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In general there exists no relationship between the fixed point sets of the composition and of the average of a family of nonexpansive operators in Hilbert spaces. In this paper, we establish an asymptotic principle connecting the cycles generated by under-relaxed compositions of nonexpansive operators to the fixed points of the average of these operators. In the special case when the operators are projectors onto closed convex sets, we prove a conjecture by De Pierro which has so far been established only for projections onto affine subspaces.

Introduction

Fixed points of compositions and averages of nonexpansive operators arise naturally in diverse settings; see for instance [START_REF]Fixed-Point Algorithms for Inverse Problems in Science and Engineering[END_REF][START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Byrne | Applied Iterative Methods[END_REF][START_REF] Cegielski | Iterative Methods for Fixed Point Problems in Hilbert Spaces[END_REF] and the references therein. In general there is no simple relationship between the fixed point sets of such operators. In this paper we investigate the connection of the fixed points of the average operator with the limits of a family of underrelaxed compositions. More precisely, we consider the framework described in the following standing assumption. Assumption 1.1 H is a real Hilbert space, D is a nonempty, closed, convex subset of H, m 2 is an integer, I = {1, . . . , m}, (T i ) i∈I is a family of nonexpansive operators from D to D, and (Fix T i ) i∈I is their fixed point sets. Moreover, we set

         T = 1 m i∈I T i R = T m • • • • • T 1 (∀ε ∈ ]0, 1[) R ε = Id +ε(T m -Id) • • • • • Id +ε(T 1 -Id) .
(1.1)

When the operators (T i ) i∈I have common fixed points, Fix T = m i=1 Fix T i = ∅ [5, Proposition 4.32]. If, in addition, they are strictly nonexpansive in the sense that

(∀i ∈ I)(∀x ∈ D Fix T i )(∀y ∈ Fix T i ) T i x -y < x -y , (1.2) 
it also holds that Fix R = i∈I Fix T i [5, Corollary 4.36], and therefore Fix R = Fix T . However, in the general case when i∈I Fix T i = ∅, the question has been long standing and remains open even for convex projection operators, e.g., [START_REF] Byrne | Applied Iterative Methods[END_REF]Section 8.3.2] and [START_REF] De Pierro | From parallel to sequential projection methods and vice versa in convex feasibility: Results and conjectures[END_REF]. Even when m = 2 and T 1 and T 2 are resolvents of maximally monotone operators, there does not seem to exist a simple relationship between Fix R and Fix T [START_REF] Wang | Compositions and averages of two resolvents: Relative geometry of fixed points sets and a partial answer to a question by C. Byrne[END_REF], except for convex projection operators, in which case Fix T = (1/2)(Fix R + Fix R ′ ), with R ′ = T 1 • T 2 (see [START_REF] Bauschke | On the convergence of von Neumann's alternating projection algorithm for two sets[END_REF][START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF] for related results, and [START_REF] Bauschke | Fixed points of averages of resolvents: Geometry and algorithms[END_REF] for the case of m 3 resolvents).

When (T i ) i∈I = (P i ) i∈I are projection operators onto nonempty closed convex sets (C i ) i∈I , Fix T is the set of minimizers of the average square-distance function [START_REF] Bauschke | On the convergence of von Neumann's alternating projection algorithm for two sets[END_REF][START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF][START_REF] De Pierro | A parallel projection method for finding a common point of a family of convex sets[END_REF] Φ :

H → R : x → 1 2m i∈I d 2 C i (x), (1.3) 
while Fix R is related to the set of Nash equilibria of a cyclic projection game. Indeed, the fixed point equation x = Rx can be restated as a system of equations in (x 1 , . . . , x m ) ∈ H m , namely

           x 1 = P 1 x m x 2 = P 2 x 1 . . . x m = P m x m-1 , (1.4) 
which characterize the Nash equilibria of a game in which each player i ∈ I selects a strategy x i ∈ C i to minimize the payoff x → x -x i-1 , with the convention x 0 = x m . It is worth noting that, for m 3, these Nash equilibria cannot be characterized as minimizers of any function Ψ : [START_REF] Baillon | There is no variational characterization of the cycles in the method of periodic projections[END_REF], which further reinforces the lack of hope for simple connections between Fix R and Fix T . It was shown in [START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF] that, if one of the sets is bounded, for every y 0 ∈ H, the sequence (y km+1 , . . . , y km+m ) k∈N generated by the periodic best-response dynamics

H m → R over C 1 × • • • × C m
(∀k ∈ N)        y km+1 = P 1 y km y km+2 = P 2 y km+1
. . .

y km+m = P m y km+m-1 , (1.5) 
converges weakly to a solution (x 1 , . . . , x m ) to (1.4) (see Fig. 1). Working in a similar direction,
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Figure 1: Cycles in the method of periodic projections.

and motivated by the work of [START_REF] Censor | Strong under-relaxation in Kaczmarz's method for inconsistent systems[END_REF] on under-relaxed projection methods for solving inconsistent systems of affine inequalities, De Pierro considered in [START_REF] De Pierro | From parallel to sequential projection methods and vice versa in convex feasibility: Results and conjectures[END_REF] an under-relaxed version of (1.5), namely

(∀k ∈ N)        y ε km+1 = Id +ε(P 1 -Id) y ε km y ε km+2 = Id +ε(P 2 -Id) y ε km+1 . . . y ε km+m = Id +ε(P m -Id) y ε km+m-1 .
(1.6)

Under mild conditions the resulting sequence (y ε km+1 , y ε km+2 , . . . , y ε km+m ) k∈N converges weakly to a limit cycle that satisfies the coupled equations

(∀ε ∈ ]0, 1[)            x ε 1 = Id +ε(P 1 -Id) x ε m x ε 2 = Id +ε(P 2 -Id) x ε 1 . . . x ε m = Id +ε(P m -Id) x ε m-1 .
(1.7)

In [14, Conjecture I], De Pierro conjectured that as ε → 0 these limit cycles (x ε 1 , . . . , x ε m ) ε∈]0,1[ shrink towards a single point which is a minimizer of Φ, i.e., a fixed point of T . In contrast with (1.4), the solutions of which do not satisfy any optimality criteria, this conjecture suggests an asymptotic variational principle for the cycles obtained as limits of the under-relaxed version of (1.5). An important contribution was made in [START_REF] Bauschke | A conjecture by De Pierro is true for translates of regular subspaces[END_REF], where it was shown that De Pierro's conjecture is true for families of closed affine subspaces which satisfy a certain regularity condition.

