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Abstract

In general there exists no relationship between the fixed point sets of the composition and
of the average of a family of nonexpansive operators in Hilbert spaces. In this paper, we
establish an asymptotic principle connecting the cycles generated by under-relaxed composi-
tions of nonexpansive operators to the fixed points of the average of these operators. In the
special case when the operators are projectors onto closed convex sets, we prove a conjecture
by De Pierro which has so far been established only for projections onto affine subspaces.
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1 Introduction

Fixed points of compositions and averages of nonexpansive operators arise naturally in diverse
settings; see for instance [4, 5, 10, 12] and the references therein. In general there is no simple
relationship between the fixed point sets of such operators. In this paper we investigate the
connection of the fixed points of the average operator with the limits of a family of under-
relaxed compositions. More precisely, we consider the framework described in the following
standing assumption.

Assumption 1.1 H is a real Hilbert space, D is a nonempty, closed, convex subset of H, m > 2
is an integer, I = {1, . . . ,m}, (Ti)i∈I is a family of nonexpansive operators from D to D, and
(Fix Ti)i∈I is their fixed point sets. Moreover, we set



















T =
1

m

∑

i∈I

Ti

R = Tm ◦ · · · ◦ T1

(∀ε ∈ ]0, 1[) Rε =
(

Id+ε(Tm − Id)
)

◦ · · · ◦
(

Id+ε(T1 − Id)
)

.

(1.1)

When the operators (Ti)i∈I have common fixed points, Fix T =
⋂m

i=1 Fix Ti 6= ∅ [5, Proposi-
tion 4.32]. If, in addition, they are strictly nonexpansive in the sense that

(∀i ∈ I)(∀x ∈ D r Fix Ti)(∀y ∈ FixTi) ‖Tix− y‖ < ‖x− y‖, (1.2)

it also holds that FixR =
⋂

i∈I Fix Ti [5, Corollary 4.36], and therefore FixR = FixT . However,
in the general case when

⋂

i∈I Fix Ti = ∅, the question has been long standing and remains open
even for convex projection operators, e.g., [10, Section 8.3.2] and [14]. Even when m = 2 and T1
and T2 are resolvents of maximally monotone operators, there does not seem to exist a simple
relationship between FixR and Fix T [18], except for convex projection operators, in which case
Fix T = (1/2)(FixR + FixR′), with R′ = T1 ◦ T2 (see [3, 13] for related results, and [7] for the
case of m > 3 resolvents).

When (Ti)i∈I = (Pi)i∈I are projection operators onto nonempty closed convex sets (Ci)i∈I ,
Fix T is the set of minimizers of the average square-distance function [3, 13, 15]

Φ: H → R : x 7→
1

2m

∑

i∈I

d2Ci
(x), (1.3)

while FixR is related to the set of Nash equilibria of a cyclic projection game. Indeed, the fixed
point equation x = Rx can be restated as a system of equations in (x1, . . . , xm) ∈ Hm, namely























x1 = P1xm

x2 = P2x1
...

xm = Pmxm−1,

(1.4)

which characterize the Nash equilibria of a game in which each player i ∈ I selects a strategy
xi ∈ Ci to minimize the payoff x 7→ ‖x − xi−1‖, with the convention x0 = xm. It is worth
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noting that, for m > 3, these Nash equilibria cannot be characterized as minimizers of any
function Ψ: Hm → R over C1×· · ·×Cm [2], which further reinforces the lack of hope for simple
connections between FixR and Fix T . It was shown in [16] that, if one of the sets is bounded,
for every y0 ∈ H, the sequence (ykm+1, . . . , ykm+m)k∈N generated by the periodic best-response
dynamics

(∀k ∈ N)















ykm+1 = P1ykm
ykm+2 = P2ykm+1

...
ykm+m = Pmykm+m−1,

(1.5)

converges weakly to a solution (x1, . . . , xm) to (1.4) (see Fig. 1). Working in a similar direction,

b

C2
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C3

y0

y2

y1

y3

y4

y5

x2

x1

x3

b

b

b

Figure 1: Cycles in the method of periodic projections.

and motivated by the work of [11] on under-relaxed projection methods for solving inconsistent
systems of affine inequalities, De Pierro considered in [14] an under-relaxed version of (1.5),
namely

(∀k ∈ N)















yεkm+1 =
(

Id+ε(P1 − Id)
)

yεkm
yεkm+2 =

(

Id+ε(P2 − Id)
)

yεkm+1
...

yεkm+m =
(

Id+ε(Pm − Id)
)

yεkm+m−1.

(1.6)

Under mild conditions the resulting sequence (yεkm+1, y
ε
km+2, . . . , y

ε
km+m)k∈N converges weakly

to a limit cycle that satisfies the coupled equations

(∀ε ∈ ]0, 1[)























xε1 =
(

Id+ε(P1 − Id)
)

xεm
xε2 =

(

Id+ε(P2 − Id)
)

xε1
...

xεm =
(

Id+ε(Pm − Id)
)

xεm−1.

(1.7)

In [14, Conjecture I], De Pierro conjectured that as ε → 0 these limit cycles (xε1, . . . , x
ε
m)ε∈]0,1[

shrink towards a single point which is a minimizer of Φ, i.e., a fixed point of T . In contrast with
(1.4), the solutions of which do not satisfy any optimality criteria, this conjecture suggests an
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asymptotic variational principle for the cycles obtained as limits of the under-relaxed version of
(1.5). An important contribution was made in [6], where it was shown that De Pierro’s conjecture
is true for families of closed affine subspaces which satisfy a certain regularity condition.

