008, Solar Phys. 249, 147.
Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F.,

et al.: 1995, Solar Phys. 162, 291.
Del Zanna, G., Andretta, V.: 2011, Astron. Astrophys. 528, A139.
Del Zanna, G., Bromage, B. J. I., Landi, E., Landini, M.: 2001, Astron. Astrophys. 379, 708.
Del Zanna, G., Andretta, V., Chamberlin, P. C., Woods, T. N., Thompson, W. T.: 2010,

Astron. Astrophys. 518, A49.
Dewitte, S., Crommelynck, D., Joukoff, A.: 2004, J. Geophys. Res. 109, 2102.
Didkovsky, L., Judge, D., Wieman, S., Woods, T., Jones, A.: 2012, Solar Phys. 275, 145.
Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard,

H.C.A., Bewsher, D., Crothers, S.R., Davies, J.A., Simnett, G.M., Howard, R.A., Moses,
J.D., Newmark, J.S., Socker, D.G., Halain, J.-P., Defise, J.-M., Mazy, E., Rochus, P.: 2009,
Solar Phys. 254, 387.

Fehlmann, A., Kopp, G., Schmutz, W., Winkler R., Finsterle, W., Fox, N.: 2012, Metrologia
49, 34.

Fleck B., Domingo V., Poland A.: 1995, Solar Phys. 162.
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SOLA: degradation.tex; 17 September 2018; 21:34; p. 52



On-Orbit Degradation 53

Meftah, M., Meisonnier, M., Nyeki1, S., Pfiffner, D., Roth, H., Rozanov, E., Spescha, M.,
Wehrli, C., Werner, L., Wyss, J.U.: 2009, Metrologia 46, S202.

Schühle, U.: 1993, In: Silver, E.H., Kahn, S.M. (eds.) UV and X-ray Spectroscopy of Laboratory
and Astrophysical Plasmas, Cambridge University Press, 373.

Schühle, U.: 2003, in: Keil, S. L., Avakyan, S. V. (eds.) Innovative Telescopes and Instrumen-
tation for Solar Astrophysics, Proc. SPIE, 4853, 88.

Schühle, U., Wilhelm, K., Hollandt, J., Paustian, W., Kühne, M.: 1994, In: Proc. of the
International Workshop on VUV and X-Ray Radiometry for Space Based Instruments,
PTB Berlin, 69.

Schühle, U., Brekke, P., Curdt, W., Hollandt, J., Lemaire, P., and Wilhelm, K.: 1998, Appl.
Opt. 37, 2646.

Schühle, U., Thomas, R., Kent, B., Clette, F., Defise, J.-M., Delaboudinière, J.-P. , Fröhlich, C.,
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