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Abstract

This is the first of a series of papers about quantization in the context of derived
algebraic geometry. In this first part, we introduce the notion of n-shifted symplectic
structures (n-symplectic structures for short), a generalization of the notion of sym-
plectic structures on smooth varieties and schemes, meaningful in the setting of de-
rived Artin n-stacks (see [HAG-II, To2]). We prove that classifying stacks of reductive
groups, as well as the derived stack of perfect complexes, carry canonical 2-symplectic
structures. Our main existence theorem states that for any derived Artin stack F
equipped with an n-symplectic structure, the derived mapping stack Map(X,F ) is
equipped with a canonical (n−d)-symplectic structure as soon a X satisfies a Calabi-
Yau condition in dimension d. These two results imply the existence of many examples
of derived moduli stacks equipped with n-symplectic structures, such as the derived
moduli of perfect complexes on Calabi-Yau varieties, or the derived moduli stack of
perfect complexes of local systems on a compact and oriented topological manifold.
We explain how the known symplectic structures on smooth moduli spaces of simple
objects (e.g. simple sheaves on Calabi-Yau surfaces, or simple representations of π1 of
compact Riemann surfaces) can be recovered from our results, and that they extend
canonically as 0-symplectic structures outside of the smooth locus of simple objects.
We also deduce new existence statements, such as the existence of a natural (−1)-
symplectic structure (whose formal counterpart has been previously constructed in
[Co, Co-Gw]) on the derived mapping scheme Map(E, T ∗X), for E an elliptic curve
and T ∗X is the total space of the cotangent bundle of a smooth scheme X. Canonical
(−1)-symplectic structures are also shown to exist on Lagrangian intersections, on
moduli of sheaves (or complexes of sheaves) on Calabi-Yau 3-folds, and on moduli of
representations of π1 of compact topological 3-manifolds. More generally, the moduli
sheaves on higher dimensional varieties are shown to carry canonical shifted symplectic
structures (with a shift depending on the dimension).
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Introduction

This is the first part of a series of papers about quantization in the context of derived
algebraic geometry, and specifically about the construction of quantized versions of various
kinds of moduli spaces. In this article we start with the study of symplectic structures
in the derived setting by introducing the notion of shifted symplectic structures of degree
n (or n-shifted symplectic structures) where n ∈ Z is an arbitrary integer. This is a
direct and far reaching generalization of the notion of symplectic structures on smooth
algebraic varieties and schemes (recovered when n = 0), to the setting of derived and
higher derived Artin stacks of [HAG-II, To2]. In this work we give a careful rigorous
definition of n-shifted symplectic structures on derived Artin stacks (see Definition 1.18),
and prove three existence theorems (see theorems 2.5, 2.9, 2.12) which provide powerful
construction methods and many examples. This notion is an extension of the usual notion
of symplectic structures on smooth schemes on the one hand to higher algebraic stacks
and on the other hand to derived schemes and derived stacks. Based on these results, we
recover some known constructions, such as the symplectic structures on various types of
moduli spaces of sheaves on surfaces (see for instance [Mu, Hu-Le, In, In-Iw-Sa]) and the
symmetric obstruction theories on moduli of sheaves on Calabi-Yau 3-folds (see [Be-Fa]),
and prove new existence results, by constructing natural n-shifted symplectic structures
on many other moduli spaces, including sheaves on higher dimensional varieties. These
results may be summarized as follows.

Theorem 0.1 1. Let X be a smooth and proper Calabi-Yau variety of dimension d.
Then the derived moduli stack of perfect complexes of quasi-coherent sheaves on X
admits a canonical (2− d)-shifted symplectic structure.

2. Let X be a smooth and proper variety of dimension d. Then, the derived moduli stack
of perfect complexes with flat connections on X admits a canonical 2(1 − d)-shifted
symplectic structure.
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3. Let M be a compact oriented topological manifold of dimension d. Then, the derived
moduli stack of perfect complexes of local systems on M admits a canonical (2− d)-
shifted symplectic structure.

Future parts of this work will be concerned with the dual notion of Poisson (and n-
Poisson) structures in derived algebraic geometry, formality (and n-formality) theorems,
and finally with quantization.

p-Forms, closed p-forms and symplectic forms in the derived setting

A symplectic form on a smooth scheme X (over some base ring k, of characteristic

zero), is the datum of a closed 2-form ω ∈ H0(X,Ω2,cl
X/k), which is moreover required to be

non-degenerate, i.e. it induces an isomorphism Θω : TX/k ' Ω1
X/k between the tangent and

cotangent bundles. In our context X will no longer be a scheme, but rather a derived Artin
stack in the sense of [HAG-II, To2], the typical example being an X that is the solution
to some derived moduli problem (e.g. of sheaves, or complexes of sheaves on smooth and
proper schemes, see [To-Va, Corollary 3.31], or of maps between proper schemes as in
[HAG-II, Corollary 2.2.6.14]). In this context, differential 1-forms are naturally sections
in a quasi-coherent complex LX/k, called the cotangent complex (see [Il, To2]), and the
quasi-coherent complex of p-forms is defined to be ∧pLX/k. The p-forms on X are then
naturally defined as sections of ∧pLX/k, i.e. the set of p-forms on X is defined to be the
(hyper)cohomology group H0(X,∧pLX/k). More generally, elements in Hn(X,∧pLX/k)
are called p-forms of degree n on X (see Definition 1.12 and Proposition 1.14). The first
main difficulty is to define the notion of closed p-forms and of closed p-forms of degree n
in a meaningful manner. The key idea of this work is to interpret p-forms, i.e. sections of
∧pLX/k, as functions on the derived loop stack LX of [To2, To-Ve-1, Ben-Nad] by means
of the HKR theorem of [To-Ve-2] (see also [Ben-Nad]), and to interpret closedness as the
condition of being S1-equivariant. One important aspect here is that S1-equivariance
must be understood in the sense of homotopy theory, and therefore the closedness defined
in this manner is not simply a property of a p-form but consists of an extra structure
(see Definition 1.10). This picture is accurate (see Remark 1.9 and 1.16), but technically
difficult to work with1. We have therefore chosen a different presentation, by introducing
local constructions for affine derived schemes, that are then glued over X to obtain global
definitions for any derived Artin stack X. With each commutative dg-algebra A over k,
we associate a graded complex, called the weighted negative cyclic complex of A over k,
explicitly constructed using the derived de Rham complex of A. Elements of weight p and
of degree n − p of this complex are by definition closed p-forms of degree n on SpecA
(Definition 1.8). For a general derived Artin stack X, closed p-forms are defined by smooth
descent techniques (Definition 1.12). This definition of closed p-forms has a more explicit
local nature, but can be shown to coincide with the original idea of S1-equivariant functions
on the loop stack LX (using, for instance, results from [To-Ve-2, Ben-Nad]).

By definition a closed p-form ω of degree n on X has an underlying p-form of degree
n (as we already mentioned this underlying p-form does not determine the closed p-form

1One of the difficulties lies in the fact that we need to consider only functions formally supported around
the constant loops X ↪→ LX, and this causes troubles because of the various completions involved.
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ω, and several different closed p-form can have the same underlying p-form). When p = 2
this underlying 2-form is an element in Hn(X,∧2LX/k), and defines a natural morphism
in the derived category of quasi-coherent complexes on X

Θω : TX/k −→ LX/k[n],

where TX/k is the tangent complex (i.e. the dual of LX/k). With this notation in place,
we give the main definition of this paper:

Definition 0.2 An n-shifted symplectic form on a derived Artin stack X is a closed
2-form ω of degree n on X such that the corresponding morphism

Θω : TX/k −→ LX/k[n]

is an isomorphism in the quasi-coherent derived category Dqcoh(X) of X.

When n = 0 and X is a smooth k-scheme, the definition above recovers the usual no-
tion of a symplectic structure, and nothing more. Smooth schemes do not admit n-shifted
symplectic structures for n 6= 0, but there are many interesting examples of 0-shifted
symplectic structures on derived Artin stacks (see corollaries 2.6, 2.13; see also [Pe]).
Therefore, not only the above definition provides an extension of the notion of symplectic
structure by introducing the parameter n, but even for n = 0 the notion of 0-shifted sym-
plectic structure is a new way to extend the notion of symplectic structures on non-smooth
schemes.

An n-shifted symplectic form ω can be thought of as the data consisting of a quasi-
isomorphism

Θ : TX/k −→ LX/k[n],

together with an entire hierarchy of higher coherences expressing some subtle relations
between Θ and the differential geometry of X. The quasi-isomorphism Θ can itself be
understood as a kind of duality between the stacky part of X, expressed in the non-
negative part of TX , and the derived part of X, expressed in the non-positive part of LX/k
(this is striking already when n = 0, and this picture has to be qualified when n is far away
from 0). In practice, when X is some moduli of sheaves on some space M , this duality
is often induced by a version of Poincaré duality (or Serre duality) on M , since tangent
complexes are then expressed in terms of the cohomology of M . It is tempting to view
n-shifted symplectic structures as a non-abelian incarnation of Poincaré duality, which is
definitely a good way to think about them in the context of non-abelian cohomology (see
the paragraph Related works at the end of this Introduction).

Existence results

In this paper we prove three existence results for n-shifted symplectic structures. To
start with, we show that classifying stacks BG, for reductive affine group schemes G, are
naturally endowed with 2-shifted symplectic structures. The underlying 2-form here is
clear, it is given by the degree 2 shift of a non-degenerate G-invariant quadratic form:

g[1] ∧ g[1] ' Sym2(g)[2] −→ k[2],
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where g is the Lie algebra of G over k. The fact that this 2-form can be naturally promoted
to a closed 2-form on BG follows from the simple observation that all 2-forms on BG are
canonically closed - geometrically this is due to the fact that the space of functions on
LBG is discrete, and thus S1 acts on it in a canonically trivial manner.

Our first existence result is the following

Theorem 0.3 The derived stack RPerf of perfect complexes of quasi-coherent sheaves is
equipped with a natural 2-shifted symplectic form.

The relation between the above theorem and the 2-shifted symplectic form on BG is
given by the canonical open embedding BGLn ⊂ RPerf , sending a vector bundle to the
corresponding perfect complex concentrated in degree 0: the 2-shifted symplectic form on
RPerf restricts to the one on BGLn. The proof of Theorem 0.3 uses the Chern character
for perfect complexes, with values in negative cyclic homology. The weight 2 part of the
Chern character of the universal perfect complex on RPerf provides a canonical 2-form
of degree 2, which is non-degenerate by inspection.

The second existence theorem we prove in this paper is a transfer of n-shifted symplec-
tic structures on a given derived Artin stack F to the derived mapping stack Map(X,F ),
under certain orientability condition on X. This statement can be viewed as an algebraic
version of the AKSZ-formalism (see [AKSZ] for the original reference), further extended
to the setting of derived Artin stacks.

Theorem 0.4 Let X be a derived stack endowed with an O-orientation of dimension d,
and let (F, ω) be a derived Artin stack with an n-shifted symplectic structure ω. Then the
derived mapping stack Map(X,F ) carries a natural (n− d)-shifted symplectic structure.