In this paper we investigate the asymptotic behavior of the under-relaxed cycles























xε1 =
(

Id+ε(T1 − Id)
)

xεm
xε2 =

(

Id+ε(T2 − Id)
)

xε1
...

xεm =
(

Id+ε(Tm − Id)
)

xεm−1

(1.8)

as ε → 0 in the general setting of Assumption 1.1. In Section 2 we present a first general
convergence result, which establishes conditions under which the limits as ε→ 0 of the m curves
(xεi )ε∈]0,1[ (i ∈ I) exist and all coincide with a fixed point of T . This result not only gives
conditions under which De Pierro’s conjecture is true, but also extends its scope from projection
operators to arbitrary nonexpansive operators. In Section 3 we revisit the problem from a
constructive angle. Given an initial point y0 ∈ D and ε ∈ ]0, 1[, it is known [5, Theorem 5.22]
that the cycles in (1.8) can be constructed iteratively as the weak limit of the periodic process

(∀k ∈ N)















yεkm+1 =
(

Id+ε(T1 − Id)
)

yεkm
yεkm+2 =

(

Id+ε(T2 − Id)
)

yεkm+1
...

yεkm+m =
(

Id+ε(Tm − Id)
)

yεkm+m−1.

(1.9)

We analyze the connection between this iterative process and the trajectories of the evolution
equation

{

x′(t) + x(t) = Tx(t) on ]0,+∞[

x(0) = y0,
(1.10)

and then establish extended versions of De Pierro’s conjecture under various assumptions.

Notation. The scalar product of H is denoted by 〈· | ·〉 and the associated norm by ‖ · ‖.
The symbols ⇀ and → denote, respectively, weak and strong convergence, and Id denotes the
identity operator. The closed ball of center x ∈ H and radius ρ ∈ ]0,+∞[ is denoted by B(x; ρ).
Given a nonempty closed convex subset C ⊂ H, the distance function to C and the projection
operator onto C are respectively denoted by dC and PC .

2 Convergence of general families of under-relaxed cycles

We investigate the asymptotic behavior of the cycles (xεi )i∈I defined by (1.8) when ε → 0. Let
us remark that such a cycle (xεi )i∈I is in bijection with the fixed points of the composition Rε

of (1.1). Indeed, zε = xεm is a fixed point of Rε; conversely, each zε ∈ FixRε generates a cycle
by setting, for every i ∈ I, xεi = (Id+ε(Ti − Id))xεi−1, where x

ε
0 = zε. This motivates our second

standing assumption.
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Assumption 2.1 For every ε ∈ ]0, 1[, Rε is given by (1.1) and

(∃ η ∈ ]0, 1])(∃ β ∈ ]0,+∞[)(∀ε ∈ ]0, η[)(∃ zε ∈ FixRε) ‖zε‖ 6 β. (2.1)

For later reference, we record the fact that under this assumption the cycles in (1.8) can be
obtained as weak limits of the iterative process (1.9).

Proposition 2.2 Suppose that Assumptions 1.1 and 2.1 are satisfied. Let y0 ∈ D and ε ∈ ]0, η[.
Then the sequence (yεkm+1, . . . , y

ε
km+m)k∈N produced by (1.9) converges weakly to an m-tuple

(xε1, . . . , x
ε
m) which satisfies (1.8).

Proof. This follows from [5, Theorem 5.22].

The following result provides sufficient conditions for Assumption 2.1 to hold.

Proposition 2.3 Suppose that Assumption 1.1 holds, together with one of the following.

(i) For some j ∈ I, Tj has bounded range.

(ii) D is bounded.

Then Assumption 2.1 is satisfied.

Proof. It is clear that (ii) is a special case of (i). Suppose that (i) holds. Fix ε ∈ ]0, 1] and
y ∈ D, and take ρ ∈

[

maxi∈Ir{j} ‖Tiy − y‖,+∞
[

such that Tj(D) ⊂ B(y; ρ). Furthermore, let
x ∈ D, set x0 = x, and define recursively xi = (1− ε)xi−1 + εTixi−1, so that xm = Rεx. Then

(∀i ∈ I r {j}) ‖xi − y‖ = ‖(1 − ε)(xi−1 − y) + ε(Tixi−1 − y)‖

6 (1− ε)‖xi−1 − y‖+ ε‖Tixi−1 − Tiy‖+ ε‖Tiy − y‖

6 ‖xi−1 − y‖+ ερ (2.2)

and

‖xj − y‖ 6 (1− ε)‖xj−1 − y‖+ ε‖Tjxj−1 − y‖

6 (1− ε)‖xj−1 − y‖+ ερ. (2.3)

By applying inductively (2.2) and (2.3) to majorize ‖xm − y‖, we obtain

‖Rεx− y‖ = ‖xm − y‖ 6 (1− ε)‖x− y‖+ εmρ. (2.4)

This implies that Rε maps D∩B(y;mρ) to itself. Hence, the Browder–Göhde–Kirk theorem (see
[5, Theorem 4.19]) asserts that Rε has a fixed point in B(y;mρ). Moreover, if x is a fixed point
of Rε, (2.4) gives ‖x− y‖ 6 mρ, which shows that (2.1) holds with η = 1 and β = ‖y‖+mρ.

To illustrate Assumption 2.1, it is instructive to consider the following examples.
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Example 2.4 The following variant of the example discussed in [14, Section 3] shows that (2.1)
is a non trivial assumption: H is the Euclidean plane, m = 3, α ∈ R, β ∈ R, γ ∈ ]0,+∞[,
ε ∈ ]0, 1[, and (Ti)16i63 are, respectively, the projection operators onto the sets

C1 = R× {α}, C2 = R× {β}, and C3 =
{

(ξ1, ξ2) ∈ ]0,+∞[2
∣

∣ ξ1ξ2 > γ
}

. (2.5)

Then we have










Fix T =
{

(ξ1, ξ2) ∈ C3

∣

∣ ξ2 = (α+ β)/2
}

FixR =
{

(ξ1, ξ2) ∈ C3

∣

∣ ξ2 = β
}

FixRε =
{

(ξ1, ξ2) ∈ C3

∣

∣ ξ2 =
(

(1− ε)α+ β
)

/(2 − ε)
}

.

