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On some open questions in bilinear quantum control

Ugo Boscain1, Thomas Chambrion2, and Mario Sigalotti3

Abstract— The aim of this paper is to provide a short intro-
duction to modern issues in the control of infinite dimensional
closed quantum systems, driven by the bilinear Schrödinger
equation.

The first part is a quick presentation of some of the numerous
recent developments in the fields. This short summary is
intended to demonstrate the variety of tools and approaches
used by various teams in the last decade. In a second part,
we present four examples of bilinear closed quantum systems.
These examples were extensively studied and may be used as a
convenient and efficient test bench for new conjectures. Finally,
we list some open questions, both of theoretical and practical
interest.

I. INTRODUCTION

A. Control of quantum systems

The state of a quantum system (e.g. a charged particle)

evolving on a Riemannian manifold Ω is described by its

wave function ψ, an element of L2(Ω,C). When the system

is submitted to an external field (e.g. an electric field),

the time evolution of the wave function is given by the

Schrödinger equation

i
∂ψ

∂t
= (−∆+ V (x))ψ + uW (x)ψ(t), x ∈ Ω

where ∆ is the Laplace-Beltrami operator on Ω, V is a

potential describing the system in absence of control, u is

the scalar (time variable) intensity of the external field and

W : Ω → R is a potential accounting for the properties of

the external field.

A natural question, with many practical applications, is to

determine how to build (if it is possible) a control u that

steers the wave function ψ from a given source to a given

target.

B. Framework and notations

We set the problem in a more abstract framework. In

a separable Hilbert space H , endowed with the Hermitian

product 〈, 〉, we consider the following control system

d

dt
ψ = (A+ u(t)B)ψ, (1)
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where (A,B) satisfies Assumption 1.

Assumption 1: (A,B) is a pair of (possibly unbounded)

linear operators in H such that

1) A is skew-adjoint on its domain D(A);
2) there exists a Hilbert basis (φk)k∈N of H made of

eigenvectors of A: for every k, Aφk = iλkφk with λk
in R and λk tends to −∞ as k tends to ∞ ;

3) for every j in N, φj belongs to D(B), the domain of

B;

4) there exists U ⊂ R containing at least 0 and 1 such

that A+uB is essentially skew-adjoint (not necessarily

with domain D(A)) for every u in U ;

5) 〈Bφj , φk〉 = 0 for every j, k in N such that λj = λk
and j 6= k.

If (A,B) satisfies Assumption 1, for every u in U , A+uB
generates a unitary group of propagators t 7→ et(A+uB). By

concatenation, one can define the solution of (1) for every

piecewise constant functions u taking value in U , for every

initial condition ψ0 given at time t0. We denote this solution

t 7→ Υut,t0ψ0. To the best of our knowledge, it is not possible

to define the propagator Υu for controls u that are not

piecewise constant in the general framework of Assumption

1. With some extra regularity assumptions, it is possible to

extend the definition of Υu to more general controls. For

instance, if B is bounded, Υ admits a continuous extension

to the set L1(R,R) (see [1, Proposition 1.1]).

The framework of Assumption 1 is, in one sense, too

general for the purpose of quantum mechanics. For instance,

it includes the example of Section I-A with H = L2(Ω,C)
and V any L∞ function. Following Cohen-Tannoudji et al.,

[2, Figure 7a, page 35 and Section II-A-1, page 94], one of

the most physically relevant cases is precisely the one where

the potentials V and W and the wave functions are smooth.

“From a physical point of view, it is clear that

the set L2(Ω,C) is too wide in scope: given the

meaning attributed to |ψ(x, t)|2, the wave functions

which are actually used possess certain properties

of regularity. We can only retain the functions

ψ(x, t) which are everywhere defined, continuous,

and infinitely differentiable”

This is the main motivation for the notion of weak-coupling

(see [3]).