In this paper we investigate the asymptotic behavior of the under-relaxed cycles

           x ε 1 = Id +ε(T 1 -Id) x ε m x ε 2 = Id +ε(T 2 -Id) x ε 1 . . . x ε m = Id +ε(T m -Id) x ε m-1 (1.8)
as ε → 0 in the general setting of Assumption 1.1. In Section 2 we present a first general convergence result, which establishes conditions under which the limits as ε → 0 of the m curves (x ε i ) ε∈]0,1[ (i ∈ I) exist and all coincide with a fixed point of T . This result not only gives conditions under which De Pierro's conjecture is true, but also extends its scope from projection operators to arbitrary nonexpansive operators. In Section 3 we revisit the problem from a constructive angle. Given an initial point y 0 ∈ D and ε ∈ ]0, 1[, it is known [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 5.22] that the cycles in (1.8) can be constructed iteratively as the weak limit of the periodic process

(∀k ∈ N)        y ε km+1 = Id +ε(T 1 -Id) y ε km y ε km+2 = Id +ε(T 2 -Id) y ε km+1 . . . y ε km+m = Id +ε(T m -Id) y ε km+m-1 . (1.9) 
We analyze the connection between this iterative process and the trajectories of the evolution equation

x ′ (t) + x(t) = T x(t) on ]0, +∞[ x(0) = y 0 , (1.10) 
and then establish extended versions of De Pierro's conjecture under various assumptions.

Notation. The scalar product of H is denoted by 

Convergence of general families of under-relaxed cycles

We investigate the asymptotic behavior of the cycles (x ε i ) i∈I defined by (1.8) when ε → 0. Let us remark that such a cycle (x ε i ) i∈I is in bijection with the fixed points of the composition R ε of (1.1). Indeed, z ε = x ε m is a fixed point of R ε ; conversely, each z ε ∈ Fix R ε generates a cycle by setting, for every i ∈ I, x ε i = (Id +ε(T i -Id))x ε i-1 , where x ε 0 = z ε . This motivates our second standing assumption. Assumption 2.1 For every ε ∈ ]0, 1[, R ε is given by (1.1) and

(∃ η ∈ ]0, 1])(∃ β ∈ ]0, +∞[)(∀ε ∈ ]0, η[)(∃ z ε ∈ Fix R ε ) z ε β. (2.1)
For later reference, we record the fact that under this assumption the cycles in (1.8) can be obtained as weak limits of the iterative process (1.9). Proposition 2.2 Suppose that Assumptions 1.1 and 2.1 are satisfied. Let y 0 ∈ D and ε ∈ ]0, η[. Then the sequence (y ε km+1 , . . . , y ε km+m ) k∈N produced by (1.9) converges weakly to an m-tuple (x ε 1 , . . . , x ε m ) which satisfies (1.8). Proof. This follows from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 5.22].

The following result provides sufficient conditions for Assumption 2.1 to hold. Proposition 2.3 Suppose that Assumption 1.1 holds, together with one of the following.

(i) For some j ∈ I, T j has bounded range.

(ii) D is bounded.

Then Assumption 2.1 is satisfied.

Proof. It is clear that (ii) is a special case of (i). Suppose that (i) holds. Fix ε ∈ ]0, 1] and y ∈ D, and take ρ ∈ max i∈I {j} T i y -y , +∞ such that T j (D) ⊂ B(y; ρ). Furthermore, let x ∈ D, set x 0 = x, and define recursively

x i = (1 -ε)x i-1 + εT i x i-1 , so that x m = R ε x. Then (∀i ∈ I {j}) x i -y = (1 -ε)(x i-1 -y) + ε(T i x i-1 -y) (1 -ε) x i-1 -y + ε T i x i-1 -T i y + ε T i y -y x i-1 -y + ερ (2.2)
and

x j -y (1 -ε) x j-1 -y + ε T j x j-1 -y (1 -ε) x j-1 -y + ερ. (2.3) 
By applying inductively (2.2) and (2.3) to majorize x m -y , we obtain

R ε x -y = x m -y (1 -ε) x -y + εmρ. (2.4) 
This implies that R ε maps D ∩B(y; mρ) to itself. Hence, the Browder-Göhde-Kirk theorem (see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 4.19]) asserts that R ε has a fixed point in B(y; mρ). Moreover, if x is a fixed point of R ε , (2.4) gives x -y mρ, which shows that (2.1) holds with η = 1 and β = y + mρ.

To illustrate Assumption 2.1, it is instructive to consider the following examples.