(2.6)

Thus, depending on the values of α and β, we can have FixT = FixR 6= ∅, Fix T = FixR = ∅,
Fix T 6= FixR = ∅, FixR 6= Fix T = ∅, or ∅ 6= FixR 6= FixT 6= ∅. Now set η = 1 + β/α.
Then, under the assumption that α + β < 0 < β, we have η ∈ ]0, 1[ and FixRε = ∅ if ε 6 η,
while FixRε 6= ∅ if ε > η. On the other hand, under the assumption that β < 0 < α + β,
η ∈ ]0, 1[ and FixRε 6= ∅ if ε < η, while FixRε = ∅ if ε > η. Moreover, setting

(∀ε ∈ ]0, η[)



















yε =

(

2γ

(1− ε)α + β
+

1

ε
,
(1− ε)α+ β

2− ε

)

∈ FixRε

zε =

(

(2− ε)γ

(1− ε)α+ β
,
(1− ε)α+ β

2− ε

)

∈ FixRε.

(2.7)

we see that (yε)ε∈]0,η[ is an unbounded curve, while (zε)ε∈]0,η[ is bounded.

Example 2.5 In Example 2.4 the sets (Fix Ti)16i63 are nonempty, and one may ask whether
this plays a role in the nonemptiness of FixR, Fix T , or FixRε. To see that such is not the case,
define T3 as in Example 2.4, and consider the modified operators T1 : (ξ1, ξ2) 7→ (ξ1 + µ, α) and
T2 : (ξ1, ξ2) 7→ (ξ1 − µ, β), where µ > 0. Although now the nonexpansive operators T1 and T2
have no fixed points, the operators T , R, and Rε remain unchanged.

Example 2.6 By considering products of sets of the form (2.5) one can build an example in
which Fix T is nonempty but the sets (FixRε)ε∈]0,1[ are empty. More precisely, let H = ℓ2(N),
and let (αn)n∈N, (βn)n∈N, and (γn)n∈N be sequences in ℓ2(N) such that (γn/(αn+βn))n∈N ∈ ℓ2(N)
and (∀n ∈ N) βn < 0 < αn + βn and γn > 0. Set











C1 =
{

(ξn)n∈N ∈ ℓ2(N)
∣

∣ (∀n ∈ N) ξ2n = αn

}

C2 =
{

(ξn)n∈N ∈ ℓ2(N)
∣

∣ (∀n ∈ N) ξ2n = βn
}

C3 =
{

(ξn)n∈N ∈ ℓ2(N)
∣

∣ (∀n ∈ N) ξn > 0 and ξ2n−1ξ2n > γn
}

.

(2.8)

Then FixT 6= ∅ but, for ε ∈ ]0, 1[, we have FixRε 6= ∅ if and only if (∀n ∈ N) ε < 1 +
β2n+1/α2n+1. In particular if we take, for every n ∈ Nr {0}, αn = (n+ 1)/n2, βn = −1/n, and
γn = 1/n3, then FixRε = ∅ for every ε ∈ ]0, 1[.

Example 2.7 ([6, Example 4.1]) Let m = 2, and let T1 and T2 be the projection operators onto
closed affine subspaces C1 ⊂ H and C2 ⊂ H, respectively. If H is finite-dimensional, the sets
FixR, (FixRε)ε∈]0,1[, and Fix T are nonempty; if H is infinite-dimensional, there exist C1 and
C2 such that these sets are all empty. However, if the vector subspace (C1 −C1) + (C2 −C2) is
closed, then FixT 6= ∅ and (∀ε ∈ ]0, 1[) FixRε 6= ∅.
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The next result establishes conditions for the convergence of the cycles of (1.8) when the
relaxation parameter ε vanishes.

Theorem 2.8 Suppose that Assumptions 1.1 and 2.1 are satisfied. Then Fix T 6= ∅. Now let
(xεm)ε∈]0,η[ = (zε)ε∈]0,η[ be the bounded curve provided by (2.1) and denote by (xε1, . . . , x

ε
m)ε∈]0,η[

the associated family of cycles arising from (1.8). Then (xε1, . . . , x
ε
m)ε∈]0,η[ is bounded and each

of its weak sequential cluster points is of the form (x, . . . , x), where x ∈ Fix T . Moreover,

(∀i ∈ I) lim
ε→0

‖xεi − xεi−1‖ = 0, where (∀ε ∈ ]0, η[) xε0 = xεm. (2.9)

In addition, suppose that one of the following holds.

(i) (∀x ∈ Fix T )(∀y ∈ Fix T ) 〈xεm | x− y〉 converges as ε→ 0.

(ii) (∀x ∈ Fix T ) ‖xεm − x‖ converges as ε→ 0.

(iii) FixT is a singleton.

Then there exists x ∈ Fix T such that, for every i ∈ I, xεi ⇀ x as ε→ 0. Finally, suppose that
Id−T is demiregular on Fix T , i.e.,

(

∀(yk)k∈N ∈ DN
)(

∀y ∈ FixT
)

{

yk ⇀ y

yk − Tyk → 0
⇒ yk → y. (2.10)

Then, for every i ∈ I, xεi → x as ε→ 0.

Proof. Fix z ∈ D. By nonexpansiveness of the operators (Ti)i∈I , we have

(∀i ∈ I) ‖Tix
ε
i−1 − xεi−1‖ 6 ‖Tix

ε
i−1 − Tiz‖+ ‖Tiz − z‖+ ‖z − xεi−1‖

6 2‖xεi−1 − z‖+ ‖Tiz − z‖. (2.11)

In particular, for i = 1, it follows from the boundedness of (xεm)ε∈]0,η[ that (T1x
ε
m − xεm)ε∈]0,η[ is

bounded. In turn, we deduce from (1.8) that (xε1)ε∈]0,η[ is bounded. Continuing this process, we
obtain the boundedness of (xε1, . . . , x

ε
m)ε∈]0,η[ and the fact that

(∀i ∈ I) (Tix
ε
i−1 − xεi−1)ε∈]0,η[ is bounded. (2.12)

On the other hand, adding all the equalities in (1.8), we get

(∀ε ∈ ]0, η[)
∑

i∈I

Tix
ε
i−1 =

∑

i∈I

xεi , (2.13)
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from which it follows that