Definition 1: Let k > 0. A pair (A,B) satisfying As-

sumption 1 is k-weakly-coupled if

1) for every u in R, A+uB is skew-adjoint with domain

D(A);
2) for every u ∈ R, D(|A + uB|k/2) = D(|A|k/2);



3) there exists d ≥ 0 and r < k such that ‖Bψ‖ ≤
d‖|A|r/2ψ‖ for every ψ in D(|A|k/2);

4) there exists a constant C such that, for every ψ in

D(|A|k), |ℜ〈|A|kψ,Bψ〉| ≤ C|〈|A|kψ, ψ〉|.
If (A,B) is k-weakly-coupled, the coupling constant

ck(A,B) of system (A,B) of order k is the quantity

sup
ψ∈D(|A|k)|Aψ 6=0

|ℜ〈|A|kψ,Bψ〉|
|〈|A|kψ, ψ〉| .

We denote by PC(U) the set of piecewise constant

functions u such that there exists two sequences 0 = t1 <
t2 < . . . < tp+1 and u1, u2, . . . , up in U \ {0} with

u =

p
∑

j=1

uj1[tj ,tj+1).

The operators A and B can be represented by infinite

dimensional matrices in the basis (φk)k∈N. For every j, k,

we denote bjk = 〈φj , Bφk〉. For every N , the orthogonal

projection πN : H → H on the space spanned by the first

N eigenvectors of A is defined by

πN (x) =

N
∑

k=1

〈φk, x〉φk for every x in H.

Let LN be the range of πN . The compressions of A and B at

order N are the finite rank operators A(N) = πNA|LN
and

B(N) = πNB|LN
respectively. The Galerkin approximation

of (1) of order N is the system in LN
ẋ = (A(N) + uB(N))x, (2)

whose propagator is denoted with Xu
(N).

A pair (j, k) in N
2 is a non-degenerate (also called non-

resonant) transition of (A,B) if bjk 6= 0 and, for every l,m,

|λj − λk| = |λl − λm| implies {j, k} = {l,m} or {l,m} ∩
{j, k} = ∅.

A subset S of N
2 is a chain of connectedness of

(A,B) if for every j, k in N, there exists a finite sequence

p1 = j, p2, . . . , pr = k for which (pl, pl+1) ∈ S and

〈φpl+1
, Bφpl〉 6= 0 for every l = 1, . . . , r − 1. A chain

of connectedness S of (A,B) is non-degenerate if every

element of S is a non-degenerate transition of (A,B).

C. Content of the paper

Sections II and III present a short review of results availa-

ble in the literature about exact and approximate controllabil-

ity of infinite dimensional bilinear quantum systems. Section

IV collects four examples of bilinear quantum systems that

were extensively studied in the last decade. Finally, we

suggest five questions in Section V that we think both

important and natural.

II. EXACT CONTROLLABILITY

A. Obstructions to exact controllability

The first result about bilinear control is a general negative

result due to Ball, Marsden and Slemrod [4]. It was adapted

to the case of bilinear quantum systems by Turinici [5] in

the following form:

Proposition 1 ([5]): Let (A,B) satisfy Assumption 1 and

B be bounded. Then, for every r > 1, for every ψ0 in D(A),
the attainable set from ψ0 with controls in Lr, {Υut,0ψ0|u ∈
Lr(R,R)} is a countable union of closed sets with empty

interior in D(A). In particular, this attainable set has empty

interior in D(A).
Proposition 1 admits a natural extension in the case of

weakly-coupled systems:

Proposition 2 ([3, Proposition 2]): Let (A,B) be k
weakly-coupled and B be bounded. Then, for every ψ0 in

D(|A|k/2), for every u in L1(R,R), for every t ≥ 0, Υut,0ψ0

belongs to D(|A|k/2). In particular, {Υut,0ψ0|u ∈ L1(R,R)}
has empty interior in D(|A|r/2) for every r < k.

Most of the bilinear quantum systems encountered in the

literature are k weakly-coupled for every k > 0. Notice

that the eigenvectors of A are in D(|A|k) for every k. As

a consequence, the attainable set for such a system from

any eigenvector of A is contained in ∩k>0D(|A|k), the

intersection of all the iterated domains of A.

B. Attainable set of the infinite square potential well

The results of Section II-A do not exclude exact control-

lability on a sufficiently small subset of H . In a series of

paper ([6], [7]), Beauchard et al. determined the attainable

set for the infinite square potential well.

Theorem 3: Consider the bilinear Schrödinger equation

i
∂ψ

∂t
= −∆ψ + uxψ(t), x ∈ (0, 1).