Example 2.4

The following variant of the example discussed in [14, Section 3] shows that (2.1) is a non trivial assumption:

H is the Euclidean plane, m = 3, α ∈ R, β ∈ R, γ ∈ ]0, +∞[, ε ∈ ]0, 1[
, and (T i ) 1 i 3 are, respectively, the projection operators onto the sets

C 1 = R × {α}, C 2 = R × {β}, and C 3 = (ξ 1 , ξ 2 ) ∈ ]0, +∞[ 2 ξ 1 ξ 2 γ . (2.5) 
Then we have

     Fix T = (ξ 1 , ξ 2 ) ∈ C 3 ξ 2 = (α + β)/2 Fix R = (ξ 1 , ξ 2 ) ∈ C 3 ξ 2 = β Fix R ε = (ξ 1 , ξ 2 ) ∈ C 3 ξ 2 = (1 -ε)α + β /(2 -ε) .
(2.6)

Thus, depending on the values of α and β, we can have Fix

T = Fix R = ∅, Fix T = Fix R = ∅, Fix T = Fix R = ∅, Fix R = Fix T = ∅, or ∅ = Fix R = Fix T = ∅. Now set η = 1 + β/α.
Then, under the assumption that α

+ β < 0 < β, we have η ∈ ]0, 1[ and Fix R ε = ∅ if ε η, while Fix R ε = ∅ if ε > η.
On the other hand, under the assumption that

β < 0 < α + β, η ∈ ]0, 1[ and Fix R ε = ∅ if ε < η, while Fix R ε = ∅ if ε η. Moreover, setting (∀ε ∈ ]0, η[)          y ε = 2γ (1 -ε)α + β + 1 ε , (1 -ε)α + β 2 -ε ∈ Fix R ε z ε = (2 -ε)γ (1 -ε)α + β , (1 -ε)α + β 2 -ε ∈ Fix R ε . (2.7) we see that (y ε ) ε∈]0,η[ is an unbounded curve, while (z ε ) ε∈]0,η[ is bounded.
Example 2.5 In Example 2.4 the sets (Fix T i ) 1 i 3 are nonempty, and one may ask whether this plays a role in the nonemptiness of Fix R, Fix T , or Fix R ε . To see that such is not the case, define T 3 as in Example 2.4, and consider the modified operators

T 1 : (ξ 1 , ξ 2 ) → (ξ 1 + µ, α) and T 2 : (ξ 1 , ξ 2 ) → (ξ 1 -µ, β)
, where µ > 0. Although now the nonexpansive operators T 1 and T 2 have no fixed points, the operators T , R, and R ε remain unchanged.

Example 2.6 By considering products of sets of the form (2.5) one can build an example in which Fix T is nonempty but the sets (Fix R ε ) ε∈]0,1[ are empty. More precisely, let H = ℓ 2 (N), and let (α n ) n∈N , (β n ) n∈N , and (γ n ) n∈N be sequences in

ℓ 2 (N) such that (γ n /(α n +β n )) n∈N ∈ ℓ 2 (N) and (∀n ∈ N) β n < 0 < α n + β n and γ n > 0. Set      C 1 = (ξ n ) n∈N ∈ ℓ 2 (N) (∀n ∈ N) ξ 2n = α n C 2 = (ξ n ) n∈N ∈ ℓ 2 (N) (∀n ∈ N) ξ 2n = β n C 3 = (ξ n ) n∈N ∈ ℓ 2 (N) (∀n ∈ N) ξ n > 0 and ξ 2n-1 ξ 2n γ n .
(2.8)

Then Fix T = ∅ but, for ε ∈ ]0, 1[, we have Fix R ε = ∅ if and only if (∀n ∈ N) ε < 1 + β 2n+1 /α 2n+1 .
In particular if we take, for every n ∈ N {0}, α n = (n + 1)/n 2 , β n = -1/n, and

γ n = 1/n 3 , then Fix R ε = ∅ for every ε ∈ ]0, 1[. Example 2.7 ([6, Example 4.1]) Let m = 2
, and let T 1 and T 2 be the projection operators onto closed affine subspaces

C 1 ⊂ H and C 2 ⊂ H, respectively. If H is finite-dimensional, the sets Fix R, (Fix R ε ) ε∈]0,1[
, and Fix T are nonempty; if H is infinite-dimensional, there exist C 1 and C 2 such that these sets are all empty. However, if the vector subspace (C

1 -C 1 ) + (C 2 -C 2 ) is closed, then Fix T = ∅ and (∀ε ∈ ]0, 1[) Fix R ε = ∅.
The next result establishes conditions for the convergence of the cycles of (1.8) when the relaxation parameter ε vanishes.

Theorem 2.8 Suppose that Assumptions 1.1 and 2.1 are satisfied. Then Fix T = ∅. Now let (x ε m ) ε∈]0,η[ = (z ε ) ε∈]0,η[ be the bounded curve provided by (2.1) and denote by (x ε 1 , . . . , x ε m ) ε∈]0,η[ the associated family of cycles arising from (1.8). Then (x ε 1 , . . . , x ε m ) ε∈]0,η[ is bounded and each of its weak sequential cluster points is of the form (x, . . . , x), where x ∈ Fix T . Moreover,

(∀i ∈ I) lim ε→0 x ε i -x ε i-1 = 0, where (∀ε ∈ ]0, η[) x ε 0 = x ε m .
(2.9)

In addition, suppose that one of the following holds.

(i) (∀x ∈ Fix T )(∀y ∈ Fix T ) x ε m | x -y converges as ε → 0. (ii) (∀x ∈ Fix T ) x ε m -x converges as ε → 0. (iii) Fix T is a singleton.
Then there exists x ∈ Fix T such that, for every i ∈ I, x ε i ⇀ x as ε → 0. Finally, suppose that Id -T is demiregular on Fix T , i.e.,

∀(y k ) k∈N ∈ D N ∀y ∈ Fix T y k ⇀ y y k -T y k → 0 ⇒ y k → y. (2.10) 
Then, for every i ∈ I, x ε i → x as ε → 0. Proof. Fix z ∈ D. By nonexpansiveness of the operators (T i ) i∈I , we have

(∀i ∈ I) T i x ε i-1 -x ε i-1 T i x ε i-1 -T i z + T i z -z + z -x ε i-1 2 x ε i-1 -z + T i z -z . (2.11)
In particular, for i = 1, it follows from the boundedness of (

x ε m ) ε∈]0,η[ that (T 1 x ε m -x ε m ) ε∈]0,η[ is bounded.
In turn, we deduce from (1.8) that (x ε 1 ) ε∈]0,η[ is bounded. Continuing this process, we obtain the boundedness of (x ε 1 , . . . , x ε m ) ε∈]0,η[ and the fact that