(∀ε ∈ ]0, η[) Txεm − xεm =
1

m

m
∑

i=1

Tix
ε
m − xεm

=
1

m

m
∑

i=1

Tix
ε
i−1 +

1

m

m
∑

i=2

(

Tix
ε
m − Tix

ε
i−1

)

− xεm

=
1

m

m
∑

i=1

xεi +
1

m

m
∑

i=2

(

Tix
ε
m − Tix

ε
i−1

)

− xεm

=
1

m

m−1
∑

i=1

(xεi − xεm) +
1

m

m−1
∑

i=1

(

Ti+1x
ε
m − Ti+1x

ε
i

)

. (2.14)

Hence, using the nonexpansiveness of the operators (Ti)i∈I , we obtain

(∀ε ∈ ]0, η[) ‖Txεm − xεm‖ 6
2

m

m−1
∑

i=1

∥

∥xεm − xεi
∥

∥. (2.15)

Consequently, since (1.8) and (2.12) also imply that

(∀i ∈ I) ‖xεi − xεi−1‖ = ε‖Tix
ε
i−1 − xεi−1‖ → 0 as ε→ 0, (2.16)

thus proving (2.9), the triangle inequality gives ‖xεm − xεi‖ → 0, which, combined with (2.15),
yields

Txεm − xεm → 0. (2.17)

Hence, we can invoke the demiclosed principle [5, Corollary 4.18] to deduce that every weak
sequential cluster point of the bounded curve (xεm)ε∈]0,η[ belongs to Fix T , which is therefore
nonempty. In view of (2.16), we therefore deduce that every weak sequential cluster point of
(xε1, . . . , x

ε
m)ε∈]0,η[ is of the form (x, . . . , x), where x ∈ FixT . It remains to show that under any

of the conditions (i), (ii), or (iii), the curve (xεm)ε∈]0,1[ is weakly convergent. Clearly (iii) implies
(i), and the same holds for (ii) since

(∀(x, y) ∈ H2)(∀ε ∈ ]0, η[) 〈xεm | x− y〉 =
1

2

(

‖xεm − y‖2 − ‖xεm − x‖2 + ‖x‖2 − ‖y‖2
)

. (2.18)

Thus, it suffices to show that under (i) the curve (xεm)ε∈]0,η[ has a unique weak sequential
cluster point. Let x and y be two weak sequential cluster points and choose sequences (εn)n∈N

and (ε′n)n∈N in ]0, η[ converging to 0 such that xεnm ⇀ x and x
ε′n
m ⇀ y as n → +∞. As

shown above, we have x and y lie in FixT and, therefore, it follows from (i) that 〈x | x− y〉 =

limn→+∞ 〈xεnm | x− y〉 = limn→+∞

〈

x
ε′n
m | x− y

〉

= 〈y | x− y〉. This yields ‖x− y‖2 = 0 proving

our claim.

Finally, let us establish the strong convergence assertion. To this end, let (εn)n∈N be a
sequence in ]0, η[ converging to 0. Then, as just proved, xεnm ⇀ x ∈ FixT as n → +∞. On
the other hand, (2.17) yields xεnm − Txεnm → 0 as n → +∞. Hence, we derive from (2.10) that
xεnm → x as n → +∞. This shows that xεm → x as ε → 0. In view of (2.16), the proof is
complete.
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Remark 2.9 The demiregularity condition (2.10) is a specialization of a notion introduced in
[1, Definition 2.3] for set-valued operators (see also [19, Definition 27.1]). It follows from [1,
Proposition 2.4] that (2.10) is satisfied in each of the following cases.

(i) Id−T is uniformly monotone at every y ∈ Fix T .

(ii) Id−T is strongly monotone at every y ∈ Fix T .

(iii) T = Id−∇f , where f ∈ Γ0(H) is uniformly convex at every y ∈ Fix T .

(iv) D is boundedly compact: its intersection with every closed ball is compact.

(v) D = H and Id−T is invertible.

(vi) T is demicompact [17]: for every bounded sequence (yn)n∈N in D such that (yn−Tyn)n∈N
converges strongly, (yn)n∈N admits a strongly convergent subsequence.

In the special case when (Ti)i∈I is a family of projection operators onto closed convex sets,
Theorem 2.8 asserts that De Pierro’s conjecture is true under any of conditions (i)–(iii). In
particular, we obtain weak convergence of each point in the cycle to the point in Fix T if this set
is a singleton, which can be considered as a generic situation in many practical instances when
⋂

i∈I Fix Ti 6= ∅. The following example illustrates a degenerate case in which weak convergence
of the cycles can fail.

Example 2.10 Suppose that in Theorem 2.8 we have
⋂

i∈I Fix Ti 6= ∅. Then it follows from
the results of [5, Section 4.5] that

(∀ε ∈ ]0, 1[) FixRε =
⋂

i∈I

Fix
(

(1− ε) Id+εTi
)

=
⋂

i∈I

Fix Ti = Fix T. (2.19)

Now suppose y and z are two distinct points in Fix T and set

(∀ε ∈ ]0, 1[) xεm =

{

y, if ⌊1/ε⌋ is even;

z, if ⌊1/ε⌋ is odd.
(2.20)

Then (xεm)ε∈]0,1[ has two distinct weak cluster points and therefore it does not converge weakly,
although Assumptions 1.1 and 2.1 are trivially satisfied.

3 Convergence of limit cycles of under-relaxed iterations

As illustrated in Example 2.10, in general one cannot expect every solution cycle (xε1, . . . , x
ε
m)ε∈]0,η[

in (1.8) to converge as there are cases that oscillate. Theorem 2.8 provided conditions that rule
out multiple clustering and ensure the weak convergence of the cycles as ε → 0. An alterna-
tive approach, inspired from [14], is to focus on solutions of (1.8) that arise as limit cycles of
the under-relaxed periodic iteration (1.9) started from the same initial point y0 ∈ D for every
ε ∈ ]0, η[. This arbitrary but fixed initial point is intended to act as an anchor that avoids
multiple cluster points of the resulting family of limit cycles (xε1, . . . , x

ε
m)ε∈]0,η[.
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As mentioned in the Introduction, for convex projection operators De Pierro conjectured that,
as ε→ 0, the limit cycles shrink to a least-squares solution, namely (xε1, . . . , x

ε
m) ⇀ (x, . . . , x),

where x is a minimizer of the function Φ of (1.3). In [6, Theorem 6.4] the conjecture was proved
for closed affine subspaces satisfying a regularity conditions, in which case the limit x exists in
the strong topology and is in fact the point in S = ArgminΦ = Fix T closest to the initial point
y0, namely x = PSy0. However, for general convex sets the conjecture remains open.