The attainable set with L2 controls from the first eigenstate

of the Laplacian is exactly the intersection of the unit sphere

of L2((0, 1),C) with H3
(0) = {ψ ∈ H3((0, 1),C) | ψ(0) =

ψ(1) = ψ′′(0) = ψ′′(1) = 0}.

III. APPROXIMATE CONTROLLABILITY

A. Lyapunov techniques

Because of the specific features of quantum systems and,

in particular, of the effects of the measurements on its

evolution, classical closed-loop control strategies cannot be

directly implemented in the Schrödinger framework. Nev-

ertheless, the strategy consisting in identifying a Lyapunov

function that measures the distance from the desired final

state (or the distance from a trajectory that one wants to

track) and that can be forced to decrease towards zero by a

suitable state-dependent choice of the control parameter can

be used to obtain, via simulation, open-loop control laws that

approximately steer the system towards the prescribed goal.

This approach has been explored in [8] and refined in [9]

for systems evolving in a finite-dimensional Hilbert space

H . The proof of the convergence towards the goal adapts

the classical Jurdjevic–Quinn method [10] and is based on

the LaSalle invariance principle.

In the case where H is infinite-dimensional, generaliza-

tions of the previously mentioned results have been obtained

by suitably adapting LaSalle invariance principle (see, in

particular, [11], [1], [12], [13] for the case where the drift

operator of the bilinear Schrödinger equation has discrete-

spectrum).



B. Geometric techniques: general case

Definition 2: Let (A,B) satisfy Assumption 1, (j, k) be

a pair of integers such that λj 6= λk and u∗ : R → U be

T = 2π/|λj −λk|-periodic and not almost everywhere zero.

The number

Eff(j,k)(u
∗) =

∣

∣

∣

∫ T

0
u∗(τ)ei(λj−λk)τdτ

∣

∣

∣

∫ T

0 |u∗(τ)|dτ
is called the efficiency of u∗ with respect to the transition

(j, k) of (A,B).
Proposition 4 ([14, Theorem 1]): Let (A,B) satisfy As-

sumption 1 and U be such that U/n ⊂ U for every n ∈
N. Let (1, 2) be a non-degenerate transition of (A,B). If

u∗ : R → U is 2π/|λ1 − λ2|-periodic with Eff(1,2)(u
∗) 6= 0

and Eff(j,k)(u
∗) = 0 for every j, k such that |λj − λk| ∈

N|λ2 − λ1| and {j, k} 6= {1, 2}, then there exists T ∗ > 0

such that |〈φ2,Υu
∗/n
nT∗,0φ1〉| tends to 1 as n tends to infinity.

Proposition 5: Let (A,B) satisfy Assumption 1 and admit

a non-degenerate chain of connectedness. Then, for every

ε > 0, for every unitary operator Υ̂ in U(H), for every n in

N, there exists a piecewise constant function uε : [0, Tε] →
U such that ‖ΥuTε,0

φj − Υ̂φj‖ < ε for 1 ≤ j ≤ n.

Proof: The original proof given in [15] is a particular

case of Proposition 4 (see [15, Proof of Lemma 4.3] for

an explicit construction of u∗). This proof is valid if U
accumulates at zero. Thanks to [16, Proposition 3], one can

replace the sequence u∗/n by a sequence of controls taking

value in {0, 1}.

Proposition 6: Let (A,B) satisfy Assumption 1 and admit

a non-degenerate chain of connectedness S. Then, for every

ε > 0, for every (j, k) in S, there exists a piecewise constant

function uε : [0, Tε] → U such that ‖ΥuTε,0
φj −φk‖ < ε and

‖uε‖L1 ≤ 5π

4|〈φk, Bφj〉|
.

Proof: In the case where U accumulates at zero, this is

[15, Proposition 2.8]. The general case U = {0, 1} follows

from [16, Proposition 3].

A lower bound of the L1 norm of the control needed to

induce a transfer from a wave function ψa in the unit sphere

of H is given by [17, Proposition 4.6]:

sup
n∈N

∣

∣|〈φn, ψa〉| − |〈φn,Υut,0ψa〉|
∣

∣

‖Bφn‖
≤

∫ t

0

|u(τ)|dτ

for every (A,B) satisfying Assumption 1, every t ≥ 0, and

every piecewise constant u taking value in U .