The condition of having an O-orientation of dimension d (see Definition 2.4) essentially
means that Dqcoh(X) satisfies the Calabi-Yau condition in dimension d. The typical
example is of course when X is a smooth and proper Calabi-Yau scheme (or Deligne-
Mumford stack) of dimension d (relative to Spec k). Other interesting examples are given,
for instance, by de Rham or Dolbeault homotopy types (YDR, YDol in the notation of [Si1])
of a smooth and proper scheme Y over k, for which Map(YDR, F ), or Map(YDol, F ),
should be understood as maps with flat connections, or with Higgs fields, from Y to F .
Theorem 0.3 and 0.4 provide many examples of n-shifted symplectic forms on moduli
spaces of perfect complexes on Calabi-Yau schemes, or flat perfect complexes, or perfect
complexes with Higgs fields, etc. The proof of Theorem 0.4 is rather natural, though the
details require some care. We use the evaluation morphism

X ×Map(X,F ) −→ F,

to pull-back the n-shifted symplectic form on F to a closed 2-form of degree n on
X ×Map(X,F ). This closed 2-form is then integrated along X, using the O-orientation
(this is a quasi-coherent integration, for which we need Serre duality), in order to get a
closed 2-form of degree (n− d) on Map(X,F ). Then, we observe that this last 2-form is
non-degenerate. A large part of the argument consists of defining properly the integration
map (see Definition 2.3).

Finally, our third and last existence statement concerns symplectic intersections and
symplectic forms induced on them. For this we introduce the notion of a Lagrangian
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structure on a morphism L −→ X, where X is equipped with an n-shifted symplectic
form; this is a generalization of the notion of Lagrangian submanifolds (a closed immersion
L ↪→ X of smooth schemes possesses a Lagrangian structure if and only if L is Lagrangian
in X in the usual sense, and moreover this structure, if it exists, is unique).

Theorem 0.5 Let (X,ω) be a derived Artin stack with an n-shifted symplectic form ω,
and let

L −→ X , L′ −→ X

be two morphisms of derived Artin stacks endowed with Lagrangian structures. Then, the
derived fiber product L×hX L′ carries a natural (n− 1)-shifted symplectic form.

As a corollary, we see that the derived intersection of two Lagrangian smooth sub-
schemes L,L′ ⊂ X, into a symplectic smooth scheme X, always carries a natural (−1)-
shifted symplectic structure.

Before going further we would like to mention here that the use of derived stacks in
Theorems 0.3, 0.4, 0.5 is crucial, and that the corresponding results do not hold in the
underived setting. The reason for this is that if a derived Artin stack F is endowed with
an n-shifted symplectic form ω, then the pull-back of ω to the truncation h0(F ) is a closed
2-form of degree n which is, in general, highly degenerate.

Examples and applications

The three theorems 0.3, 0.4 and 0.5 listed above, imply the existence of many interest-
ing and geometrically relevant examples of n-shifted symplectic structures. For instance,
let Y be a smooth and proper Deligne-Mumford stack with connected geometric fibers of
relative dimension d.

1. The choice of a fundamental class [Y ] ∈ H2d
DR(Y,O)2 in de Rham cohomology (rel-

ative to Spec k) determines a canonical 2(1 − d)-shifted symplectic form on the
derived stack

RPerfDR(Y ) := Map(YDR,RPerf)

of perfect complexes with flat connections on Y .

2. The choice of a fundamental class [Y ] ∈ H2d
Dol(Y,O)3 in Dolbeault cohomology (rel-

ative to Spec k) determines a canonical 2(1 − d)-shifted symplectic form on the
derived stack

RPerfDol(Y ) := Map(YDol,RPerf)

of perfect complexes with Higgs fields.

2This stands for de Rham cohomology of Y with coefficients in the trivial flat bundle OY . It can be
computed as usual, by taking hypercohomology of Y with coefficients in the de Rham complex.

3This stands for Dolbeault cohomology of Y with coefficients in the trivial Higgs bundle OY . It can be
computed as usual, by taking hypercohomology of Y with coefficients in the Dolbeault complex.
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3. The choice of a trivialization (when it exists) ωY/k ' OY , determines a canonical
(2− d)-shifted symplectic form on the derived stack

RPerf(Y ) := Map(Y,RPerf)

of perfect complexes on Y .

4. If M is a compact, orientable topological manifold of dimension d, then a choice of a
fundamental class [M ] ∈ Hd(M,k) determines a canonical (2−d)-shifted symplectic
form on the derived stack

RPerf(M) := Map(M,RPerf)

of perfect complexes on M4.

We note here that the derived stack of perfect complexes of quasi-coherent sheaves on Y
considered above contains interesting open substacks, such as the stack of vector bundles,
or the stack of simple objects. We use this observation, and our existence theorems, to
recover in a new and uniform way, some well known symplectic structures on smooth
moduli spaces of simple vector bundles (see [Mu, In]), and on character varieties (see
[Go, Je]). One corollary of our results states that these known symplectic structures in
fact extend to 0-shifted symplectic structures on the ambient derived Artin stacks, and
this explains what is happening to the symplectic structures at the boundaries of these
smooth open substacks, i.e. at bad points (vector bundles or representations with many
automorphisms, or with non-trivial obstruction map, etc.).

As another application of our existence results we present a construction of symmetric
obstruction theories, in the sense of [Be-Fa], by showing that a (−1)-shifted symplectic
structure on a derived Artin stack X always endows the truncation h0(X) with a natural
symmetric obstruction theory. This enables us to construct symmetric obstruction theories
on the moduli stack of local systems on a compact topological 3-manifold, or on the moduli
stack of simple perfect complexes on a Calabi-Yau 3-fold. The latter result was recently
used by Brav-Bussi-Dupont-Joyce ([Br-Bu-Du-Jo]) to prove that the coarse moduli space
of simple perfect complexes of coherent sheaves, with fixed determinant, on a Calabi-
Yau 3-fold admits, locally for the analytic topology, a potential, i.e. it is isomorphic to the
critical locus of a function. This was a longstanding problem in Donaldson-Thomas theory.
We remark that, as shown recently by Pandharipande-Thomas ([Pa-Th]), such a result is
false for a general symmetric obstruction theory. Hence the existence of a local potential
depends in a crucial way the existence of a global (−1)-shifted symplectic structure on
the derived moduli stack of simple perfect complexes on a Calabi-Yau 3-fold. The results
in [Br-Bu-Du-Jo] suggest that one should have general formal, local-analytic and perhaps
étale local versions of the Darboux theorem for (−1)-shifted - and maybe even for general
n-shifted - symplectic forms. It will be interesting to compare such formal (−1)-shifted
Darboux theorem with the formal potential defined in [Ko-So, Section 3.3]. Local structure
theorems of this type also hint at the existence of Donaldson-Thomas theory for Calabi-
Yau manifolds of higher dimensions. This is a completely unexplored territory with the

4A perfect complex on M is by definition a complex of sheaves of k-modules locally quasi-isomorphic
to a constant and bounded complex of sheaves made of projective k-modules of finite type.
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first case being the case of 4-folds, where the corresponding derived moduli space carries
a (−2)-symplectic structure by Theorem 0.3.

Another interesting (−1)-shifted symplectic form whose existence follows from our
Theorem 0.4 is the one obtained on Map(E, T ∗X), where E is an elliptic curve over
Spec k, X is a smooth k-scheme, and T ∗X is the total space of the cotangent bundle of X
(relative to k) equipped with its canonical symplectic structure. At the formal completion
level this (−1)-shifted symplectic form on Map(E, T ∗X) was constructed and studied
in [Co]. A nice feature of our construction is that it produces this symplectic structure
directly as a global form on the derived scheme Map(E, T ∗X). Specifically we have

Corollary 0.6 Let E be an oriented elliptic curve over k with a fixed algebraic volume
form, and let X be a smooth k-scheme. Then the derived mapping scheme Map(E, T ∗X)
carries a canonical (−1)-shifted symplectic structure.

Future works and open questions

In a sequel to this paper, we will study the dual notion of n-Poisson structures on
derived Artin stacks. This dual notion is technically more delicate to handle than the
n-shifted symplectic structures discussed in this paper. This is essentially due to the fact
that it is a much less local notion. Nevertheless we can follow the same reasoning and
extract the notion of an n-Poisson structure from the geometry of derived loop stacks and
higher loop stacks L(n)X := Map(Sn, X). As usual n-shifted symplectic structures give
rise to n-Poisson structures, and correspond precisely to the non-degenerate n-Poisson
structures. Without going into technical details one can say that an n-Poisson structure
on a derived Artin stack X consists of the data of a bivector of degree −n

P ∈ H−n(X,∧2(TX/k[n])[−2n]) ' H−n(X,φ2
n(TX/k)),

where

φ2
n(TX/k) '

{
∧2(TX/k) if n is even

Sym2(TX/k) if n is odd
,

together with higher coherences expressing a closedness conditions. Now, it turns out that
the complex

RΓ(X,Sym(TX/k[−n− 1]))[n+ 2]

can be identified with the tangent complex of the deformation problem for the dg-category
Lqcoh(X) of quasi-coherent sheaves considered as an n-fold monoidal dg-category 5 : n = 0
simply means as a dg-category, n = 1 as a monoidal dg-category, n = 2 as a braided
monoidal dg-category, and so on. A higher version of Kontsevich formality theorem im-
plies that an n-Poisson structure P defines an element in this tangent complex, satisfying
a homotopy version of the master equation, and thus a formal deformation of Lqcoh(X)
considered as an n-fold monoidal dg-category. This formal deformation is, by definition,
the quantization of X with respect to the n-Poisson structure P. As a consequence, if

5We can make sense of this also for negative n, by shifting the formal deformation variable in degree
−2n. For the moment, we will assume n ≥ 0 in order to simplify the presentation.
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X is endowed with an n-shifted symplectic structure, then it has a canonical quantiza-
tion, which is, by definition, a formal deformation of Lqcoh(X) as an n-fold monoidal
dg-category. This will be our approach to construct quantizations of the derived moduli
stacks on which, in this paper, we have constructed n-shifted symplectic structures. At
the moment, this program is very much in progress, and two main difficulties remain.
First of all the deformation theory of dg-categories and n-fold monoidal dg-categories has
not been fully worked out in the literature. Even the case n = 0 is not fully under-
stood, as explained in [Ke-Lo] and [Lu2, Remark 5.3.38]. We hope to make progress on
this deformation theory by introducing the new machinery of tame homological algebra,
and tame dg-categories. Ongoing work (see the forthcoming [To-Va-Ve]) in that direc-
tion seems to provide a complete answer for n = 0. We hope that similar ideas will also
work for arbitrary n. The second issue concerns the higher version of Kontsevich formal-
ity theorem mentioned above, which states that the natural Lie bracket on the complex
RΓ(X,Sym(TX/k[−n− 1]))[n+ 1] coming from the fact that it is the tangent complex of
the deformation problem of n-fold monoidal dg-categories, is the natural one (i.e. equals
an appropriate version of the Schouten bracket). This higher version of the formality
theorem is, at present, still a conjecture, even for the case n = 0 and X a general derived
Artin stack (the only established case is n = 0 and X a smooth scheme).