We revisit this question in the general framework delineated by Assumptions 1.1 and 2.1 with
a different strategy than that adopted in Section 2. Our approach consists in showing that, for
ε small, the iterates (1.9) follow closely the orbit of the semigroup generated by A = Id−T , i.e.,
the semigroup associated with the autonomous Cauchy problem

{

x′(t) = −Ax(t) on ]0,+∞[

x(0) = y0.
(3.1)

This allows us to relate the limit cycles (xε1, . . . , x
ε
m)ε∈]0,η[ to the limit of x(t) when t→ +∞. Note

that, since y0 ∈ D = domA and A is Lipschitz, (3.1) has a unique solution x ∈ C
1(]0,+∞[ ;D);

see, e.g., [8, Theorem I.1.4]. In addition, if there exists x∞ ∈ H such that x(t) ⇀ x∞ as
t→ +∞, then x ∈ Fix T . In the case of convex projections, (3.1) reduces to the gradient flow

{

x′(t) = −∇Φ(x(t)) on ]0,+∞[

x(0) = y0,
(3.2)

which converges weakly to some point x∞ ∈ S as t→ +∞ [9, Theorem 4], and one may therefore
expect De Pierro’s conjecture to hold with x = x∞ under suitable assumptions. Note, however,
that for non-affine convex sets the limit x∞ might not coincide with the projection PSy0.

3.1 Under-relaxed cyclic iterations and semigroup flows

In order to study (1.9) for a fixed ε ∈ ]0, 1[, it suffices to consider the iterates modulo m, that is,
the sequence (yεkm)k∈N = ((Rε)ky0)k∈N, which converge weakly towards some point xεm ∈ FixRε

(see Proposition 2.2). The key to establish a formal connection between the iteration (1.9) and
the semigroup associated with (3.1), is the following approximation lemma that relates Rε to
A = Id−T .

Lemma 3.1 Set A = Id−T , fix z ∈ D, and set ρ = maxi∈I ‖Tiz − z‖/2. Then

(∀ε ∈ [0, 1])(∀x ∈ D) ‖Rεx− x+ εmAx‖ 6 ε2(3m − 2m− 1)(‖x − z‖+ ρ). (3.3)

Proof. Since the case ε = 0 is trivial, we take ε ∈ ]0, 1]. Define operators on D by

(∀j ∈ I) Rε
j =

(

Id+ε(Tj − Id)
)

◦ · · · ◦
(

Id+ε(T1 − Id)
)

(3.4)

and

(∀j ∈ I) Eε
j =

1

ε2
(Rε

j − Id) +
1

ε

j
∑

i=1

(Id−Ti). (3.5)

10



Then Rε = Rε
m and therefore Rε − Id+εmA = ε2Eε

m. Thus, the result boils down to showing
that (∀x ∈ D) ‖Eε

mx‖ 6 (3m − 2m− 1)(‖x − z‖+ ρ). We derive from (3.5) that

(∀j ∈ {1, . . . ,m− 1}) Eε
j+1 = Eε

j +
1

ε

(

(Id−Tj+1)− (Id−Tj+1) ◦R
ε
j

)

. (3.6)

Now let x ∈ D. Since the operators (Id−Tj)16j6m−1 are 2-Lipschitz, we have

(∀j ∈ {1, . . . ,m− 1}) ‖Eε
j+1x‖ 6 ‖Eε

jx‖+
2

ε
‖x−Rε

jx‖

= ‖Eε
jx‖+ 2

∥

∥

∥

∥

j
∑

i=1

(Id−Ti)x− εEε
jx

∥

∥

∥

∥

6 (1 + 2ε)‖Eε
jx‖+ 2

j
∑

i=1

(‖x− z‖+ ‖z − Tiz‖+ ‖Tiz − Tix‖)

6 (1 + 2ε)‖Eε
jx‖+ 4j(‖x − z‖+ ρ). (3.7)

Using (3.7) recursively, and observing that Eε
1x = 0, it follows that

‖Eε
mx‖ 6 4(‖x− z‖+ ρ)

m−1
∑

j=1

j(1 + 2ε)m−1−j . (3.8)

Upon applying the identity
∑m−1

j=1 jαj = ((m−1)αm+1−mαm+α)/(1−α)2 to α = (1+2ε)−1 ∈

]0, 1[, we see that the sum in (3.8) is equal to ((1 + 2ε)m − 1 − 2mε)/(4ε2), which increases
with ε attaining its maximum (3m − 2m − 1)/4 at ε = 1. This combined with (3.8) yields the
announced bound.

Remark 3.2 For firmly nonexpansive operators, such as projection operators onto closed con-
vex sets, the operators (Id−Ti)i∈I are nonexpansive and the previous proof can be modified to
derive a tighter bound in (3.3), namely

(∀ε ∈ [0, 1])(∀x ∈ D) ‖Rεx− x+ εmAx‖ 6 ε2(2m −m− 1)(‖x− z‖+ 2ρ). (3.9)

We proceed with the announced connection between (1.9) and (3.1). This will be used later
to establish De Pierro’s conjecture in several alternative settings.

Proposition 3.3 Let y0 ∈ D, let x be the solution of (3.1), suppose that Assumptions 1.1
and 2.1 are satisfied. For every ε ∈ ]0, η[, set (zεk)k∈N = ((Rε)ky0)k∈N and let ψε be the linear
interpolation of (zεk)k∈N given by

(

∀k ∈ N
)(

∀t ∈ [kmε, (k + 1)mε[
)

ψε(t) = zεk +
t− kmε

mε
(zεk+1 − zεk). (3.10)

Then (∀t̄ ∈ ]0,+∞[) sup06t6t̄ ‖ψ
ε(t)− x(t)‖ → 0 when ε→ 0.