C. Geometric techniques: weakly-coupled systems

Proposition 7 ([3, Proposition 2]): Let (A,B) satisfy

Assumption 1 and be k-weakly-coupled. Then, for

every ψ0 ∈ D(|A|k/2), K > 0, T ≥ 0, and u
piecewise constant such that ‖u‖L1 < K , one has
∥

∥

∥
|A| k2 ΥuT (ψ0)

∥

∥

∥
≤ eck(A,B)K‖|A| k2 ψ0‖.

Proposition 8 ([3, Proposition 4]): Let k in N and

(A,B) satisfy Assumption 1 and be k-weakly-coupled. Then

for every ε > 0, s < k, K > 0, n ∈ N, and (ψj)1≤j≤n in

D(|A|k/2)n there exists N ∈ N such that for every piecewise

constant function u

‖u‖L1 < K ⇒ ‖|A| s2 (Υut (ψj)−Xu
(N)(t, 0)πNψj)‖<ε,

for every t ≥ 0 and j = 1, . . . , n.

Remark 1: Notice that, in Propositions 7 and 8, the upper

bound of the |A|k/2 norm of the solution of (1) or the bound

on the error between the infinite dimensional system and

its finite dimensional approximation only depend on the L1

norm of the control, not on the time.

The a priori bound for the |A|k/2 norm combined with

an interpolation argument allows to deduce approximate

controllability in |A|r/2 norm from the approximate control-

lability in A0 norm (i.e., the norm of H):

Proposition 9: Let (A,B) satisfy Assumption 1, be k-

weakly-coupled and admit a non-degenerate chain of con-

nectedness. Then, for every ε > 0, for every n in N, for every

unitary operator Υ̂ in U(H), for every r < k/2, there exists

uε : [0, Tε] → {0, 1} such that ‖|A|r(Υ̂φj −Υuε

Tε,0
φj)‖ < ε

for j ≤ n.

Proof: This would be [3, Proposition 5] if the controls

uε took value in (0, 1). The case U = {0, 1} follows from

[16, Proposition 3].

D. Other results

Let us mention in this section some other results concern-

ing quantum control problems on infinite-dimensional spaces

which do not satisfy Assumption 1.

First of all, some papers deal with the case where the drift

Hamiltonian has some continuous spectrum and consider the

problem of approximately controlling between the eigen-

states corresponding to the discrete part of the spectrum.

In particular, in [18] Mirrahimi considers the case of a

drift operator of the form −∆ + V on R
d, where V is a

potential decaying at infinity. The controllability is proved

using a Lyapunov technique and estimating the interaction

with continuum spectrum thanks to Strichartz estimates.

Another important class of systems exhibiting continuous

spectrum is obtained by considering the ensemble control

of Bloch equations. The corresponding system consists in

a continuum of finite-dimensional systems coupled by the

control parameter only. Each system of the ensemble is

parameterized by a characteristic frequency. Controllability

results in this setting have been obtained in [19], [20], [21].

Other interesting class of problems is given by models for

a quantum oscillator coupled with a spin (see [22], [23]).

The spectrum in this case is discrete, but it intrinsically

presents degenerate transitions. The controllability results are

obtained exploiting the presence of more than one control.

Let us finally mention the widely used adiabatic methods.

They require the use of several controls (not only one,

as in Equation (1)) and rely on adiabatic theory and the

interesections of eigenvalues. Approximate controllability is

obtained through slow variations of the different controls (see

[24]).



IV. FOUR EXAMPLES

A. Infinite square potential well

The first example we consider describes a particle confined

in a 1D box (0, π). This model has been extensively studied

by several authors in the last few years and it has been

the first quantum system for which a positive controllability

result has been obtained. Beauchard proved exact control-

lability in some dense subsets of L2 first using Coron’s

return method ([6]), then standard linear test ([7]). Nersesyan

obtained approximate controllability results using Lyapunov

techniques ([11], [13]), which allowed to obtain the global

result (i.e., Theorem 3 recalled in Section II-B).

The Schrödinger equation writes

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− u(t)xψ(x, t) (3)

with boundary conditions ψ(0, t) = ψ(π, t) = 0 for every

t ∈ R.