Related works

There are many related works that should be mentioned here but for space reasons we
will only discuss a small selection of such works.

To start with, our notion of 0-shifted symplectic structure generalizes the usual notion
of symplectic structures on smooth schemes to the setting of derived Artin stacks. In
this context the 0-shifted symplectic structures provide a new point of view on symplec-
tic structures over non-smooth objects, and a comparison with the notion of symplectic
singularities and symplectic resolutions [Kal, Kal-Le-So, Na, Ne-McG] would certainly be
interesting. We note however that 0-shifted symplectic structures cannot exist on singular
schemes. This is due to the fact that for the cotangent complex to be its own dual we
need some non-trivial stacky structure. Therefore, 0-shifted symplectic structures do not
bring anything new for singularities of schemes, but are surely interesting for singularities
appearing on some moduli stacks and on their coarse moduli spaces. As noted in [Fu,
Thm. 6.1], there exist coarse moduli spaces of sheaves on K3 surfaces having symplectic
singularities but with no symplectic resolution. However, these moduli spaces are coarse
moduli of natural derived Artin stacks, and according to our results these derived stacks
carry natural 0-shifted symplectic structures. It is tempting to consider the derived Artin
stack itself as a symplectic resolution of its coarse moduli space.

We have explained how several well known symplectic structures can be recovered
from our existence theorem. Similar symplectic structures are known to exist on moduli
of certain sheaves on non Calabi-Yau manifolds (see for instance [Ku-Ma]). We believe
that these can also be recovered from a slight modification of our constructions, but we
will not pursue this direction in the present work.

Symplectic structures also appear in non-commutative geometry, in particular on mod-
uli spaces of sheaves on non-commutative Calabi-Yau varieties. More generally, our exis-
tence Theorem 2.12 has an extension to the case of the derived stack MT of objects in a
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Calabi-Yau dg-category T , constructed in[To-Va]: the derived stackMT carries a natural
(2 − d)-shifted symplectic structure when T is a Calabi-Yau dg-category of dimension d.
The proof of this non-commutative extension of Theorem 2.12 is very close to the proof
of our Theorem 2.5, but is not included in this work. In another direction, we think that
sheaves on non-commutative Calabi-Yau varieties of fractional dimension should also carry
a suitable version of shifted symplectic structures.

Many of the n-shifted symplectic structures we construct in this paper live on de-
rived moduli stacks of bundles (or complexes of bundles) with flat, or Higgs structures
(RLocDR(X), RLocDol(X), etc.). These are the moduli stacks appearing in non-abelian
Hodge theory, and in fact, the derived moduli of flat perfect complexes RPerfDR(X) is used
in [Si2] to construct the universal non-abelian Hodge filtration. The n-shifted symplectic
forms on these moduli stacks reflects the Poincaré duality in de Rham (or Dolbeault, or
Betti) cohomology, and this should be thought of as an incarnation of Poincaré duality
in non-abelian cohomology. They give important additional structures on these moduli
stacks, and are expected to play an important role for the definition of polarizations in
non-abelian Hodge theory.

Our Theorem 0.4 should be viewed as an algebraic version of one of the main construc-
tion in [AKSZ]. Similarly, some of the constructions and notions presented here are very
close to constructions and notions introduced in [Co]. More precisely, our construction and
results about degree (−1) derived symplectic structures might be seen as a globalization of
Costello’s formal derived (in the sense of [Lu2]) approach. A complete comparison would
require C∞ and complex analytic versions of derived algebraic geometry, and a notion of
n-shifted symplectic structures in such contexts. We are convinced that most, if not all,
the definitions and results we present in this work have C∞ and complex analytic analogs.
Derived differential and complex analytic geometries do exist thanks to [Lu3], but going
through the notions of forms, closed forms and symplectic structures in these settings is
not completely straightforward.

Finally, the reader will notice that most of the methods we give in this work provide m-
shifted symplectic structures starting from already existing n-shifted symplectic structures
with n > m (e.g. Theorem 2.5 and 2.9). It would also be interesting to have constructions
that increase the degree of symplectic structures. The 2-shifted symplectic forms on BG
and RPerf are of this kind, but it would be interesting to have general methods for
constructing n-shifted symplectic forms on quotients, dual to the one we have on fiber
products and on mapping stacks.
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Notations and conventions.

• k is a base commutative ring, noetherian and of residual characteristic zero.

• dgk is the category of dg-modules over k (i.e. of complexes of k-modules). By
convention, the differential of an object in dgk increases degrees. For an object
E ∈ dgk, we will sometimes use the notation

πi(E) := H−i(E).

• cdgak is the category of commutative dg-algebras over k, and cdga≤0
k its full subcat-

egory of non-positively graded commutative dg-algebras.

• dgk, cdgak (respectively cdga≤0
k ) are endowed with their natural model structures

for which equivalences are quasi-isomorphisms, and fibrations are epimorphisms (re-
spectively epimorphisms in strictly negative degrees).

• dAffk := (cdga≤0
k )op is the category of derived affine k-schemes.

• The expression ∞-category will always refer to (∞, 1)-category (see [Ber]). To fix
ideas we will use Segal categories as models for∞-categories (see [Si3], and [To-Ve-1,
§1]).

• The∞-categories associated to the model categories dgk, cdga
≤0
k , dAffk are denoted

by dgk, cdga≤0
k , dAffk.

• The ∞-category of simplicial sets is denoted by S. It is also called the ∞-category
of spaces, and space will be used to mean simplicial set.

• The ∞-category of derived stacks over k, for the étale topology, is denoted by dStk
(see [To2, HAG-II]). If X is a derived stack, the ∞-category of derived stacks over
X is denoted by dStX . The truncation of a derived stack X is denoted by h0(X).
The derived mapping stack between X and Y is denoted by RMap(X,Y ).

• We will use the expressions homotopy limits and ∞-limits interchangeably to refer
either to homotopy limits in an ambient model category, or to limits in an ambient
∞-category. The same convention will be used for colimits. Homotopy fiber products
will be denoted as usual by X ×hZ Y .

• The mapping space between two objects a and b in an ∞-category A is denoted
by MapA(a, b). Points in MapA(a, b) will be called morphisms in A, and paths in
MapA(a, b) homotopies. A morphism in an∞-category will be called an equivalence
if it is a homotopy equivalence (i.e. becomes an isomorphism in the homotopy
category). The word equivalence will also refer to a weak equivalence in a model
category.

• A derived Artin stack is by definition a derived stack which is m-geometric for some
integerm, for the étale topology and the class P of smooth maps (see [HAG-II, §2.2.2]
and [To2]). All derived Artin stacks are assumed to be locally of finite presentation
over Spec k.
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• For a derived stack X, its quasi-coherent derived category is denoted by Dqcoh(X),
and its ∞-categorical version by Lqcoh(X). The larger derived category of all OX -
modules is denoted by D(OX), and its ∞-categorical version by L(OX). By defini-
tion, Lqcoh(X) is a full sub-∞-category of L(OX). As usual, morphisms between x
and y in Dqcoh(X) will be denoted by [x, y]. We have

[x, y] ' π0(MapLqcoh(X)(x, y)).

We refer to [To2, To1], and also [Lu3], for detailed definitions and properties of these
∞-categories.

• Complexes of morphisms between objects x and y in L(OX) or Lqcoh(X) will be
denoted by RHom(x, y). The ∞-categories L(OX) and Lqcoh(X) have natural sym-
metric monoidal structures (in the sense of [To-Ve-1, Lu5]), and this monoidal struc-
tures are closed. The internal mapping object in L(OX) between x and y is denoted
by RHom(x, y). In particular, for an object x, we denote by x∨ := RHom(x,OX)
its dual. Perfect complexes on X are by definition dualizable objects in Lqcoh(X).

• Expressions such as f∗, f∗ and ⊗k should be understood in the derived sense, and
should be read as Lf∗, Rf∗, ⊗L

k , unless specified otherwise.

• For a derived Artin stack X, we denote by LX/k ∈ Lqcoh(X) its cotangent complex
over Spec k (see [To2, HAG-II] and [Lu5, §7.3]). Since, according to our conventions,
X is assumed to be locally of finite presentation, it follows that LX/k is a perfect
complex on X, and thus is dualizable. Its dual is denoted by TX/k := L∨X/k and is
called the tangent complex of X over Spec k.

1 Definitions and properties

In this first section we give the definitions of p-forms, closed p-forms and symplectic forms
over a derived Artin stack. We will start by some elementary constructions in the setting
of mixed and graded mixed complexes. These constructions will then be applied to define
p-forms and closed p-forms over an affine derived scheme SpecA, by using some explicit
graded mixed complexes constructed from the derived de Rham complex of A. Finally,
these constructions are shown to be local for the smooth topology and to glue on smooth
covers, giving global notions for any derived Artin stack. This smooth descent property is
not a completely obvious statement, and its proof requires some care.

1.1 Graded mixed complexes

Recall from [Ka] that a mixed complex over k is a dg-module over k[ε] = H∗(S
1, k), where

ε is in degree −1 and satisfies ε2 = 0. The category of mixed complexes will be denoted
by ε − dgk, and also called the category of ε-dg-modules over k. The differential of the
complex of k-modules underlying an object E ∈ ε − dgk will be denoted by d, and by
convention it raises degrees d : En −→ En+1.

The tensor product ⊗k makes ε − dgk into a symmetric monoidal category, which is
moreover a symmetric monoidal model category for which the weak equivalences are the
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quasi-isomorphisms (see [To-Ve-2, §2]). By definition a graded mixed complex over k is
a mixed complex E over k, equipped with a direct sum decomposition of the underlying
complex of k-dg-modules

E :=
⊕
p∈Z

E(p),

in such a way that multiplication by ε has degree 1

ε : E(p) −→ E(p+ 1),

while the differential d of the complex of k-modules underlying E respects this grading

d : E(p) −→ E(p).

The extra grading will be called the weight grading, and we will say that elements in E(p)
have weight p.

Graded mixed complexes over k form a category denoted by ε − dggrk , that is again a
symmetric monoidal model category, for the tensor product over k with the usual induced
grading

(E ⊗k F )(p) :=
⊕
i+j=p

E(i)⊗k E(j),

and with weak equivalences being the quasi-isomorphisms.

Remark 1.1 Alternatively, graded mixed complexes can be viewed as dg-comodules over
the commutative dg-Hopf-algebra (see also [Ben-Nad])

Bε := H∗(Gm nBGa,O),

the cohomology Hopf algebra of the semi-direct product group stack Gm n BGa. It is
the semi-direct (or cross-)product of the multiplicative Hopf algebra k[t, t−1] with k[e] =
H∗(S1, k), via the natural action of Gm on k[e] given by rescaling e. More precisely, as a
commutative dg-algebra, Bε is k[t, t−1]⊗k k[e], with zero differential and comultiplication
determined by

∆(t) = t⊗ t ∆(e) = t⊗ e.