(∀i ∈ I) (T i x ε i-1 -x ε i-1 ) ε∈]0,η[ is bounded. (2.12)
On the other hand, adding all the equalities in (1.8), we get

(∀ε ∈ ]0, η[) i∈I T i x ε i-1 = i∈I x ε i , (2.13) 
from which it follows that

(∀ε ∈ ]0, η[) T x ε m -x ε m = 1 m m i=1 T i x ε m -x ε m = 1 m m i=1 T i x ε i-1 + 1 m m i=2 T i x ε m -T i x ε i-1 -x ε m = 1 m m i=1 x ε i + 1 m m i=2 T i x ε m -T i x ε i-1 -x ε m = 1 m m-1 i=1 (x ε i -x ε m ) + 1 m m-1 i=1 T i+1 x ε m -T i+1 x ε i . (2.14)
Hence, using the nonexpansiveness of the operators (T i ) i∈I , we obtain

(∀ε ∈ ]0, η[) T x ε m -x ε m 2 m m-1 i=1 x ε m -x ε i . (2.15)
Consequently, since (1.8) and (2.12) also imply that

(∀i ∈ I) x ε i -x ε i-1 = ε T i x ε i-1 -x ε i-1 → 0 as ε → 0, (2.16) 
thus proving (2.9), the triangle inequality gives

x ε m -x ε i → 0, which, combined with (2.15), yields T x ε m -x ε m → 0. (2.17) 
Hence, we can invoke the demiclosed principle [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 4.18] to deduce that every weak sequential cluster point of the bounded curve (x ε m ) ε∈]0,η[ belongs to Fix T , which is therefore nonempty. In view of (2.16), we therefore deduce that every weak sequential cluster point of (x ε 1 , . . . , x ε m ) ε∈]0,η[ is of the form (x, . . . , x), where x ∈ Fix T . It remains to show that under any of the conditions (i), (ii), or (iii), the curve (x ε m ) ε∈]0,1[ is weakly convergent. Clearly (iii) implies (i), and the same holds for (ii) since

(∀(x, y) ∈ H 2 )(∀ε ∈ ]0, η[) x ε m | x -y = 1 2 x ε m -y 2 -x ε m -x 2 + x 2 -y 2 . (2.18)
Thus, it suffices to show that under (i) the curve (x ε m ) ε∈]0,η[ has a unique weak sequential cluster point. Let x and y be two weak sequential cluster points and choose sequences (ε n ) n∈N and (ε ′ n ) n∈N in ]0, η[ converging to 0 such that x εn m ⇀ x and x ε ′ n m ⇀ y as n → +∞. As shown above, we have x and y lie in Fix T and, therefore, it follows from (i

) that x | x -y = lim n→+∞ x εn m | x -y = lim n→+∞ x ε ′ n m | x -y = y | x -y . This yields x -y 2 = 0 proving our claim.
Finally, let us establish the strong convergence assertion. To this end, let (ε n ) n∈N be a sequence in ]0, η[ converging to 0. Then, as just proved, x εn m ⇀ x ∈ Fix T as n → +∞. On the other hand, (2.17) yields x εn m -T x εn m → 0 as n → +∞. Hence, we derive from (2.10) that x εn m → x as n → +∞. This shows that x ε m → x as ε → 0. In view of (2.16), the proof is complete.

Remark 2.9 The demiregularity condition (2.10) is a specialization of a notion introduced in [1, Definition 2.3] for set-valued operators (see also [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications II/B[END_REF]Definition 27.1]). It follows from [1, Proposition 2.4] that (2.10) is satisfied in each of the following cases.

(i) Id -T is uniformly monotone at every y ∈ Fix T .

(ii) Id -T is strongly monotone at every y ∈ Fix T .

(iii) T = Id -∇f , where f ∈ Γ 0 (H) is uniformly convex at every y ∈ Fix T .

(iv) D is boundedly compact: its intersection with every closed ball is compact.

(v) D = H and Id -T is invertible.

(vi) T is demicompact [START_REF] Petryshyn | Construction of fixed points of demicompact mappings in Hilbert space[END_REF]: for every bounded sequence (y n ) n∈N in D such that (y n -T y n ) n∈N converges strongly, (y n ) n∈N admits a strongly convergent subsequence.

In the special case when (T i ) i∈I is a family of projection operators onto closed convex sets, Theorem 2.8 asserts that De Pierro's conjecture is true under any of conditions (i)-(iii). In particular, we obtain weak convergence of each point in the cycle to the point in Fix T if this set is a singleton, which can be considered as a generic situation in many practical instances when i∈I Fix T i = ∅. The following example illustrates a degenerate case in which weak convergence of the cycles can fail.

Example 2.10 Suppose that in Theorem 2.8 we have i∈I Fix T i = ∅. Then it follows from the results of [5, Section 4.5] that

(∀ε ∈ ]0, 1[) Fix R ε = i∈I Fix (1 -ε) Id +εT i = i∈I Fix T i = Fix T.
(2.19)

Now suppose y and z are two distinct points in Fix T and set

(∀ε ∈ ]0, 1[) x ε m = y, if ⌊1/ε⌋ is even; z, if ⌊1/ε⌋ is odd. (2.20)
Then (x ε m ) ε∈]0,1[ has two distinct weak cluster points and therefore it does not converge weakly, although Assumptions 1.1 and 2.1 are trivially satisfied.

Convergence of limit cycles of under-relaxed iterations

As illustrated in Example 2.10, in general one cannot expect every solution cycle (x ε 1 , . . . , x ε m ) ε∈]0,η[ in (1.8) to converge as there are cases that oscillate. Theorem 2.8 provided conditions that rule out multiple clustering and ensure the weak convergence of the cycles as ε → 0. An alternative approach, inspired from [START_REF] De Pierro | From parallel to sequential projection methods and vice versa in convex feasibility: Results and conjectures[END_REF], is to focus on solutions of (1.8) that arise as limit cycles of the under-relaxed periodic iteration (1.9) started from the same initial point y 0 ∈ D for every ε ∈ ]0, η[. This arbitrary but fixed initial point is intended to act as an anchor that avoids multiple cluster points of the resulting family of limit cycles (x ε 1 , . . . , x ε m ) ε∈]0,η[ .