With our notations, H = L2 ((0, π),C) endowed with

the Hermitian product 〈ψ1, ψ2〉 =
∫ π

0
ψ1(x)ψ2(x)dx. The

operators A and B are defined by Aψ = i 12
∂2ψ
∂x2 for every ψ

in D(A) = (H2 ∩H1
0 ) ((0, π),C), and Bψ : x 7→ ixψ(x). A

Hilbert basis of H is (φk)k∈N with φk : x 7→ sin(kx)/
√
2.

For every k, Aφk = −i(k2/2)φk.

For every j, k in N,

bjk = 〈φj , Bφk〉 =
{

(−1)j+k 2jk
(j2−k2)2 if j − k odd

0 otherwise.

Despite numerous degenerate transitions, the system is

approximately controllable (see [15, Section 7]).

One can directly check that (A,B) is 2-weakly-coupled.

By Proposition 2, the system cannot be k-weakly-coupled

for k > 3 (since the attainable set from any eigenvector

of A contains the intersection of the unit L2 sphere with

H3
(0) = D(|A|3/2)).
For example of control designs and numerical simulations,

we refer to [25, Section IV].

B. Harmonic oscillator

The quantum harmonic oscillator is among the most

important examples of quantum system (see, for instance,

[26, Complement GV ]). Its controlled version has been

extensively studied (see, for instance, [27], [28]). In this

example H = L2(R,C) and equation (1) reads

i
∂ψ

∂t
(x, t) =

1

2
(−∆+ x2)ψ(x, t) + u(t)xψ(x, t). (4)

A Hilbert basis of H made of eigenvectors of A is given by

the sequence of the Hermite functions (φn)n∈N, associated

with the sequence (−iλn)n∈N of eigenvalues where λn =
n− 1/2 for every n in N. In the basis (φn)n∈N, B admits

a tri-diagonal structure

〈φj , Bφk〉 =















−i
√

k
2 if j = k − 1,

−i
√

k+1
2 if j = k + 1,

0 otherwise.

For every k in N, the system (A,B) is k-weakly-coupled

(see [3]) and

ck(A,B) ≤ 3k − 1.

The quantum harmonic oscillator is not controllable (in

any reasonable sense) as proved in [27]. However, the

Galerkin approximations of (4) of every order are exactly

controllable (see [29]), and Proposition 8 ensures that any

trajectory of the infinite dimensional system is a uniform

limit of trajectories of its Galerkin approximations. This is

not a contradiction, since Proposition 8 does not say that

every trajectory of every Galerkin approximation is close to

the trajectory of the infinite-dimensional system having the

same initial condition and corresponding to the same control.

What happens for the quantum oscillator is that if one wants

to steer the Galerkin approximation of order N of (4) from

a given state (say, the first eigenstate) to an ε-neighbourhood

of another given target (say, the second eigenstate), the L1

norm of the control blows up as N tends to infinity. It is

compatible with Proposition 8 that the sequence of these

trajectories does not converge to a trajectory of (4).

To obtain an estimate of the order N of the Galerkin

approximation whose dynamics remains ε close to the one

of the infinite dimensional system when using control with

L1-norm K , one can use [3, Remark 8] and we find that

‖X(N)
u (t, 0)φ1 − πNΥut φ1‖ ≤ ε provided ‖u‖L1 ≤ K and

2N−1
√
N + 2

(N − 1)!

√

(2N)!

(N + 1)!
KN < ε.

For instance, if K = 3 and ε = 10−4, this is true for N =
413.

C. Planar rotation of a linear molecule

The next example involves a bilinear Schrödinger equation

on a manifold with non-trivial topology.

We consider a rigid bipolar molecule rotating in a plane.

Its only degree of freedom is the rotation around its centre

of mass. The molecule is submitted to an electric field of

constant direction with variable intensity u. The orientation

of the molecule is an angle in Ω = SO(2) ≃ R/2πZ. The

dynamics is governed by the Schrödinger equation

i
∂ψ(θ, t)

∂t
=

(

− ∂2

∂θ2
+ u(t) cos θ

)

ψ(θ, t), θ ∈ Ω.