Note that the tautological equivalence of symmetric monoidal categories

ε− dggrk ' Bε − dg − comod,

commutes with the two forgetful functors to the category of complexes of k-dg-modules.

Let E ∈ ε − dgk be a mixed complex over k. We may form the usual negative cyclic
object NC(E), which is a dg-module over k defined in degree n by the formula

NCn(E) :=
∏
i≥0

En−2i.

For an element {mi}i ∈
∏
i≥0E

n−2i, the differential is defined by the formula

D({mi})j = εmj−1 + dmj .
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If E is moreover a graded mixed complex, then the extra grading E =
⊕

pE(p) defines a
sequence of sub-complexes NC(E)(p) ⊂ NC(E), by

NCn(E)(p) :=
∏
i≥0

En−2i(p+ i).

These sub-complexes are natural direct summands (i.e the inclusions admit natural re-
tractions), and thus we have natural morphisms⊕

p

NC(E)(p) −→ NC(E) −→
∏
p

NC(E)(p).

These are monomorphisms of complexes, but in general they are neither isomorphisms nor
quasi-isomorphisms.

The above constructions are functorial in E, and define a functor

NC : ε− dggrk −→ dgk,

from the category of graded mixed complexes to the category of complexes. Moreover,
the functors E 7→ NC(E)(p) defines direct summands of the functor NC, together with
natural transformations

⊕
pNC(p) −→ NC −→

∏
pNC(p). We will be interested in the

family of functors NC(p) : ε− dggrk −→ dgk, as well as in their direct sum

NCw :=
⊕
p

NC(p) : ε− dggrk −→ dggrk ,

where dggrk denotes the category of graded complexes of k-modules - i.e. complexes of
k-modules equipped with an extra Z-grading, with morphisms the maps of complexes
preserving the extra grading.

Definition 1.2 For a graded mixed complex E, the weighted negative cyclic complex is
defined by

NCw(E) :=
⊕
p∈Z

NC(E)(p) ∈ dggrk .

Its cohomology is called the weighted negative cyclic homology of E, and is denoted by

NCwn (E) := H−n(NCw(E)) NCwn (E)(p) := H−n(NCw(E)(p)).

The natural decomposition

NCwn (E) '
⊕
p∈Z

NCwn (E)(p)

is called the Hodge decomposition.

As observed above, we have a natural morphism

NCw(E) −→ NC(E)

which is, in general, not a quasi-isomorphism. The complex NC(E) computes the usual
negative cyclic homology of the mixed complex E, which can differ from the weighted cyclic
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homology as defined above. The two coincide under obvious boundedness conditions on
E.

Both categories ε−dggrk and dggrk have natural projective model structures, where weak
equivalences are quasi-isomorphisms and fibrations are epimorphisms, on the underlying
complexes of k-modules (see [To-Ve-2]).

Proposition 1.3 The functor

NCw : ε− dggrk −→ dggrk

is a right Quillen functor for the projective model structures.

Proof. We denote by k(p) ∈ ε− dggrk the graded mixed complex consisting of k sitting in
degree 0 and having pure weight p. We construct an explicit cofibrant replacement Q(p)
of k(p) as follows. As a graded k[ε]-module, Q(p) is

Q(p) =
⊕
j≥0

k[ε][2j] = k[ε][a0, . . . , aj , . . . ],

where aj stands for the canonical generator of k[ε][2j] (in degree −2j). The differential in
Q(p) is then given by

daj + ε · aj−1 = 0.

Finally, aj is declared to be of weight p+ j. The natural projection

Q(p) −→ k(p)

sending all the aj ’s to zero for j > 0, and a0 to 1 ∈ k, is a quasi-isomorphism of graded
mixed complexes. Moreover Q(p) is a free graded module over k[ε], and thus is a cofibrant
object in ε− dggrk . Finally, we have

NCw(E)(p) ' Hom(Q(p), E),

where Hom stands for the complex of morphisms between two objects in ε−dggrk (ε−dggrk
is a C(k)-model category in a natural way, where C(k) is the symmetric monoidal model
category of complexes of k-modules). This finishes the proof of the proposition. 2

Since all objects in the model categories ε − dggrk and dggrk are fibrant for the pro-
jective model structures, Proposition 1.3 implies in particular that NCw preserves quasi-
isomorphisms. Following our conventions, we will denote by

dggrk , ε− dgk, and ε− dggrk ,

the ∞-categories obtained by Dwyer-Kan localization from the corresponding model cat-
egories dggrk , ε− dgk and ε− dggrk . The functor NCw thus defines an ∞-functor

NCw =
⊕
p

NCw(p) : ε− dggrk −→ dggrk .
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Corollary 1.4 The ∞-functor

NCw : ε− dggrk −→ dggrk

preserves ∞-limits. Moreover, we have natural equivalences

NCw(E)(p) ' RHom(k(p), E)

where k(p) ∈ ε − dggrk is the graded mixed complex consisting of k sitting in degree 0 and
having pure weight p.

Proof. This is a consequence of the statement and proof of proposition 1.3. 2

Remark 1.5 The notion of weighted negative cyclic homology has the following geometric
interpretation (see also [Ben-Nad]). We let the multiplicative group scheme Gm (over
Spec k) act on the group stack BGa, and form the semi-direct product group stack Gmn
BGa. It can be shown from the definitions that there exists an equivalence of∞-categories

Lqcoh(B(Gm nBGa)) ' ε− dggrk .

This equivalence is obtained by sending a quasi-coherent complex E on the stack B(Gmn
BGa) to its fiber at the base point Spec k −→ B(GmnBGa), which is naturally equipped
with an action of Gm n BGa, and thus a structure of a comodule over the dg-coalgebra
of cochains C∗(Gm n BGa,O). This dg-coalgebra turns out to be formal and quasi-
isomorphic to the dg-coalgebra Bε discussed above - the semi-direct product of k[t, t−1]
with k[e]. This fiber is therefore a graded mixed complex, and it is straightforward to
check that this construction induces an equivalence of ∞-categories as stated. Using this
point of view, the ∞-functor NCw has the following interpretation. Consider the natural
projection

π : B(Gm nBGa) −→ BGm.

It induces a direct image on the ∞-categories of quasi-coherent complexes

π∗ : Lqcoh(B(Gm nBGa)) −→ Lqcoh(BGm),

right adjoint to the pull-back functor

π∗ : Lqcoh(BGm) −→ Lqcoh(B(Gm nBGa)).

If we identify Lqcoh(B(Gm n BGa)) with ε − dggrk as above, and Lqcoh(BGm) with dggrk ,
then π∗ becomes isomorphic to NCw. In other words, NCw(E) computes the homotopy
fixed point of E under the action of BGa. The residual Gm-action then corresponds to
the grading by the pieces NCw(E)(p).

We finish this section by observing that the graded complex NCw(E) comes equipped
with a natural projection

NCw(E) −→ E,
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which is functorial in E and is a morphism of graded complexes. It consists of the mor-
phisms induced by the projection to the i = 0 component

NCw(E)n(p) =
∏
i≥0

En−2i(p+ i) −→ En(p).

Remark 1.6 If E is a graded ε-dg-module (i.e a graded mixed complex) over k, then for
any weight p there is a natural map - that might be called the absolute ε-differential -

DE(p) : E(p) −→ NCw(E)(p+ 1)[−1]

whose degree m piece is

Dm
E (p) : Em(p)→

∏
i≥0

Em−2i−1(p+ 1 + i) : xm,p 7→ (εxm,p, 0, 0, . . .).

1.2 p-Forms, closed p-forms and n-shifted symplectic structures

Let A ∈ cdga≤0
k be a commutative differential non-positively graded algebra over k, and

let us denote by Ω1
A/k the A-dg-module of Kähler differential 1-forms of A over k. We can

form its de Rham algebra over k (see [To-Ve-2])

DR(A/k) := SymA(Ω1
A/k[1]),

where in contrast with our usual usage SymA here refers to the underived symmetric
product of A-dg-modules. The complex DR(A/k) is in a natural way a commutative ε-
dg-algebra in the sense of [To-Ve-2, §2]. Here we will consider DR(A/k) just as a graded
mixed complex, by forgetting the extra multiplicative structure. The underlying complex
of k-modules is simply

SymA(Ω1
A/k[1]) '

⊕
p

Ωp
A/k[p],

where Ωp
A/k := ∧pAΩ1

A/k. The mixed structure is induced by the de Rham differential

ε := dDR : Ωp
A/k −→ Ωp+1

A/k, and is the unique mixed structure on SymA(Ω1
A/k[1]) making

it into an ε-cdga and for which the action of ε on the factor A = ∧0
AΩ1

A/k is the universal

dg-derivation d : A −→ Ω1
A/k (see [To-Ve-2, §2]). Finally, the grading on DR(A/k) is the

one for which DR(A/k)(p) := Ωp
A/k[p]. This graded mixed structure on DR(A/k) is also

compatible with the multiplicative structure, and makes it into a graded mixed cdga over
k, but we will not make use of this finer structure in this work.

The assignment A 7→ DR(A/k) defines a functor

cdga≤0
k −→ ε− dggrk .

This functor can be derived on the left, by pre-composing it with a cofibrant replacement
functor on cgda≤0

k , to obtain

LDR(−/k) : cdga≤0
k −→ ε− dggrk
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which now preserves quasi-isomorphisms. Therefore, it induces a well defined ∞-functor
DR(−/k) : cdgak −→ ε−dggrk . Recall that, for A a cdga over k, the underlying complex
of DR(A/k) is ⊕

p

(∧pALA/k)[p],

where LA/k is the cotangent complex of A over k, and ∧pA must now be understood in the
derived sense (see the proof of [To-Ve-2, Proposition 2.4]).

Definition 1.7 Let A ∈ cdgak. The weighted negative cyclic complex of A over k is
defined by

NCw(A/k) := NCw(DR(A/k)).

This defines an ∞-functor
NCw : cdgak −→ dggrk .

As we have seen, for any graded mixed complex E, we have a natural projection

NCw(E) −→ E,

which is a morphism of graded complexes. We get this way, for any p ≥ 0, a natural
morphism of complexes

NCw(A/k)(p) −→ ∧pALA/k[p].

For a complex of k-modules E, we will denote by |E| the simplicial set obtained by
the Dold-Kan correspondence (applied to the truncation τ≤0(E)). By definition we have a
natural weak equivalence |E| 'Mapdgk(k,E), where Mapdgk denotes the mapping space
(i.e. simplicial set) in the ∞-category dgk. For A ∈ cdgak, and two integers p ≥ 0 and
n ∈ Z, we set

Apk(A,n) := | ∧pA LA/k[n]| ∈ S.

This defines an ∞-functor Apk(−, n) : cdgak −→ S. In the same way, we set

Ap,clk (A,n) := |NCw(A/k)[n− p](p)|.

Using the natural projection mentioned above NCw(A/k)[n − p](p) −→ ∧pLA/k[n], we

deduce a natural morphism Ap,clk (A,n) −→ Apk(A,n). We have therefore two ∞-functors

Ap,clk (−, n) , Apk(−, n) : cdgak −→ S,

together with a natural transformation Ap,clk (−, n) −→ Apk(−, n).