As mentioned in the Introduction, for convex projection operators De Pierro conjectured that, as ε → 0, the limit cycles shrink to a least-squares solution, namely (x ε 1 , . . . , x ε m ) ⇀ (x, . . . , x), where x is a minimizer of the function Φ of (1.3). In [6, Theorem 6.4] the conjecture was proved for closed affine subspaces satisfying a regularity conditions, in which case the limit x exists in the strong topology and is in fact the point in S = Argmin Φ = Fix T closest to the initial point y 0 , namely x = P S y 0 . However, for general convex sets the conjecture remains open.

We revisit this question in the general framework delineated by Assumptions 1.1 and 2.1 with a different strategy than that adopted in Section 2. Our approach consists in showing that, for ε small, the iterates (1.9) follow closely the orbit of the semigroup generated by A = Id -T , i.e., the semigroup associated with the autonomous Cauchy problem

x ′ (t) = -Ax(t) on ]0, +∞[ x(0) = y 0 . (3.1)
This allows us to relate the limit cycles (x ε 1 , . . . , x ε m ) ε∈]0,η[ to the limit of x(t) when t → +∞. Note that, since y 0 ∈ D = dom A and A is Lipschitz, (3.1) has a unique solution x ∈ C 1 (]0, +∞[ ; D); see, e.g., [START_REF] Brézis | Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert[END_REF]Theorem I.1.4]. In addition, if there exists x ∞ ∈ H such that x(t) ⇀ x ∞ as t → +∞, then x ∈ Fix T . In the case of convex projections, (3.1) reduces to the gradient flow

x ′ (t) = -∇Φ(x(t)) on ]0, +∞[ x(0) = y 0 , (3.2) 
which converges weakly to some point x ∞ ∈ S as t → +∞ [9, Theorem 4], and one may therefore expect De Pierro's conjecture to hold with x = x ∞ under suitable assumptions. Note, however, that for non-affine convex sets the limit x ∞ might not coincide with the projection P S y 0 .

Under-relaxed cyclic iterations and semigroup flows

In order to study (1.9) for a fixed ε ∈ ]0, 1[, it suffices to consider the iterates modulo m, that is, the sequence (y ε km ) k∈N = ((R ε ) k y 0 ) k∈N , which converge weakly towards some point x ε m ∈ Fix R ε (see Proposition 2.2). The key to establish a formal connection between the iteration (1.9) and the semigroup associated with (3.1), is the following approximation lemma that relates R ε to A = Id -T .

Lemma 3.1 Set

A = Id -T , fix z ∈ D, and set ρ = max i∈I T i z -z /2. Then (∀ε ∈ [0, 1])(∀x ∈ D) R ε x -x + εmAx ε 2 (3 m -2m -1)( x -z + ρ). (3.3)
Proof. Since the case ε = 0 is trivial, we take ε ∈ ]0, 1]. Define operators on D by

(∀j ∈ I) R ε j = Id +ε(T j -Id) • • • • • Id +ε(T 1 -Id) (3.4)
and

(∀j ∈ I) E ε j = 1 ε 2 (R ε j -Id) + 1 ε j i=1 (Id -T i ). (3.5) Then R ε = R ε m and therefore R ε -Id +εmA = ε 2 E ε m . Thus, the result boils down to showing that (∀x ∈ D) E ε m x (3 m -2m -1)( x -z + ρ). We derive from (3.5) that (∀j ∈ {1, . . . , m -1}) E ε j+1 = E ε j + 1 ε (Id -T j+1 ) -(Id -T j+1 ) • R ε j . (3.6)
Now let x ∈ D. Since the operators (Id -T j ) 1 j m-1 are 2-Lipschitz, we have

(∀j ∈ {1, . . . , m -1}) E ε j+1 x E ε j x + 2 ε x -R ε j x = E ε j x + 2 j i=1 (Id -T i )x -εE ε j x (1 + 2ε) E ε j x + 2 j i=1 ( x -z + z -T i z + T i z -T i x ) (1 + 2ε) E ε j x + 4j( x -z + ρ). (3.7)
Using (3.7) recursively, and observing that E ε 1 x = 0, it follows that

E ε m x 4( x -z + ρ) m-1 j=1 j(1 + 2ε) m-1-j . (3.8)
Upon applying the identity m-1 j=1

jα j = ((m -1)α m+1 -mα m + α)/(1 -α) 2 to α = (1 + 2ε) -1 ∈ ]0, 1[, we see that the sum in (3.8) is equal to ((1 + 2ε) m -1 -2mε)/(4ε 2
), which increases with ε attaining its maximum (3 m -2m -1)/4 at ε = 1. This combined with (3.8) yields the announced bound. Remark 3.2 For firmly nonexpansive operators, such as projection operators onto closed convex sets, the operators (Id -T i ) i∈I are nonexpansive and the previous proof can be modified to derive a tighter bound in (3.3), namely

(∀ε ∈ [0, 1])(∀x ∈ D) R ε x -x + εmAx ε 2 (2 m -m -1)( x -z + 2ρ). (3.9)
We proceed with the announced connection between (1.9) and (3.1). This will be used later to establish De Pierro's conjecture in several alternative settings. Proposition 3.3 Let y 0 ∈ D, let x be the solution of (3.1), suppose that Assumptions 1.1 and 2.1 are satisfied. For every ε ∈ ]0, η[, set (z ε k ) k∈N = ((R ε ) k y 0 ) k∈N and let ψ ε be the linear interpolation of (z ε k ) k∈N given by 