Proof. Set A = Id−T , let ε ∈ ]0, η[, and fix z ∈ D. The function ψε is differentiable except
at the breakpoints

{

kmε
∣

∣ k ∈ N
}

. Now set (∀k ∈ N) Jk = ]kmε, (k + 1)mε[. According to
Lemma 3.1, we have

(∀k ∈ N)(∀t ∈ Jk) (ψε)′(t) =
1

mε
(zεk+1 − zεk) =

1

mε
(Rεzεk − zεk) = −Azεk + εhεk, (3.11)

11



where ‖hεk‖ 6 (3m − 2m− 1)(‖zεk − z‖+ ρ)/m. Now set

(∀k ∈ N)(∀t ∈ Jk) hε(t) = Aψε(t)−Azεk + εhεk. (3.12)

Then
(∀k ∈ N)(∀t ∈ Jk) (ψε)′(t) = −Aψε(t) + hε(t). (3.13)

Moreover, it follows from (2.1) that there exists a constant α ∈ ]0,+∞[ independent from ε such
that (∀k ∈ N) ‖hεk‖ 6 α. Hence, since A is 2-Lipschitz, there exists γ ∈ ]0,+∞[ such that

(∀k ∈ N)(∀t ∈ Jk) ‖hε(t)‖ 6 2‖ψε(t)− zεk‖+ ε‖hεk‖

6 2‖zεk+1 − zεk‖+ ε‖hεk‖

= 2εm‖ −Azεk + εhεk‖+ ε‖hεk‖

6 εγ. (3.14)

Next, consider the function θ : [0,+∞[ → [0,+∞[ defined by θ(t) = ‖x(t) − ψε(t)‖2. Then it
follows from the monotonicity of A that

(∀t ∈ [0,+∞[r
{

kmε
∣

∣ k ∈ N
}

) θ′(t) = 2
〈

x(t)− ψε(t) | x′(t)− (ψε)′(t)
〉

= 2〈x(t)− ψε(t) | Aψε(t)− hε(t)−Ax(t)〉

6 2〈x(t)− ψε(t) | −hε(t)〉

6 2‖x(t) − ψε(t)‖ ‖hε(t)‖

6 2εγ
√

θ(t). (3.15)

Integrating this inequality and noting that θ(0) = 0, we obtain (∀t ∈ [0,+∞[) ‖ψε(t)− x(t)‖ =
√

θ(t) 6 εγt. Now let t̄ ∈ ]0,+∞[. Then sup06t6t̄ ‖ψ
ε(t)− x(t)‖ 6 εγt̄→ 0 as ε→ 0.

3.2 Strong convergence under stability of approximate cycles

In this section, we investigate the strong convergence of the cycles defined in (1.8) when a
stability condition holds.

Theorem 3.4 Suppose that Assumptions 1.1 and 2.1 are satisfied, and that

(∀z ∈ Fix T ) lim
ε→0

dFixRε(z) = 0. (3.16)

In addition, let y0 ∈ D, and suppose that the orbit of y0 in the Cauchy problem (3.1) converges
strongly, say x(t) → x ∈ D as t→ +∞. For every ε ∈ ]0, η[, let (xεi )i∈I be the cycle obtained as
the weak limit of (1.9) in Proposition 2.2. Then x ∈ FixT and (∀i ∈ I) xεi → x when ε→ 0.

Proof. Since x(t) → x, (3.1) implies that x′(t) converges to Ax and therefore Ax = 0 since
x′(t) → 0. Hence, x ∈ Fix T . Now fix δ ∈ ]0,+∞[ and t̄ ∈ ]0,+∞[ such that (∀t ∈ [t̄,+∞[)
‖x(t) − x‖ 6 δ. For every ε ∈ ]0, η[, set (zεk)k∈N = (yεkm)k∈N = ((Rε)ky0)k∈N and define the
function ψε as in (3.10). By Proposition 3.3, there exists ε0 ∈ ]0, η[ such that

(∀ε ∈ ]0, ε0[)(∀t ∈ [0, t̄+m]) ‖ψε(t)− x(t)‖ 6 δ. (3.17)
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Now let ε ∈ ]0, ε0[, choose k0 ∈ N such that k0mε ∈ [t̄, t̄ + m], and set x̄ε = PFixRεx (recall
that, since D is closed and convex and Rε is nonexpansive, FixRε is closed and convex [5,
Corollary 4.15]). Then ‖zεk0 −x(k0mε)‖ = ‖ψε(k0mε)−x(k0mε)‖ 6 δ and therefore ‖zεk0 −x‖ 6

2δ. Since Rε is nonexpansive, we have (∀k ∈ N) ‖zεk+1 − x̄ε‖ 6 ‖zεk − x̄ε‖. Hence, for every
integer k > k0, we have

‖zεk − x̄ε‖ 6 ‖zεk0 − x̄ε‖ 6 ‖zεk0 − x‖+ ‖x− x̄ε‖ 6 2δ + dFixRε(x) (3.18)

and therefore
‖yεkm − x‖ = ‖zεk − x‖ 6 2δ + 2dFixRε(x). (3.19)

Since Proposition 2.2 asserts that yεkm ⇀ xεm, we get

‖xεm − x‖ 6 lim
k→+∞

‖yεkm − x‖ 6 2δ + 2dFixRε(x), (3.20)

and (3.16) yields
lim
ε→0

‖xεm − x‖ 6 2δ. (3.21)

Letting δ → 0, we deduce that xεm → x as ε → 0. In turn, it follows from (2.9) that (∀i ∈ I)
xεi → x as ε→ 0.

The following corollary settles entirely De Pierro’s conjecture in the case of m = 2 closed
convex sets in Euclidean spaces.