Definition 1.8 For A ∈ cdgak, the simplicial set Apk(A,n) (respectively Ap,clk (A,n)) is
called the space of p-forms of degree n on the derived stack SpecA, relative to k (re-
spectively the space of closed p-forms of degree n on the derived stack SpecA, relative to
k).

As usual, when the ground ring k is clear from the context, we will simply write
Ap(−, n) and Ap,cl(−, n) for Apk(−, n) and Ap,clk (−, n).
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Remark 1.9 We have seen that graded mixed complexes can be understood as quasi-
coherent complexes on the stack BH, where H is the semi-direct product group stack
Gm n BGa (see our remark 1.5). If we continue this point of view, p-forms and closed
p-forms can be interpreted as follows (see also [Ben-Nad]).

Let X = SpecA be a derived affine scheme over k, and consider its derived loop
stack LX := RMap(S1, X). The natural morphism S1 = BZ −→ BGa, induced by the
inclusion Z ↪→ Ga, induces a morphism

LuX := RMap(BGa, X) −→ LX.

This morphism turns out to be an equivalence of derived schemes. Therefore, the group
stack H of automorphisms of BGa, acts naturally on LX. We can form the quotient stack
and consider the natural projection

p : [LX/H] −→ BH.

Using the results of [To-Ve-2] it is possible to show that there exists a functorial equivalence
in Lqcoh(BH)

p∗(O[LX/H]) ' DR(A/k),

where DR(A/k) is viewed as an object in Lqcoh(BH) using our remark 1.5.
As p-forms and closed p-forms are defined directly from the graded mixed complexes,

this explains the precise relation between our notion of closed p-forms, and functions on
derived loop stacks. For instance, we have that NCw(A/k) are simply the BGa-invariants
(or equivalently the S1-invariants through S1 −→ BGa) in the complex of functions on
LX, in the sense that we have a natural equivalence of quasi-coherent sheaves on BGm

q∗(O[LX/H]) ' NCw(A/k),

where now q is the projection [LX/H] −→ BH −→ BGm.

Note that the space Ap,cl(A,n), of closed p-forms of some degree n, is not a full sub-
space (i.e. not a union of connected components) of Ap(A,n). For a point w ∈ Ap(A,n),
the homotopy fiber K(w) of the map Ap,cl(A,n) −→ Ap(A,n), taken at w, can be a
complicated space. Contrary to what the terminology closed p-forms seems to suggest,
being closed is not a well defined property for a p-form, and there is indeed an entire space
of “closing structures” on a given p-form, namely the homotopy fiber K(w). As a point
in K(w) consists of the data needed to “close” the p-form w, we will call K(w) the space
of keys of w. For future reference we record this in the following definition.

Definition 1.10 For A ∈ cdgak, and w ∈ Ap(A,n), the space K(w), is defined to be the
homotopy fiber of the natural map Ap,cl(A,n) −→ Ap(A,n) taken at w. It is called the
space of keys of w.

We have defined two ∞-functors Ap(−, n), Ap,cl(−, n) : cdgak −→ S that we con-
sider as derived pre-stacks, dAffop

k −→ S. When A ∈ cdgak is viewed as a derived scheme
X = SpecA, we will obviously write

Ap(X,n) = Ap(A,n) Ap,cl(X,n) = Ap,cl(A,n).
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Proposition 1.11 The derived pre-stacks Ap(−, n) and Ap,cl(−, n) are derived stacks for
the étale topology.

Proof. For Ap(−, n), we have by definition

Ap(SpecA,n) 'Mapdgk(k, (∧pALA/k)[n]).

Therefore, the fact that Ap(−, n) satisfies étale descent follows from the fact that the
functor SpecA 7→ ∧pLA/k satisfies étale descent. This latter ∞-functor, when restricted
to the small étale site of a derived affine scheme X is a quasi-coherent complex of OX -
modules, and thus is a derived stack for the étale (and in fact the fpqc) topology (see
[HAG-II, Lemma 2.2.2.13]).

In the same way, the derived pre-stack

SpecA 7→ DR(A/k)[n− p] '
⊕
q

(∧qALA/k)[q − p+ n]

is a quasi-coherent complex on the small étale site of X = SpecA, and so satisfies étale
descent. Therefore, Corollary 1.4 implies that

SpecA 7→ NCw(DR(A/k)[n− p]) ' NCw(DR(A/k))[n− p]

is a derived stack for the étale topology. Taking the degree p part and applying the
Dold-Kan correspondence, we deduce that SpecA 7→ Ap,cl(A,n) has descent for the étale
topology. 2

Proposition 1.11 enables us to globalize the definition of Ap(X,n) and Ap,cl(X,n) to
any derived stack X, as follows

Definition 1.12 Let F ∈ dStk be a derived stack over k, p and n integers with p ≥ 0.
The space of p-forms, relative to k, of degree n on F is defined by

Apk(F, n) := MapdStk(F,Apk(−, n)).

The space of closed p-forms, relative to k, of degree n on F is defined by

Ap,clk (F, n) := MapdStk(F,Ap,clk (−, n)).

As before, when the base ring k is clear from the context, we will not include it in the
notation.

Using the natural projection Ap,cl(−, n) −→ Ap(−, n), we have, for any F , a natural
projection Ap,cl(F, n) −→ Ap(F, n).

Definition 1.12 above has an alternative description, based on Corollary 1.4. Consider
the derived pre-stack SpecA 7→ DR(A/k). It is a derived pre-stack with values in ε−dggrk .
As the forgetful ∞-functor

ε− dggrk −→ dggrk

is conservative and preserves ∞-limits, Corollary 1.4 implies that DR is a derived stack
with values in graded mixed complexes. By left Kan extension, this derived stack extends
uniquely to an ∞-functor (see e.g. [To-Ve-1, §1.2] or [Lu1])

DR(−/k) : dStopk −→ ε− dggrk .

Therefore, as in Definition 1.12, we may give the following

20



Definition 1.13 For a derived stack F we set

NCw(F/k) := NCw(DR(F/k)) ∈ dggrk .

As usual, if k is clear from the context, we will write

DR(F ) = DR(F/k) NCw(F ) = NCw(F/k).

Note that Corollary 1.4 implies that we have natural equivalences

Apk(F, n) ' |DR(F/k)[n− p](p)| Ap,clk (F, n) ' |NCw(F/k)[n− p](p)|.

The second of these equivalences is sometimes useful to compute the spaces of closed p-
forms by first computing explicitly the graded mixed complex DR(F/k) and then applying
the ∞-functor NCw.

The space of closed p-forms on a general derived stack F can be a rather complicated
object, even when F is a nice derived Artin stack. The space of p-forms, however, has the
following, expected, description.

Proposition 1.14 Let F be a derived Artin stack over k, and LF/k ∈ Lqcoh(F ) be its
cotangent complex relative to k. Then, we have an equivalence

Ap(F, n) 'MapLqcoh(F )(OF ,∧pLF/k[n]).

This equivalence is functorial in F in the obvious sense. In particular, we have a functorial
bijective map

π0(Ap(F, n)) ' Hn(F,∧pLF/k).

Proof. We start by constructing a morphism

φF : MapLqcoh(F )(OF ,∧pLF/k[n]) −→ Ap(F, n),

functorial in F . By definition, the right hand side is given by

Ap(F, n) ' Holim
X=SpecA∈(dAff/F )op

Ap(X,n) ' Holim
X=SpecA∈(dAff/F )op

Mapdgk(k,∧pALA/k[n]).

On the ∞-site dAff/F , of derived affine schemes over F , we have a (non-quasi-coherent)
O-module, denoted by ∧pL, and defined by

X = SpecA 7→ ∧pALA/k.

We also have the quasi-coherent O-module ∧pLF/k. There exists a natural morphism of
O-modules on dAff/F , ∧pLF/k −→ ∧pL. obtained, over u : SpecA −→ F , by the natural
morphism u∗(LF/k) −→ LA/k. This defines a morphism on global sections

MapLqcoh(F )(OF ,∧pLF/k[n]) −→ Holim
X=SpecA∈(dAff/F )op

Mapdgk(k,∧pALA/k[n]) ' Ap(F, n).

We will now check that this morphism

φ : MapLqcoh(F )(OF ,∧pLF/k[n]) −→ Ap(F, n)
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is an equivalence. For this we assume that F is a derived Artin stack which is m-geometric
for some m ≥ 0 (see [HAG-II, §1.3.3]), and we proceed by induction on m. For m = 0,
F is a derived affine stack and the statement is true. We assume that the statement is
correct for (m− 1)-geometric derived stacks. We can write F as the quotient of a smooth
Segal groupoid object X∗, with Xi being (m−1)-geometric for all i (see [HAG-II, §1.3.4]).

We have a commutative square of descent maps

MapLqcoh(F )(OF ,∧pLF/k[n]) //

φ

��

Holimi∈∆MapLqcoh(Xi)(OXi ,∧p(LXi/k)[n])

φ

��
Ap(F, n) // Holimi∈∆Ap(Xi, n)

.

By induction, the right vertical morphism between the homotopy limits is an equivalence.
The bottom horizontal morphism is also an equivalence, because F 7→ Ap(F, n) sends
∞-colimits to ∞-limits by definition. It thus remains to show that the top horizontal
morphism is an equivalence. But this follows from the following lemma.

Lemma 1.15 Let X∗ be a smooth Segal groupoid object in derived Artin stacks, with
quotient F = |X∗|. Then, for any integer p and n, the natural morphism

MapLqcoh(F )(OF ,∧pLF/k[n]) −→ Holim
i∈∆

MapLqcoh(Xi)(OXi ,∧
pLXi/k[n])

is an equivalence.

Proof of lemma - For any n, the morphisms appearing in the statement of the lemma are
retracts of the natural morphism

MapLqcoh(F )

(
OF ,

⊕
p

(∧pLF/k)[n− p]

)
−→ Holim

i∈∆

(
MapLqcoh(Xi)

(
OXi ,

⊕
p

(∧pLXi/k)[n− p]

))
.

The mapping spaces of the ∞-category Lqcoh(F ) are related to the derived Hom’s by the
formula

MapLqcoh(F )(E,F ) ' |RHom(E,F )|,

and therefore it is enough to prove that

RHom(OF ,
⊕
p

(∧pLF/k)[−p]) −→ Holim
i∈∆

RHom(OXi ,
⊕
p

(∧pLXi/k)[−p])

is a quasi-isomorphism of complexes of k-modules.
For a derived stack F , we denote by T 1(F ) the shifted tangent stack

T 1(F ) := Map(Spec k[e−1], F ),

where e−1 is in degree −1. The ∞-functor F 7→ T 1(F ) preserves derived Artin stacks and
finite homotopy limits. Moreover, if X −→ Y is a smooth and surjective morphism of
derived Artin stacks then T 1(X) −→ T 1(Y ) is an epimorphism of derived stacks, as one
may see by using the infinitesimal criterion for smoothness [HAG-II, §2.2.5]. It follows
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formally from these properties that the natural morphism |T 1X∗| −→ T 1|X∗| = T 1(F ) is
an equivalence. This implies that we have

RHomLqcoh(T 1(F ))(OT 1(F ),OT 1(F )) ' Holim
i∈∆

RHomLqcoh(T 1(Xi))(OT 1(Xi),OT 1(Xi)).