∀k ∈ N ∀t ∈ [kmε, (k + 1)mε[ ψ ε (t) = z ε k + t -kmε mε (z ε k+1 -z ε k ). (3.10) Then (∀ t ∈ ]0, +∞[) sup 0 t t ψ ε (t) -x(t) → 0 when ε → 0. Proof. Set A = Id -T , let ε ∈ ]0, η[,
(∀k ∈ N)(∀t ∈ J k ) (ψ ε ) ′ (t) = 1 mε (z ε k+1 -z ε k ) = 1 mε (R ε z ε k -z ε k ) = -Az ε k + εh ε k , (3.11) 
where

h ε k (3 m -2m -1)( z ε k -z + ρ)/m. Now set (∀k ∈ N)(∀t ∈ J k ) h ε (t) = Aψ ε (t) -Az ε k + εh ε k . (3.12) Then (∀k ∈ N)(∀t ∈ J k ) (ψ ε ) ′ (t) = -Aψ ε (t) + h ε (t). (3.13)
Moreover, it follows from (2.1) that there exists a constant α ∈ ]0, +∞[ independent from ε such that (∀k

∈ N) h ε k α. Hence, since A is 2-Lipschitz, there exists γ ∈ ]0, +∞[ such that (∀k ∈ N)(∀t ∈ J k ) h ε (t) 2 ψ ε (t) -z ε k + ε h ε k 2 z ε k+1 -z ε k + ε h ε k = 2εm -Az ε k + εh ε k + ε h ε k εγ. (3.14) 
Next, consider the function θ

: [0, +∞[ → [0, +∞[ defined by θ(t) = x(t) -ψ ε (t) 2 .
Then it follows from the monotonicity of A that

(∀t ∈ [0, +∞[ kmε k ∈ N ) θ ′ (t) = 2 x(t) -ψ ε (t) | x ′ (t) -(ψ ε ) ′ (t) = 2 x(t) -ψ ε (t) | Aψ ε (t) -h ε (t) -Ax(t) 2 x(t) -ψ ε (t) | -h ε (t) 2 x(t) -ψ ε (t) h ε (t) 2εγ θ(t). (3.15) 
Integrating this inequality and noting that θ(0) = 0, we obtain (∀t ∈ [0, +∞[) ψ ε (t) -x(t) = θ(t) εγt. Now let t ∈ ]0, +∞[. Then sup 0 t t ψ ε (t) -x(t) εγ t → 0 as ε → 0.

Strong convergence under stability of approximate cycles

In this section, we investigate the strong convergence of the cycles defined in (1.8) when a stability condition holds.

Theorem 3.4 Suppose that Assumptions 1.1 and 2.1 are satisfied, and that

(∀z ∈ Fix T ) lim ε→0 d Fix R ε (z) = 0. (3.16) 
In addition, let y 0 ∈ D, and suppose that the orbit of y 0 in the Cauchy problem (3.1) converges strongly, say x(t) → x ∈ D as t → +∞. For every ε ∈ ]0, η[, let (x ε i ) i∈I be the cycle obtained as the weak limit of (1.9) in Proposition 2.2. Then x ∈ Fix T and (∀i ∈ I) x ε i → x when ε → 0. Proof. Since x(t) → x, (3.1) implies that x ′ (t) converges to Ax and therefore Ax = 0 since

x ′ (t) → 0. Hence, x ∈ Fix T . Now fix δ ∈ ]0, +∞[ and t ∈ ]0, +∞[ such that (∀t ∈ [ t, +∞[) x(t) -x δ. For every ε ∈ ]0, η[, set (z ε k ) k∈N = (y ε km ) k∈N = ((R ε ) k y 0 )
k∈N and define the function ψ ε as in (3.10). By Proposition 3.3, there exists

ε 0 ∈ ]0, η[ such that (∀ε ∈ ]0, ε 0 [)(∀t ∈ [0, t + m]) ψ ε (t) -x(t) δ. (3.17) Now let ε ∈ ]0, ε 0 [, choose k 0 ∈ N such that k 0 mε ∈ [ t, t + m],
and set xε = P Fix R ε x (recall that, since D is closed and convex and R ε is nonexpansive, Fix R ε is closed and convex [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 4.15]). Then

z ε k 0 -x(k 0 mε) = ψ ε (k 0 mε) -x(k 0 mε) δ and therefore z ε k 0 -x 2δ. Since R ε is nonexpansive, we have (∀k ∈ N) z ε k+1 -xε z ε k -xε .
Hence, for every integer k k 0 , we have

z ε k -xε z ε k 0 -xε z ε k 0 -x + x -xε 2δ + d Fix R ε (x) (3.18) 
and therefore

y ε km -x = z ε k -x 2δ + 2d Fix R ε (x). (3.19) 
Since Proposition 2.2 asserts that y ε km ⇀ x ε m , we get

x ε m -x lim k→+∞ y ε km -x 2δ + 2d Fix R ε (x), (3.20) 
and (3.16) yields lim

ε→0 x ε m -x 2δ. (3.21) 
Letting δ → 0, we deduce that x ε m → x as ε → 0. In turn, it follows from (2.9) that (∀i ∈ I)

x ε i → x as ε → 0.
The following corollary settles entirely De Pierro's conjecture in the case of m = 2 closed convex sets in Euclidean spaces. 

z ε = ((1 -ε)a + b)/(2 -ε) ∈ Fix R ε . Thus d Fix R ε (z) z -z ε = ε b -a 2(2 -ε) → 0 as ε → 0, (3.25)
and the conclusion follows from Theorem 3.4.