Corollary 3.5 In Assumption 1.1, suppose that H is finite-dimensional, D = H, and m = 2,
and let T1 = P1 and T2 = P2 be the projection operators onto nonempty closed convex sets such
that

Fix T = S = ArgminΦ 6= ∅, where Φ =
1

4

(

d2C1
+ d2C2

)

. (3.22)

Let y0 ∈ H and let x ∈ S be the limit of the the solution x of Cauchy problem
{

x′(t) + x(t) = 1
2

(

P1x(t) + P2x(t)
)

on ]0,+∞[

x(0) = y0.
(3.23)

For for every ε ∈ ]0, 1[, let xε1 = limk→+∞ yε2k+1 and xε2 = limk→+∞ yε2k+2, where

(∀k ∈ N)

⌊

yε2k+1 =
(

Id+ε(P1 − Id)
)

yε2k

yε2k+2 =
(

Id+ε(P2 − Id)
)

yε2k+1.
(3.24)

Then xε1 → x and xε2 → x when ε→ 0.

Proof. Fix z ∈ S, and set a = P1z and b = P2z. Then z = (a + b)/2 and (∀ε ∈ ]0, 1[)
zε = ((1 − ε)a+ b)/(2− ε) ∈ FixRε. Thus

dFixRε(z) 6 ‖z − zε‖ =
ε‖b− a‖

2(2 − ε)
→ 0 as ε→ 0, (3.25)

and the conclusion follows from Theorem 3.4.

We conclude this section by showing that, in contrast with (3.25), the condition (3.16) can
fail in the case of projection operators in the presence of m = 3 sets.
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Figure 2: An example in which the condition (3.16) fails.

Example 3.6 Suppose that H = R
3 and m = 3, and let T1, T2, and T3 be, respectively, the

projection operators onto the bounded closed convex sets (see Fig. 2)











C1 = [−1, 1]× {−1} × {1}

C2 = [−1, 1]× {1} × {1}

C3 =
{

(ξ1, ξ2, ξ3) ∈ R
3
∣

∣ ξ1 ∈ [−1, 1], ξ3 ∈ [0, 1], (1− ξ3)(ξ
2
1 − 1) + ξ22 6 0

}

.

(3.26)

Then the set of least-squares solutions is S = FixT = [−1, 1] × {0} × {1} ⊂ C3. Moreover,

(∀ε ∈ ]0, 1[) FixRε = {zε} =

{(

0,
wε + ε(1 − ε)

3(1 − ε) + ε2
, 1−

w2
ε

3(1 − ε) + ε2

)}

, (3.27)

where wε is the unique real solution of 2w3 +w = ε/(2− ε). Clearly zε → (0, 0, 1) ∈ S as ε→ 0,
but (∀z ∈ S r {(0, 0, 1)}) dFixRε(z) 6→ 0 as ε→ 0.

3.3 Strong convergence under local strong monotonicity

Another situation covered by Theorem 3.4 is when the operator T has a unique fixed point x
and A = Id−T is locally strongly monotone around x, namely

(∃α ∈ ]0,+∞[)(∃ δ ∈ ]0,+∞[)(∀x ∈ D ∩B(x; δ)) 〈x− x | x− Tx〉 > α‖x− x‖2. (3.28)

In the case of convex projections operators, then A = ∇Φ and, if Φ is twice differentiable at x,
then (3.28) is equivalent to the positive-definiteness of ∇2Φ(x). Another case in which (3.28) is
satisfied, with α = 1 − ρ, is when T is a local strict contraction with constant ρ ∈ ]0, 1[ at the
fixed point x, namely, for all x in some ball B(x; δ), ‖Tx−Tx‖ 6 ρ‖x−x‖. If T is differentiable
at x this amounts to ‖T ′(x)‖ < 1.

Theorem 3.7 Suppose that Assumptions 1.1 and 2.1 are satisfied, together with (3.28), and let
Fix T = {x̄}. In addition, let y0 ∈ D and, for every ε ∈ ]0, η[, let (xεi )i∈I be the cycle obtained
as the weak limit of (1.9) in Proposition 2.2. Then (∀i ∈ I) xεi → x as ε→ 0.
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Proof. It suffices to check the assumptions of Theorem 3.4. Set A = Id−T and let x be the
solution to (3.1).

• dFixRε(x) → 0 as ε→ 0:
Let ε ∈ ]0,min{η, α/(2m)}[, set Qε = Id−mεA and γ(ε) = 1 − mε(α − 2mε), and let
y ∈ D ∩B(x; δ). Since Ax = 0 and A is 2-Lipschitz, we have

‖Qεy − x‖2 = ‖y − x‖2 − 2mε〈y − x | Ay −Ax〉+ (mε)2‖Ay −Ax‖2

6 (1− 2mε(α − 2mε))‖y − x‖2

6 γ(ε)2‖y − x‖2. (3.29)

On the other hand, setting ρ = maxi∈I ‖Tix−x‖/2 and β = 3m−2m−1, Lemma 3.1 gives

‖Rεy −Qεy‖ 6 ε2β(‖y − x‖+ ρ) (3.30)

which, combined with (3.29), yields

‖Rεy − x‖ 6 ‖Rεy −Qεy‖+ ‖Qεy − x‖ 6 ε2β(‖y − x‖+ ρ) + γ(ε)‖y − x‖. (3.31)

From this estimate it follows that given δ′ ∈ ]0, δ], for every ε 6 mαδ′/(β(δ′ + ρ)+ 2m2δ′),
we have Rε(D ∩ B(x; δ′)) ⊂ D ∩ B(x; δ′). Therefore Rε has a fixed point in B(x; δ′) and
hence dFixRε(x) 6 δ′. Since δ′ can be arbitrarily small, this proves that dFixRε(x) → 0 as
ε→ 0.