Moreover, for any derived Artin stack X, T 1(X) is affine over X and can be written as a
relative spectrum (see [HAG-II, Proposition 1.4.1.6])

T 1(X) ' SpecX (Sym(LX [−1])).

In particular, we have natural quasi-isomorphisms

RHom(OT 1(X),OT 1(X)) ' RHom(OX ,
⊕
p

∧pOX (LX)[−p])).

We thus deduce that the natural morphism

RHomLqcoh(F )(OF ,
⊕
p

(∧pLF/k)[−p]) −→ Holim
i∈∆

RHomLqcoh(Xi)(OXi ,
⊕
p

(∧pLXi/k)[−p])

is a quasi-isomorphism, which implies the lemma. 2

This finishes the proof of the proposition. 2

Remark 1.16 The interpretations of p-forms and closed p-forms as functions and in-
variant functions on the derived loop stacks given in 1.9 has a global counterpart. This
globalization is not totally obvious, as the construction X 7→ LX is not compatible with
smooth gluing. However, it is possible to introduce the formal loop stack LfX, the formal
completion of LX along the constant loops X ↪→ LX, and to prove that functions on LfX
have smooth descent (this is essentially the same argument as in our Lemma 1.15, see also
[Ben-Nad]). The group stack H acts on LfX, and if we denote by

q : [LfX/H] −→ BH −→ BGm

the natural projection, we have

NCw(F/k) ' q∗(O[LfX/H]).

In other words, closed p-forms on X can be interpreted as BGa-invariant (or equivalently
S1-invariant) functions on LfX.

Remark 1.17 Let F be a derived Artin stack locally of finite presentation over k. If
we consider the absolute ε-differential DE (Remark 1.6) for E := DR(F/k)[n − p] =
RΓ(F,⊕q≥0(∧qLF )[q])[n− p], we get

dDR(p) := DE(p) : DR(F/k)(p)[n− p] −→ NCw(F/k)(p+ 1)[n− (p+ 1)]

whose geometric realization gives the derived de Rham differential (as a map of spaces)

dDR(p) := |dDR(p)| : Ap(F ;n) −→ Ap+1, cl(F ;n).
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We are now ready to define the space of n-shifted symplectic structures on a derived
Artin stack F . To do this, let us recall that if F is a derived Artin stack (locally of
finite presentation over k, as are all of our derived Artin stacks by convention), then the
cotangent complex LF/k is a perfect complex. In particular it is a dualizable object in
Lqcoh(F ) (or equivalently dualizable in Dqcoh(F ), see [To-Ve-1]). Its dual will be denoted
by TF/k. Under this condition, any 2-form ω of degree n on F , induces by Proposition
1.14 a morphism of quasi-coherent complexes

OF −→ (∧2
OFLF/k)[n],

and thus, by duality, a morphism ∧2
OFTF/k −→ OF [n]. By adjunction, this induces a well

defined morphism in Lqcoh(F )

Θω : TF/k −→ LF/k[n].

Definition 1.18 Let F be a derived Artin stack, and n ∈ Z.

1. A 2-form ω ∈ A2
k(F, n) is non-degenerate if the corresponding morphism in Dqcoh(F )

Θω : TF/k −→ LF/k[n]

is an isomorphism.

We denote by A2
k(F, n)nd the full subspace of A2

k(F, n) which is the union of all the
connected components consisting of non-degenerate 2-forms of degree n on F .

2. The space of n-shifted symplectic structures on F (relative to k), Sympk(F, n) is
defined by the following homotopy pull-back square

Sympk(F, n) //

��

A2,cl
k (F, n)

��
A2
k(F, n)nd // A2

k(F, n).

We will simply write Symp(F, n) when the base ring k is clear from the context.

Note that, by definition, Symp(F, n) is the full sub-space of A2,cl(F, n) defined by a
unique condition on the underlying 2-form.

Remark 1.19 As F is locally of finite presentation, the cotangent complex LF/k is perfect
and thus of bounded amplitude. In particular we see that at most one of the spaces
Symp(F, n) can be non-empty when n varies in Z, otherwise LF/k will be periodic and
thus not perfect.
More precisely, let us say that a derived Artin stack, locally of finite presentation over k,
has amplitude in [−m,n] (with m,n ≥ 0) if its cotangent complex has perfect amplitude
in that range. Then such a derived stack might only carry shifted symplectic structures
of degree r = m− n.

24



We conclude this section by describing the space of closed p-forms in two simple situa-
tions: smooth schemes (or more generally Deligne-Mumford stacks), and classifying stacks
of reductive group schemes. Finally we show that shifted cotangent stacks carry a canon-
ical shifted symplectic structure.

Smooth schemes. We start with the case of a smooth scheme X over Spec k. In this
case LX/k ' Ω1

X/k, and thus Proposition 1.14 gives a description of the spaces of p-forms
of degree n as

Ap(X,n) ' |RΓ(X,Ωp
X/k)[n]|.

Assume first that X = SpecA is smooth and affine. In this case we know that
DR(A/k) is naturally quasi-isomorphic, as a graded mixed complex, to DR(A/k), the
usual, underived, de Rham algebra of A over k (see [To-Ve-2]). We can then explicitly
compute the graded complex NCw(A/k). By applying directly the definitions in Section
1.1, we get, for any p ≥ 0

NCw(A/k)[−p](p) ' NCw(DR(A/k))[−p](p) ' Ω≥pA/k,

where Ω≥pA/k is the naively truncated de Rham complex

Ωp
A/k

// Ωp+1
A/k

// Ωp+2
A/k

// . . . ,

where Ωp
A/k sits in degree 0. From this we deduce that the space of closed p-forms of

degree n on SpecA is
Ap,cl(SpecA,n) ' |Ω≥pA/k[n]|.

In particular, we have

πi(Ap,cl(SpecA,n)) '


0 if n < 0

Hp+n−i
DR (SpecA) if 0 ≤ i < n

Ωp,cl
A/k if i = n

By descent, we have similar formulas for a general smooth scheme X (or more generally
for a smooth Deligne-Mumford stack over k)

Ap,cl(X,n) ' |RΓ(X,Ω≥pX/k)[n]|,

πi(Ap,cl(X,n)) ' Hn−i(X,Ω≥pX/k).

As a consequence, we have the following three important properties for a smooth scheme
X

1. The space Ap,cl(X, 0) of closed p-forms of degree 0 is equivalent to the discrete set

Γ(X,Ωp,cl
X/k) of usual closed p-forms.

2. The spaces Ap,cl(X,n) are empty for n < 0.

3. The spaces Ap,cl(X,n) are n-truncated for n ≥ 0, and we have

πi(Ap,cl(X,n)) ' Hn−i(X,Ω≥pX/k).
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We can use these properties to describe Symp(X,n) for all smooth schemes X and all
n. Indeed, property (2) implies that Symp(X,n) is empty for all n < 0. Property (1)
gives that Symp(X, 0) is equivalent to the set of usual symplectic forms on X. Finally,
Symp(X,n) is also empty for n > 0, as all closed 2-forms of degree n must be degenerate,
since we cannot have Ω1

X [n] ' TX unless n = 0 (note that both Ω1
X and TX are complexes

concentrated in degree 0 since X is smooth). In other words, on smooth schemes there
are no derived symplectic forms of degree 6= 0, and those in degree 0 are just the usual ones.

Note also an interesting consequence of the above properties. When X is smooth and
also proper over Spec k, then we have

πi(Ap,cl(X,n)) ' F pHn+p−i
DR (X/k),

where F ∗ stands for the Hodge filtration on the de Rham cohomology H∗DR(X/k).

Classifying stacks. Let now G be an affine smooth group scheme over Spec k, and
consider its classifying stack BG, viewed as a derived Artin stack. If g denotes the Lie
algebra of G, the cotangent complex of BG is g∨[−1], considered as a quasi-coherent
complex on BG via the adjoint action of G on its lie algebra g. In particular, using
Proposition 1.14, we find that the spaces of p-forms on BG are given by

Ap(BG,n) ' |H(G,Symp
k(g
∨))[n− p] |,

where H(G,−) denotes the Hochschild cohomology complex of the affine group scheme G
with quasi-coherent coefficients (as in [De-Ga, §3.3] and [To3, §1.5]). In particular, when
G is reductive, we find

Ap(BG,n) ' |Symp
k(g
∨)G[n− p] |,

and, equivalently,

πi(Ap(BG,n)) '
{

0 if i 6= n− p
Symp

k(g
∨)G if i = n− p

Still under the hypothesis that G is reductive, let us now compute the space Ap,cl(BG,n).
For this we start by computing the graded mixed complex DR(BG). Proposition 1.14
tells us that the underlying graded complex of DR(BG) is cohomologically concentrated
in degree 0

DR(BG) ' (Sym∗kg
∨)G[0].

It follows that DR(BG), as a graded mixed complex is quasi-isomorphic to Sym∗k(g
∨)[0],

where the ε-action is trivial, and the grading is the natural grading on Sym∗k(g
∨) (where g∨

is assigned weight 1). A direct consequence is that we have a natural quasi-isomorphism
of graded complexes

NCw(DR(BG)) '
⊕
i≥0

Sym∗k(g
∨)G[−2i].

Thus, we have

Ap,cl(BG,n) ' |
⊕
i≥0

Symp+i
k (g∨)G[n− p− 2i]|.
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In particular

π0(Ap,cl(BG,n)) '
{

0 if n is odd
Symp

k(g
∨)G if n is even

For degree reasons, a closed 2-form of degree n can be non-degenerate on BG only
when n = 2. Moreover,

π0(A2,cl(BG, 2)) ' Sym2
k(g
∨)G,

is the k-module of G-invariant symmetric bilinear forms on g. Such a closed 2-form is
non-degenerate if and only if the corresponding bilinear form on g∨ is non-degenerate in
the usual sense. As a consequence, we have

π0(Symp(BG, 2)) ' {non-degenerate G-invariant quadratic forms on g}.

If G is assumed to have simple geometric fibers, then Symp(BG, 2) possesses essentially
a unique element. Indeed, Sym2

k(g
∨)G is a projective module - being a direct factor in

Sym2
k(g
∨). Moreover, it is well known that this projective module is of rank one when k

is a field, and this implies, by base change, that Sym2
k(g
∨)G is in fact a line bundle on

Spec k. Nowhere vanishing sections of this line bundle corresponds to 2-shifted symplectic
forms on BG. We thus see that, at least locally on the Zariski topology of Spec k, there is
a 2-shifted symplectic form on BG, which is unique up to a multiplication by an invertible
element of k.

When a reductive group scheme G is realized as a closed subgroup scheme of GLn,
then there is a natural element in Symp(BG, 2). The inclusion G ↪→ GLn defines a faithful
representation V of G on kn. This representation has a character, which is a G-invariant
function on G. This function can be restricted to the formal completion of G at the
identity, to get a well defined element in

αV ∈ O(ĜG) ' Ŝymk(g
∨)G.