We conclude this section by showing that, in contrast with (3.25), the condition (3.16) can fail in the case of projection operators in the presence of m = 3 sets. Example 3.6 Suppose that H = R 3 and m = 3, and let T 1 , T 2 , and T 3 be, respectively, the projection operators onto the bounded closed convex sets (see Fig. 2)

     C 1 = [-1, 1] × {-1} × {1} C 2 = [-1, 1] × {1} × {1} C 3 = (ξ 1 , ξ 2 , ξ 3 ) ∈ R 3 ξ 1 ∈ [-1, 1], ξ 3 ∈ [0, 1], (1 -ξ 3 )(ξ 2 1 -1) + ξ 2 2 0 . (3.26) 
Then the set of least-squares solutions is

S = Fix T = [-1, 1] × {0} × {1} ⊂ C 3 . Moreover, (∀ε ∈ ]0, 1[) Fix R ε = {z ε } = 0, w ε + ε(1 -ε) 3(1 -ε) + ε 2 , 1 - w 2 ε 3(1 -ε) + ε 2 , (3.27)
where w ε is the unique real solution of 2w 3 + w = ε/(2 -ε). Clearly z ε → (0, 0, 1) ∈ S as ε → 0, but (∀z ∈ S {(0, 0, 1)}) d Fix R ε (z) → 0 as ε → 0.

Strong convergence under local strong monotonicity

Another situation covered by Theorem 3.4 is when the operator T has a unique fixed point x and A = Id -T is locally strongly monotone around x, namely

(∃ α ∈ ]0, +∞[)(∃ δ ∈ ]0, +∞[)(∀x ∈ D ∩ B(x; δ)) x -x | x -T x α x -x 2 .
(3.28)

In the case of convex projections operators, then A = ∇Φ and, if Φ is twice differentiable at x, then (3.28) is equivalent to the positive-definiteness of ∇ 2 Φ(x). Another case in which (3.28) is satisfied, with α = 1 -ρ, is when T is a local strict contraction with constant ρ ∈ ]0, 1[ at the fixed point x, namely, for all x in some ball B(x; δ), T x -T x ρ x -x . If T is differentiable at x this amounts to T ′ (x) < 1.

Theorem 3.7 Suppose that Assumptions 1.1 and 2.1 are satisfied, together with (3.28), and let Fix T = {x}. In addition, let y 0 ∈ D and, for every ε ∈ ]0, η[, let (x ε i ) i∈I be the cycle obtained as the weak limit of (1.9) in Proposition 2.2. Then (∀i ∈ I) x ε i → x as ε → 0.

Proof. It suffices to check the assumptions of Theorem 3.4. Set A = Id -T and let x be the solution to (3.1).

• d Fix R ε (x) → 0 as ε → 0: Let ε ∈ ]0, min{η, α/(2m)}[, set Q ε = Id -mεA and γ(ε) = 1 -mε(α -2mε
), and let y ∈ D ∩ B(x; δ). Since Ax = 0 and A is 2-Lipschitz, we have

Q ε y -x 2 = y -x 2 -2mε y -x | Ay -Ax + (mε) 2 Ay -Ax 2 (1 -2mε(α -2mε)) y -x 2 γ(ε) 2 y -x 2 . (3.29)
On the other hand, setting ρ = max i∈I T i x -x /2 and β = 3 m -2m -1, Lemma 3.1 gives

R ε y -Q ε y ε 2 β( y -x + ρ) (3.30)
which, combined with (3.29), yields

R ε y -x R ε y -Q ε y + Q ε y -x ε 2 β( y -x + ρ) + γ(ε) y -x . (3.31) 
From this estimate it follows that given δ ′ ∈ ]0, δ], for every ε mαδ ′ /(β(δ

′ + ρ) + 2m 2 δ ′ ), we have R ε (D ∩ B(x; δ ′ )) ⊂ D ∩ B(x; δ ′ ). Therefore R ε has a fixed point in B(x; δ ′ ) and hence d Fix R ε (x) δ ′ .
Since δ ′ can be arbitrarily small, this proves that d Fix R ε (x) → 0 as ε → 0.

• x(t) → x as t → +∞: Let θ : [0, +∞[ → [0, +∞[ be defined by θ(t) = x(t) -x 2 /2, and let us show that lim t→+∞ θ(t) = 0. We note that this holds whenever the orbit enters the ball B(x; δ) at some instant t 0 . Indeed, the monotonicity of A implies that θ is decreasing so that, for every t ∈ [t 0 , +∞[, x(t) ∈ D ∩ B(x; δ) and hence (3.1) and (3.28) give

θ ′ (t) = x(t) -x | x ′ (t) = x -x(t) | x(t) -T x(t) -α x(t) -x 2 = -2αθ(t). (3.32)
Consequently, θ(t) θ(t 0 ) exp(-2α(t -t 0 )) → 0 as t → +∞. It remains to prove that x(t) enters the ball B(x; δ). If this was not the case we would have µ = lim t→+∞ θ(t) δ. Choose t 0 large enough so that θ(t 0 ) µ + δ/2 and let x be the solution to the Cauchy problem x′

(t) = -Ax(t) on [t 0 , +∞[ x(t 0 ) = x0 , (3.33) 
where

x0 = x + δ(x(t 0 ) -x)/ x(t 0 ) -x ∈ D ∩ B(x; δ). By monotonicity of A, t → x(t) -x(t) is decreasing and hence (∀t ∈ [t 0 , +∞[) x(t) -x x(t) -x(t) + x(t) -x x(t 0 ) -x(t 0 ) + x(t) -x (µ -δ/2) + x(t) -x . (3.34)
Since by the previous argument x(t) -x → 0, we reach a contradiction with the fact that (∀t ∈ [0, +∞[) x(t) -x µ.

Altogether, the conclusion follows from Theorem 3.4.

Remark 3.8 If Id -T were globally (rather than just locally as in (3.28)) strongly monotone at every point in Fix T , we could derive Theorem 3.7 directly from Theorem 2.8 and Remark 2.9(ii).

Theorem 3.7 can also be applied when the local strong monotonicity or the local contraction properties hold up to an affine subspace (see (3.35) below). This is relevant in the case studied in [START_REF] Bauschke | A conjecture by De Pierro is true for translates of regular subspaces[END_REF] when (T i ) i∈I is a family of projection operators onto closed affine subspaces (x i + E i ) i∈I , where (E i ) i∈I is a family of closed vector subspaces of H, and more generally for unbounded closed convex cylinders of the form (B i + E i ) i∈I , where B i is a nonempty bounded closed convex subset of E ⊥ i .