Note that the parity (if any) of the wave function is preserved

by the above equation. We consider then the Hilbert space

H = {ψ ∈ L2(Ω,C) : ψ odd}, endowed with the Hilbert

product 〈f, g〉 =
∫

Ω
f̄ g. The eigenvalue of the skew-adjoint

operator A = i ∂
2

∂θ2 associated with the eigenfunction φk :
θ 7→ sin(kθ)/

√
π is −iλk = −ik2, k ∈ N. The domain of

|A|k is the Hilbert space Hk
e = {ψ ∈ H2k(Ω,C) : ψ odd}.

The skew-symmetric operator B = −i cos θ is bounded on

D(|A|k/2) for every k. For every k in N, (A,B) is k-weakly-

coupled ([3, proposition 8]). For every k in N, ck(A,B) ≤
22k−1

2 .



From the point of view of the controllability problem,

notice that the operator B couples only adjacent eigenstates,

that is, 〈φl, Bφj〉 = 0 if and only if |l − j| > 1. Since

λl+1 − λl = 2l + 1 then {(j, l) ∈ N
2 : |l − j| = 1} is a

non-degenerate connectedness chain for (A,B). Therefore,

by [3, Proposition 5] the system provides an example of

approximately controllable system in norm Hk(Ω,C) for

every k. Note that, since the eigenstates are in Hk(Ω,C)
for every k then the reachable set from any eigenstate is

contained in Hk(Ω,C) for every k.

D. Everywhere dense attainable set and no Good Galerkin

Approximation

To the best of our knowledge, the following academic

example does not appear in the physics literature. For α in

N, consider the following bilinear Schrödinger equation

i
∂ψ

∂t
=

[

(

−1

2
∆ + x2

)α

+

(

−1

2
∆+ x2

)−1
]

ψ

+u(t)x4ψ(x, t), x ∈ R. (5)

This strongly perturbed harmonic oscillator checks the

controllability conditions of [15, Proposition 2.8], with

H equal to the set of even L2 functions on R, A =
−i[(−∆/2 + x2)α + (−∆/2 + x2)−1] and B = −ix4 .

The bilinear Schrdinger equation is well-posed for piece-

wise constant nonnegative controls u (see [30, Theorems

XIII.69 and XIII.70]). A basis of H made of eigenvec-

tors of A is given by (φ2n)n where φk is the kth Her-

mite function. A non-degenerate chain of connectedness

of (A,B) is {(j, j + 1), j ∈ N}. Since |〈φj , Bφj+1〉| ∼
j−2, (|〈φj , Bφj+1〉|−1)j ∈ ℓ1. As a consequence, it is

possible to join (approximately) any energy level from

the first one with a control of L1 norm less than

(5π/4)
∑

j∈N
|〈φj , Bφj+1〉|−1 < +∞. Hence the system

does not admit Good Galerkin Approximations in the spirit

of Proposition 8, since it is possible to reach arbitrary high

energy levels using controls with a given finite L1 norm.

V. FIVE OPEN QUESTIONS

A. Attainable set of weakly-coupled systems

Most of the bilinear quantum systems we encountered in

the physics literature are k-weakly-coupled for every k > 0.

We have already seen that if (A,B) is k-weakly-coupled for

every k > 0, then the attainable set from any eigenvector

of A is contained in ∩k>0D(|A|k), the intersection of the

domains of all the iterations of A. This prevents a direct

application of the linear test used in [7] because of the

difficulty to endow ∩k>0D(|A|k) (or a subspace of it) with

a Banach structure. But it does not forbid (a priori) the

eigenstates of A to be in the attainable set of the first

eigenstate. The complete description of the attainable set

from the first eigenstate is likely out of reach without new

powerful methods. One may consider the less challenging

Question 1: Let (A,B) be k-weakly-coupled for every

k > 0. Give (explicitly) a state ψb not colinear to φ1 such

that there exist a control u in L1(R,R) and a time T > 0
for which ΥuT,0φ1 = ψb.

B. Minimal time

Let (A,B) satisfy Assumption 1 and admit a non-

degenerate chain of connectedness. From Proposition 5, we

know that ∪t≥0{Υut,0φ1|u ∈ PC} is dense in H . We define

ρ = inf
{

T ≥ 0 such that ∪0≤t≤T {Υut,0φ1|u ∈ PC} = H
}

.