The degree 2 part of this element provides an invariant symmetric bilinear form on g,
which is non-degenerate because G is reductive, and thus a 2-shifted symplectic form on
BG. In different terms, BGLn has a canonical 2-shifted symplectic structure, given by
the bilinear form (A,B) 7→ Tr(AB), defined on the k-modules Mn(k) of n× n matrices.
The inclusion G ↪→ GLn defines a morphism of stacks BG −→ BGLn, and the pull-back
of the canonical 2-shifted symplectic form on BG remains a 2-shifted symplectic form.

Shifted cotangent stacks. We define the n-shifted cotangent stack of a Deligne-
Mumford stack, and prove that it carries a canonical n-shifted symplectic structure.

Definition 1.20 Let n ∈ Z, and X be a derived Artin stack locally of finite presentation
over k. We define the n-shifted cotangent (derived) stack as

T∗X[n] := RSpec SymOX (TX [−n]).

For any n, we have a map of derived stacks p[n] : T∗X[n] −→ X, induced by the canonical
map OX −→ SymOX (TX [−n]).
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On T∗X[n] we have a canonical Liouville n-shifted 1-form. The idea - like in differential
geometry, where there is obviously no shift - is that the pullback of p[n] : T ∗X[n] →
X along p[n] itself has a canonical section, the diagonal, and any such section gives a
horizontal 1-form on T ∗X[n].
More precisely, we start by considering the inclusion

TX [−n] ↪→ SymOX (TX [−n]).

Since TX is perfect, this corresponds uniquely - by adjunction - to a map

OX → TX [−n]∨ ⊗OX SymOX (TX [−n]) ' LX [n]⊗OX SymOX (TX [−n]) ' p[n]∗p[n]∗LX [n],

that, again by adjution, yields a map

OT ∗X[n] → p[n]∗LX [n].

By composing this arrow with the shift-by-n of the canonical map p[n]∗LX → LT ∗X[n], we
obtain the Liouville n-shifted 1-form on T∗X[n]

λ(X;n) : OT ∗X[n] → LT ∗X[n][n].

Nothe that λ is horizontal, by definition, i.e. the composite OT ∗X[n] → LT ∗X[n][n] →
LT ∗X[n]/X [n] is zero.

Recall from Remark 1.17, the existence of a derived de Rham differential

dDR := |dDR(1)| : A1(T ∗X[n];n) −→ A2,cl(T ∗X[n];n).

Let’s denote by dDR(λ(X;n)) ∈ π0(A2,cl(T ∗X[n];n)) = Hn−2(NCw(T ∗X[n])(2)) the in-
duced n-shifted closed 2-form.

Proposition 1.21 If X is a derived Deligne-Mumford stack, then the underlying n-shifted
2-form of ω := dDR(λ(X;n)) is non degenerate, i.e. ω is symplectic.

Proof. Let us simply denote by dλ[ : TT∗X[n] → LT∗X[n][n] the map induced - by
adjunction - by the 2-form in Hn(T ∗X [n],∧2LT∗X[n]) underlying dDR(λ(X;n)). We want to

prove that dλ[ is a quasi-isomorphism. Since étale maps induce equivalences of cotangent
complexes, by using an étale atlas {Ui = Spec(Ai) → X} for X, and the induced étale
atlas {T∗Ui[n] = Spec(Bi) → T∗X[n]} on T∗X[n], it will suffice to prove the same
statement upon restriction along any such étale map Spec(Bi)→ T∗X[n]. By naturality
of the construction of dλ[ with respect to étale maps, it will be enough to prove the
proposition for X = Spec(A) (with A quasi-free).

So, let X = Spec(A), where A is a quasi-free k-cdga on the quasi-basis {xi}i∈I . Then

LX ' Ω1
A/k = ⊕i∈IAδxi,

with |δxi| = |xi|, with the usual differential defined by d(aδxi) = d(a)δxi + (−1)|a|aδ(dxi),
where δ is the unique derivation A→ Ω1

A/k extending xi 7→ δxi. Therefore,

TX ' TA/k = ⊕i∈IAξi,
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where ξi is dual to δxi, and |ξi| = −|xi|. Moreover

Y := T ∗X[n] = Spec(SymA(TX [−n])) ' Spec(B),

where B is quasi-free over A with quasi-basis {yi}i∈I , |yi| = −|xi|+ n. In other words, B
is quasi-free over k with quasi-basis {xi, yi}i∈I , |yi| = −|xi|+ n. Therefore

LY ' Ω1
B/k = ⊕i∈IBδxi ⊕Bδyi,

with |δxi| = |xi|, |δyi| = −|xi|+ n (with its usual differential), and

TY ' TB/k = ⊕i∈IBξi ⊕Bηi,

where ξi is dual to δxi, ηi is dual to δyi, and |ξi| = −|xi|, |ηi| = |xi| − n. Moreover

LY/X ' Ω1
B/A = ⊕i∈IBδyi , TY/X ' TB/A = ⊕i∈IBηi.

In these terms, the n-shifted Liouville 1-form λ on Y is given by λ =
∑

i∈I(−1)|yi|yiδxi.
Note that λ is an element of degree 0 in DR(Y/k)(1)[n−1] ' Ω1

B/k[n]. Now, by definition

of the de Rham differential (Remark 1.17), we have

dDRλ = (dDR(
∑
i∈I

(−1)|yi|yiδxi) =
∑
i∈I

(−1)|yi|δyi∧δxi, 0, . . . , 0, . . .) ∈ (NCw(DR(Y/k))(2)[n−2])0,

so that the n-shifted 2-form underlying dDRλ is
∑

i∈I(−1)|yi|δyi ∧ δxi. In particular, we
have

dλ[ : TB/k = ⊕i∈IBξi ⊕Bηi −→ ⊕i∈IBδxi[n]⊕Bδyi[n] = Ω1
B/k[n],

ξi 7−→ −(−1)|yi|δyi[n] , ηi 7−→ (−1)|yi|δxi[n],

and this is, by inspection, an isomorphism of graded B-modules, and we conclude that ω
is indeed symplectic (since we already knew that dλ[ is a map of B-dg-modules).

2

Remark 1.22 It is very likely that Proposition 1.21 holds for any derived Artin stack,
we just did not investigate how one may deal with smooth atlases instead of étale ones.

2 Existence of shifted symplectic structures

We prove in this section three existence results for n-shifted symplectic forms on certain
derived stacks. We start by the mapping derived stack of an oriented object to an n-
shifted symplectic target, which is surely the most important of the existence theorems
given below. We also introduce the notion of a Lagrangian structure on a morphism with
target an n-shifted symplectic derived stack, and show that the fibered product of two
such morphisms comes equipped with a natural (n− 1)-shifted symplectic form. Finally,
we explain a construction of 2-shifted symplectic forms using the Chern character con-
struction of [To-Ve-1], and apply it to exhibit a natural 2-shifted symplectic structure on
RPerf , the derived moduli stack of perfect complexes.
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2.1 Mapping stacks

The following construction is well-known in differential geometry and provides, together
with [AKSZ], heuristics for our constructions below. Let M be a compact C∞-manifold of
dimension m, N be a C∞-manifold, and MapC∞(M,N) the Fréchet manifold of C∞-maps
from M to N . The following diagram

M ×MapC∞(M,N)

ev
vvnnnnnnnnnnnnn

prM
((PPPPPPPPPPPPP

N M

induces a map

Ωp
M × Ωq

N → Ωp+q−m
MapC∞ (M,N) : (α, β) 7→

∫
M
pr∗Mα ∧ ev∗β := α̂β,

where
∫
M denotes integration along the fiber, sometimes called the hat-product (see e.g.

[Viz]). Now, if (N,ω) is symplectic, then 1̂ω ∈ Ω2−m
Map(M,N) defines a symplectic form on

MapC∞(M,N).
In the derived algebraic geometry setting we are concerned with in this paper, we will
need a replacement for Poincaré duality and for the notion of an orientation. The first
one is given by Serre duality (in the more general context of Calabi-Yau categories), while
the second one will be that of O-orientation (Definition 2.4). The notion of O-orientation
will allow for a quasi-coherent variant of integration along the fiber (Definition 2.3).

We start by considering the following finiteness conditions on derived stacks.

Definition 2.1 A derived stack X, over a derived affine scheme SpecA, is strictly O-
compact over A if it satisfies the following two conditions

1. OX is a compact object in Dqcoh(X).

2. For any perfect complex E on X, the A-dg-module

C(X,E) := RHom(OX , E)

is perfect.

A derived stack X over k is O-compact if for any derived affine scheme SpecA the derived
stack X × SpecA is strictly O-compact over A.

Remark 2.2 Since perfect complexes are exactly the dualizable objects in Dqcoh(X),
condition (1) of the definition above implies that all perfect complexes are compact in
Dqcoh(X) for anO-compact derived stackX, as well as all perfect complexes onX×SpecA

for any A ∈ cdga≤0
k .

The main property of (strictly) O-compact derived stacks is the existence, for any
other derived stack F , of a morphism of graded mixed complexes (over k)

κF,X : DR(F ×X) −→ DR(F )⊗k C(X,OX),

30



functorial in F , where C(X,OX) is considered pure of weight 0 with trivial mixed structure.
It is defined as follows.

Since X is, by hypothesis, O-compact, the complex C(X,OX) is perfect over k, so
the ∞-endofunctor E 7→ E ⊗k C(X,OX), of the ∞-category of mixed graded complexes,
commutes with ∞-limits. Also, by definition, the functor F 7→ DR(F × X) sends ∞-
colimits to ∞-limits. Therefore, the two ∞-functors

DR(−×X), DR(−)⊗k C(X,OX) : dStopk −→ ε− dggrk

send∞-colimits of derived stacks to∞-limits of graded complexes. By left Kan extensions
(see [Lu1] or [To-Ve-1, §1.2]), we see that in order to construct a natural transformation
κ−,X : DR(−×X) −→ DR(−)⊗kC(X,OX), it is enough to construct a natural transfor-
mation between the two∞-functors restricted to the∞-category of derived affine schemes.
By definition, these two ∞-functors, restricted to derived affine schemes are given as fol-
lows

DR(−)⊗k C(X,OX) : dAffop
k ≡ cdga≤0

k −→ ε− dggrk
A 7−→ DR(A)⊗k C(X,OX)

DR(−×X) : dAffop
k ≡ cdga≤0

k −→ ε− dggrk
A 7−→ H(X,DR(A⊗k OX)),

where DR(A⊗k OX) is the stack of mixed graded complexes on X sending SpecB → X
to DR(A⊗k B), and H(X,DR(A⊗k OX)) denotes its global sections.

For any two objects B,C ∈ cdga≤0, we have a natural equivalence of graded mixed
complexes (Kunneth formula)

DR(B)⊗k DR(C) ' DR(B ⊗k C),

induced by the identification

LB⊗kC ' (LB ⊗k C)⊕ (B ⊗k LC).