• x(t) → x as t→ +∞:
Let θ : [0,+∞[ → [0,+∞[ be defined by θ(t) = ‖x(t) − x‖2/2, and let us show that
limt→+∞ θ(t) = 0. We note that this holds whenever the orbit enters the ball B(x; δ) at
some instant t0. Indeed, the monotonicity of A implies that θ is decreasing so that, for
every t ∈ [t0,+∞[, x(t) ∈ D ∩B(x; δ) and hence (3.1) and (3.28) give

θ′(t) =
〈

x(t)− x | x′(t)
〉

= 〈x− x(t) | x(t)− Tx(t)〉 6 −α‖x(t) − x‖2 = −2αθ(t). (3.32)

Consequently, θ(t) 6 θ(t0) exp(−2α(t− t0)) → 0 as t→ +∞. It remains to prove that x(t)
enters the ball B(x; δ). If this was not the case we would have µ = limt→+∞

√

θ(t) > δ.
Choose t0 large enough so that

√

θ(t0) 6 µ+ δ/2 and let x̃ be the solution to the Cauchy
problem

{

x̃′(t) = −Ax̃(t) on [t0,+∞[

x̃(t0) = x̃0,
(3.33)

where x̃0 = x + δ(x(t0) − x)/‖x(t0) − x‖ ∈ D ∩ B(x; δ). By monotonicity of A, t 7→
‖x(t)− x̃(t)‖ is decreasing and hence

(∀t ∈ [t0,+∞[) ‖x(t) − x‖ 6 ‖x(t)− x̃(t)‖+ ‖x̃(t)− x‖

6 ‖x(t0)− x̃(t0)‖+ ‖x̃(t)− x‖

6 (µ − δ/2) + ‖x̃(t)− x‖. (3.34)

Since by the previous argument ‖x̃(t) − x‖ → 0, we reach a contradiction with the fact
that (∀t ∈ [0,+∞[) ‖x(t)− x‖ > µ.
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Altogether, the conclusion follows from Theorem 3.4.

Remark 3.8 If Id−T were globally (rather than just locally as in (3.28)) strongly monotone at
every point in Fix T , we could derive Theorem 3.7 directly from Theorem 2.8 and Remark 2.9(ii).

Theorem 3.7 can also be applied when the local strong monotonicity or the local contraction
properties hold up to an affine subspace (see (3.35) below). This is relevant in the case studied
in [6] when (Ti)i∈I is a family of projection operators onto closed affine subspaces (xi + Ei)i∈I ,
where (Ei)i∈I is a family of closed vector subspaces of H, and more generally for unbounded
closed convex cylinders of the form (Bi+Ei)i∈I , where Bi is a nonempty bounded closed convex
subset of E⊥

i .

Corollary 3.9 Suppose that Assumptions 1.1 and 2.1 are satisfied, that D = H, and that
(Ti)i∈I is a family of projection operators onto nonempty closed convex subsets (Ci)i∈I of H.
In addition, suppose that the set S of minimizers of Φ in (1.3) is a closed affine subspace, say
S = z+E, where z ∈ H and E is a closed vector subspace of H. Let y0 ∈ D, set x = PSy0, and,
for every ε ∈ ]0, η[, let (xεi )i∈I be the cycle obtained as the weak limit of (1.9) in Proposition 2.2.
Then the following hold.

(i) (∀i ∈ I) xεi ⇀ x as ε→ 0.

(ii) Suppose that

(∀y ∈ S)(∃ ρ ∈ [0, 1[)(∃ δ ∈ ]0,+∞[)(∀x ∈ B(0; δ) ∩E⊥) ‖T (x+ y)− Ty‖ 6 ρ‖x‖. (3.35)

Then (∀i ∈ I) xεi → x as ε→ 0.

Proof. Let i ∈ I. Since S = z + E, we have Ci + E ⊂ Ci and the iterates (yεk)k∈N in (1.9)
move parallel to E⊥ and remain in y0 + E⊥. Hence, since {x} = S ∩ (y0 + E⊥), (i) follows by
applying Theorem 2.8 in the space y0 + E⊥, while (ii) follows by applying Theorem 3.7 in this
same space.

We conclude the paper by revisiting De Pierro’s conjecture in the affine setting investigated
in [6]. More precisely, we shall derive an alternative proof of the main result of [6] from Corol-
lary 3.9. For this purpose, we need the following notion of regularity.

Definition 3.10 A finite family (Ei)i∈I of closed vector subspaces of H with intersection E is
regular if

(

∀(yk)n∈N ∈ HN
)

max
i∈I

dEi
(yk) → 0 ⇒ dE(yk) → 0. (3.36)

Theorem 3.11 Let (Ei)i∈I be a regular family of closed vector subspaces of H with intersection
E and for, every i ∈ I, let xi ∈ H and let Pi be the projection operator onto the affine subspace
Ci = xi + Ei. Let y0 ∈ H and set S = Argmin

∑

i∈I d
2
Ci
. Then there exists z ∈ H such that

S = z + E. Moreover, for every ε ∈ ]0, 1], the cycle (xεi )i∈I obtained as the weak limit of (1.9)
in Proposition 2.2 exists, and (∀i ∈ I) xεi → PSy0 as ε→ 0.
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Proof. We have (∀i ∈ I) Pi : x 7→ xi+PEi
(x−xi). Hence Tx = a+Lx, where a = (1/m)

∑

i∈I(xi−
PEi

xi) and L = (1/m)
∑

i∈I PEi
. According to [6, Theorem 5.4], the subspaces (Ei)i∈I are

regular if and only if ρ = ‖L◦PE⊥‖ < 1, which implies that T is a strict contraction on y0+E
⊥.

From this we get simultaneously that T has a fixed point z, that the least-squares solution set
is of the form S = z+E, and that (3.35) holds. Hence, the result will follow from Corollary 3.9
provided that (xεi )i∈I exists for every ε ∈ ]0, 1]. This was proved in [6, Theorem 5.6] by noting
that Rε|y0+E⊥ is a strict contraction. Indeed, Rε is a composition of affine maps and an inductive
calculation reveals that it can be written as Rεx = aε + Lεx, where aε ∈ H and Lε a linear
operator which is a convex combination of nonexpansive linear maps, one of which is the strict
contraction L ◦ PE⊥ .

Remark 3.12 Corollary 3.9(i) seems to be new even for affine subspaces (Ci)i∈I . Also new in
Corollary 3.9(ii) is the fact that strong convergence holds for more general convex sets than just
translates of regular subspaces.
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