It is classical that ρ > 0 if A is bounded, which is the case for

instance if H is finite dimensional. The computation of ρ is

difficult in practice. At present time, ρ is unknown for all the

examples of Section IV. An example (H = L2(R/2πZ,C),
A = i(−∆)α with α > 5/2, B : ψ 7→ i cos(θ)ψ) has been

recently exhibited for which ρ = 0, see [31].

Question 2: Does it exist (A,B) k-weakly-coupled for

every k > 0 such that A is unbounded, B has no eigenvector

and ρ > 0?

A related question has been investigated by Beauchard and

Morancey in [32], where they give a set of sufficient condi-

tions for the attainable set of a 3-weakly-coupled system in

small time with small controls to have empty or non-empty

interior in D(|A|3/2).
C. Transfer time and size of controls

As previously said, large controls may, for some examples,

allow approximate controllability in arbitrarily small time.

For weakly-coupled systems, it can be easily proved (see

[31]) that an a priori bound on the L1 norm of the control is

not compatible with approximate controllability in arbitrarily

small time. In practice (in particular when using adiabatic

methods), one often applies very small controls, what results

in large transfer time.

Question 3: An upper bound on the L1 norm of the

control being given, what is the smallest possible time needed

to transfer a given system (A,B) from the first eigenstate of

A to the second one?

D. Minimal number of switches

In the case whereB is bounded, the following computation

‖Aet(A+uB)ψ‖ = ‖(A+ uB − uB)et(A+uB)ψ‖
≤ ‖(A+ uB)et(A+uB)ψ‖+ |u|‖B‖
≤ ‖et(A+uB)(A+ uB)ψ‖+ |u|‖B‖
≤ ‖Aψ‖+ 2|u|‖B‖,

valid for every u in U , t ≥ 0 and ψ in the intersection of

the unit sphere of H and D(A), gives an upper bound of

variation of the energy of the system in term of the total

variation of the control u. This provides a lower bound of

the number of discontinuities of a piecewise constant control

taking value in {0, 1} to reach a given target.

Let (A,B) satisfy Assumption 1. If (A,B) admits a non-

degenerate chain of connectedness, then for every ψb in the

unit sphere of H , for every ε > 0, there exists uε : [0, Tε] →
{0, 1} such that ‖ΥuTu,0

φ1−ψb‖ < ε. Using [16, Proposition

3], it is possible to build uε with a number of discontinuities

of the order of 1/ε.
Question 4: Is it possible to build uε with a number of

discontinuities of order oε→0

(

1

ε

)

?



E. Good Galerkin Approximations for general systems

The existence of Good Galerkin Approximations is of

crucial interest for the theoretical analysis and the numerical

simulation of bilinear quantum systems. For systems that are

not weakly-coupled (e.g., example of Section IV-D), there

is no equivalent of Proposition 8 in general. However, if

(A,B) has the particular form A = −i(∆ + V ), B = iW ,

with ∆ the Laplace-Beltrami operator on a compact manifold

Ω and V : Ω → R a smooth function, then for any

measurable bounded W : Ω → R, (A,B) admits a Good

Galerkin Approximation. This can be proved by considering

Wη : Ω → R a smooth function η-close in L1 norm to W .

(A, iWη) is k-weakly-coupled for every k, thus Proposition

8 applies, and the trajectory of (A, iWη) with control u is

‖u‖L1η close to the trajectory of (A, iW ) with control u.

Conclusion follows by letting η tend to zero.

Question 5: Does it exist a system (A,B) with un-

bounded B that satisfies Assumption 1, is not k-weakly-

coupled for any k > 0 and that can be approached, uniformly

with respect of the L1 norm of the control, by its Galerkin

approximations?

Notice that the example of Section IV-D with α ≥ 3 is

a counter-example to the natural idea “If B is A-bounded,

then (A,B) admits Good Galerkin Approximations”.

VI. CONCLUSIONS

The variety of approaches and methods developed by

different authors in the last years to tackle the difficult

problem of the controllability of infinite dimensional bilinear

quantum systems is essentially the sign of the rich structure

and subtle nature of control issues in this context. It is likely

that new methods will be necessary to answer the many open

problems in the fields.
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