Corollary 3.9 Suppose that Assumptions 1.1 and 2.1 are satisfied, that D = H, and that (T i ) i∈I is a family of projection operators onto nonempty closed convex subsets (C i ) i∈I of H.

In addition, suppose that the set S of minimizers of Φ in (1.3) is a closed affine subspace, say S = z + E, where z ∈ H and E is a closed vector subspace of H. Let y 0 ∈ D, set x = P S y 0 , and, for every ε ∈ ]0, η[, let (x ε i ) i∈I be the cycle obtained as the weak limit of (1.9) in Proposition 2.2. Then the following hold. Then (∀i ∈ I) x ε i → x as ε → 0. Proof. Let i ∈ I. Since S = z + E, we have C i + E ⊂ C i and the iterates (y ε k ) k∈N in (1.9) move parallel to E ⊥ and remain in y 0 + E ⊥ . Hence, since {x} = S ∩ (y 0 + E ⊥ ), (i) follows by applying Theorem 2.8 in the space y 0 + E ⊥ , while (ii) follows by applying Theorem 3.7 in this same space.

We conclude the paper by revisiting De Pierro's conjecture in the affine setting investigated in [START_REF] Bauschke | A conjecture by De Pierro is true for translates of regular subspaces[END_REF]. More precisely, we shall derive an alternative proof of the main result of [START_REF] Bauschke | A conjecture by De Pierro is true for translates of regular subspaces[END_REF] from Corollary 3.9. For this purpose, we need the following notion of regularity. Let (E i ) i∈I be a regular family of closed vector subspaces of H with intersection E and for, every i ∈ I, let x i ∈ H and let P i be the projection operator onto the affine subspace C i = x i + E i . Let y 0 ∈ H and set S = Argmin i∈I d 2 C i . Then there exists z ∈ H such that S = z + E. Moreover, for every ε ∈ ]0, 1], the cycle (x ε i ) i∈I obtained as the weak limit of (1.9) in Proposition 2.2 exists, and (∀i ∈ I) x ε i → P S y 0 as ε → 0.

Proof. We have (∀i ∈ I) P i : x → x i +P E i (x-x i ). Hence T x = a+Lx, where a = (1/m) i∈I (x i -P E i x i ) and L = (1/m) i∈I P E i . According to [START_REF] Bauschke | A conjecture by De Pierro is true for translates of regular subspaces[END_REF]Theorem 5.4], the subspaces (E i ) i∈I are regular if and only if ρ = L • P E ⊥ < 1, which implies that T is a strict contraction on y 0 + E ⊥ . From this we get simultaneously that T has a fixed point z, that the least-squares solution set is of the form S = z + E, and that (3.35) holds. Hence, the result will follow from Corollary 3.9 provided that (x ε i ) i∈I exists for every ε ∈ ]0, 1]. This was proved in [START_REF] Bauschke | A conjecture by De Pierro is true for translates of regular subspaces[END_REF]Theorem 5.6] by noting that R ε | y 0 +E ⊥ is a strict contraction. Indeed, R ε is a composition of affine maps and an inductive calculation reveals that it can be written as R ε x = a ε + L ε x, where a ε ∈ H and L ε a linear operator which is a convex combination of nonexpansive linear maps, one of which is the strict contraction L • P E ⊥ . Remark 3.12 Corollary 3.9(i) seems to be new even for affine subspaces (C i ) i∈I . Also new in Corollary 3.9(ii) is the fact that strong convergence holds for more general convex sets than just translates of regular subspaces.

  and fix z ∈ D. The function ψ ε is differentiable except at the breakpoints kmε k ∈ N . Now set (∀k ∈ N) J k = ]kmε, (k + 1)mε[. According to Lemma 3.1, we have

Corollary 3 . 5 x ε 1 → x and x ε 2 →

 3512 In Assumption 1.1, suppose that H is finite-dimensional, D = H, and m = 2, and let T 1 = P 1 and T 2 = P 2 be the projection operators onto nonempty closed convex sets such that Fix T = S = Argmin Φ = ∅, where Φ Let y 0 ∈ H and let x ∈ S be the limit of the the solution x of Cauchy problemx ′ (t) + x(t) = 1 2 P 1 x(t) + P 2 x(t) on ]0, +∞[ x(0) = y 0 .(3.23)For for every ε ∈ ]0, 1[, let x ε 1 = lim k→+∞ y ε 2k+1 and x ε 2 = lim k→+∞ y ε 2k+2 , where(∀k ∈ N) y ε 2k+1 = Id +ε(P 1 -Id) y ε 2k y ε 2k+2 = Id +ε(P 2 -Id) y ε 2k+1 . x when ε → 0. Proof. Fix z ∈ S,and set a = P 1 z and b = P 2 z. Then z = (a + b)/2 and (∀ε ∈ ]0, 1[)
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 2 Figure 2: An example in which the condition (3.16) fails.

  (i) (∀i ∈ I) x ε i ⇀ x as ε → 0.(ii) Suppose that(∀y ∈ S)(∃ ρ ∈ [0, 1[)(∃ δ ∈ ]0, +∞[)(∀x ∈ B(0; δ) ∩ E ⊥ ) T (x + y) -T y ρ x . (3.35)

Definition 3 .

 3 10 A finite family (E i ) i∈I of closed vector subspaces of H with intersection E is regular if ∀(y k ) n∈N ∈ H N max i∈I d E i (y k ) → 0 ⇒ d E (y k ) → 0. (3.36) Theorem 3.11

  • | • and the associated norm by • . The symbols ⇀ and → denote, respectively, weak and strong convergence, and Id denotes the identity operator. The closed ball of center x ∈ H and radius ρ ∈ ]0, +∞[ is denoted by B(x; ρ). Given a nonempty closed convex subset C ⊂ H, the distance function to C and the projection operator onto C are respectively denoted by d C and P C .
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