Therefore, the∞-functor DR(−×X) sends A to H(X,DR(A)⊗kDR(OX)). We consider
the natural projection on the component of weight zero (with trivial mixed structure)
DR(OX) −→ OX , and obtain a morphism DR(− × X) −→ H(X,DR(−) ⊗k OX) '
C(X,DR(−) ⊗k OX). As X is O-compact, C(X,−) commutes with colimits of quasi-
coherent sheaves, and thus the natural morphism

DR(−)⊗k C(X,OX) −→ C(X,DR(−)⊗k OX)

is an equivalence.
We thus have defined a natural transformation of ∞-functors

DR(−×X) −→ C(X,DR(−)⊗k OX) ' DR(−)⊗k C(X,OX),

which defines our morphism of graded mixted complexes

κF,X : DR(F ×X) −→ DR(F )⊗k C(X,OX).
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We can apply the∞-functor NCw to the morphism above, in order to get a morphism
of graded complexes

κF,X : NCw(F ×X) −→ NCw(DR(F )⊗k C(X,OX)).

As C(X,OX) is a perfect complex over k, the morphism

NCw(DR(F ))⊗k C(X,OX) −→ NCw(DR(F )⊗k C(X,OX))

is an equivalence of graded complexes.
To summarized, we have defined for any derived stack F and any O-compact derived

stack X, a commutative square of graded complexes

NCw(F ×X)
κF,X //

��

NCw(F )⊗k C(X,OX)

��
DR(F ×X) κF,X

// DR(F )⊗k C(X,OX),

where the vertical morphisms are the projections NCw −→ DR.
We keep the hypothesis that X is an O-compact derived stack, and we assume further

that, for some integer d ∈ Z, we are given a map

η : C(X,OX) −→ k[d],

in the derived category D(k). Then, for any derived stack F we have a natural morphism
of graded complexes

NCw(F ×X)
κF,X // NCw(F )⊗k C(X,OX)

id⊗η // NCw(F )[d].

This morphism, well defined in the homotopy category of graded complexes Ho(dggrk ), is
called the integration along η.

Definition 2.3 Let F and X be derived stacks, with X O-compact, and let
η : C(X,OX) −→ k[d] be a morphism in D(k), for some integer d. The integration
map along η is the morphism∫

η
: NCw(F ×X)

κF,X // NCw(F )⊗k C(X,OX)
id⊗η // NCw(F )[d]

constructed above.

We also have a similar morphism on the level of de Rham complexes∫
η

: DR(F ×X)
κF,X // DR⊗k C(X,OX)

id⊗η // DR(F )[d],

in a way that we have a commutative diagram of mixed graded complexes

NCw(F ×X)

��

∫
η // NCw(F )[d]

��
DR(F ×X)

∫
η // DR(F )[d].
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Let X be an O-compact derived stack. The complex C(X,OX) possesses a natural
structure of a (commutative) dg-algebra over k, so comes equipped with a cup-product
morphism

C(X,OX)⊗k C(X,OX) −→ C(X,OX).

In particular, any morphism η : C(X,OX) −→ k[−d] provides a morphism

− ∩ η : C(X,OX)⊗ C(X,OX)
∩ // C(X,OX)

η // k[−d].

If we denote by C(X,OX)∨ := RHom(C(X,OX), k) the derived dual of C(X,OX), the
morphism above defines an adjoint morphism

− ∩ η : C(X,OX) −→ C(X,OX)∨[−d].

More generally, if E is a perfect complex on X, of dual E∨ := RHom(E,OX), the natural
pairing

C(X,E)⊗k C(X,E∨) −→ C(X,OX),

composed with η induces a morphism

− ∩ η : C(X,E) −→ C(X,E∨)∨[−d].

If moreover A ∈ cdga≤0
k , the same is true for the derived A-scheme XA := X×SpecA.

The morphism η induces a morphism

ηA = η ⊗ idA : C(XA,OXA) ' C(X,OX)⊗k A −→ k[−d]⊗k A,

and for any perfect complex E on XA, the morphism ηA induces a natural morphism

− ∩ ηA : C(XA, E) −→ C(XA, E
∨)∨[−d],

where now C(XA, E
∨)∨ is the derived A-dual of C(XA, E

∨).

Definition 2.4 Let X be an O-compact derived stack and d ∈ Z. An O-orientation of
degree d on X consists of a morphism of complexes

[X] : C(X,OX) −→ k[−d],

such that for any A ∈ cdga≤0
k and any perfect complex E on XA := X × SpecA, the

morphism
− ∩ [X]A : C(XA, E) −→ C(XA, E

∨)∨[−d]

is a quasi-isomorphism of A-dg-modules.

We are now ready to state and prove our main existence statement.

Theorem 2.5 Let F be a derived Artin stack equipped with an n-shifted symplectic form
ω ∈ Symp(F, n). Let X be an O-compact derived stack equipped with an O-orientation
[X] : C(X,OX) −→ k[−d] of degree d. Assume that the derived mapping stack Map(X,F )
is itself a derived Artin stack locally of finite presentation over k. Then, Map(X,F )
carries a canonical (n− d)-shifted symplectic structure.
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Proof. We let π : X ×Map(X,F ) −→ F be the evaluation morphism. We have
ω ∈ Symp(F, n) ⊂ A2,cl(F, n), and this corresponds to a morphism of graded complexes

ω : k[2− n](2) −→ NCw(F ).

Using the integration along the orientation [X] of definition 2.3, we consider the compo-
sition∫

[X]
ω : k[2− n](2)

ω // NCw(F )
π∗ // NCw(X ×Map(X,F ))

∫
[X] // NCw(Map(X,F ))[−d].

This is, by definition, a closed 2-form of degree (n− d) on Map(X,F ). i.e.∫
[X]

ω ∈ A2,cl(Map(X,F ), n− d).

It remains to show that this 2-form is non-degenerate. For this, we have to determine
the underlying 2-form of degree (n− d). It is given by the following morphism

k[2− n](2)
ω // DR(F )

π∗ // DR(X ×Map(X,F ))

∫
[X] // DR(Map(X,F ))[−d].

If we unravel the definition of
∫

[X], we see that this 2-form can be described as follows.

First of all, let x : SpecA −→Map(X,F ) be an A-point corresponding to a morphism
of derived stacks

f : X × SpecA −→ F.

If TF denotes the tangent complex of F , the tangent complex of Map(X,F ) at the point
x is given by

TxMap(X,F ) ' C(XA, f
∗(TF )).

The 2-form ω defines a non-degenerate pairing of perfect complexes on F

TF ∧ TF −→ OF [n],

which induces an alternate pairing of A-dg-modules

C(XA, f
∗(TF )) ∧ C(XA, f

∗(TF )) −→ C(XA,OXA [n]).

We can compose with the orientation [XA] to get a pairing of perfect A-dg-modules.

C(X × SpecA, f∗(TF )) ∧ C(X × SpecA, f∗(TF )) −→ A[n− d].

By inspection, this pairing is the one induced by the 2-form underlying
∫

[X] η. The fact
that it is non-degenerate then follows from the definition of an orientation and the fact
that ω is non-degenerate. 2

Here follow some examples of derived stacks X satisfying the condition of the theorem 2.5.
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• Mapping stacks with Betti source. Let M be a compact, connected, and ori-
ented topological manifold. We consider X = S(M) its simplicial set of singular
simplices, as a constant derived stack. The category Dqcoh(X) is then naturally
equivalent to Dloc(M,k), the full sub-category of the derived category of sheaves of
k-modules on the space M , consisting of objects with locally constant cohomology
sheaves. In particular, we have functorial isomorphisms

H∗(X,E) ' H∗(M, E),

for any E ∈ Dqcoh(X) whose corresponding complex of k-modules on M is de-
noted by E . Perfect complexes on X correspond to objects in Dloc(M,k) locally
quasi-isomorphic to bounded complexes of constant sheaves of projective modules
of finite type. This implies that X is O-compact. Moreover, the orientation on M
determines a well defined fundamental class [M ] ∈ Hd(M,k), and thus a morphism
[X] : C(M,k) −→ k[−d], where d = dim M . Poincaré duality on M implies that
[X] is an O-orientation on X. Finally, M has the homotopy type of a finite CW
complex, so X is a finite homotopy type. This implies that for any derived Artin
stack F , Map(X,F ) is a finite homotopy limit of copies of F , and thus is itself a
derived Artin stack.

• Mapping stacks with de Rham source. Let Y be a smooth and proper Deligne-
Mumford stack over Spec k, with connected geometric fibers. Recall from [HAG-II,
Corollary 2.2.6.15] that we can define a derived stack YDR, such that

YDR(A) := Y (π0(A)red),

for any A ∈ cdga≤0
k . We set X := YDR. We have a natural equivalence between

Dqcoh(X) and the derived category ofDY/k-modules with quasi-coherent cohomology.
Moreover, perfect complexes on X correspond to complexes of DY/k-modules whose
underlying quasi-coherent complexes are perfect over Y . In particular, if E is a
perfect complex on X, corresponding to a complex of DY/k-modules E perfect over
Y , then we have

H∗(X,E) ' H∗DR(Y/k, E).

It follows easily that X is O-compact. Moreover, the choice of a fundamental class
in de Rham cohomology [Y ] ∈ H2d

DR(Y/k,O) (where d is the relative dimension of Y
over Spec k) determines a morphism

[X] : C(X,O) −→ k[−2d]

which, by Poincaré duality in de Rham cohomology, is an O-orientation on X.

Finally, the fact that Map(X,F ) is a derived Artin stack when F is one, can be
deduced from Lurie’s version of Artin representability criterion. We will be mainly
interested in the special case where F is either a smooth quasi-projective variety, or
a classifying stack BG, or the derived stack of perfect complexes RPerf . In all these
specific situations, the fact that Map(X,F ) is a derived Artin stack locally of finite
presentation can be found in [HAG-II, §2.2.6.3] and [Si2].
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• Mapping stacks with Dolbeault source. The previous example has the following
Dolbeault analog. Let again Y be a smooth and proper Deligne-Mumford stack over
Spec k, with connected geometric fibers. We define YDol by (see [Si2, §2])

YDol := BT̂Y/k −→ Y,

the classifying stack of the formal tangent bundle of Y relative to k. We set X :=
YDol. We know that a quasi-coherent complex E on X consists of a pair (E , φ) where
E is a quasi-coherent complex on Y , and φ is a Higgs field φ on E (i.e. an action of
the OY -algebra SymOY (TY/k)). Under this correspondence, we have

H∗(X,E) ' H∗Dol(Y, E).

This implies that X is O-compact. As above, the choice of a fundamental class in
Hodge cohomology [Y ] ∈ H2d

Dol(Y,O) ' Hd(Y,Ωd
Y/k) determines a morphism

[X] : C(X,O) −→ k[−2d]

which, by Poincaré duality in Dolbeault cohomology, is indeed an O-orientation on
X.

Again, the fact that Map(X,F ) is a derived Artin stack when F is one, can be
deduced from Lurie’s version of Artin representability criterion. We will be mainly
interested in the special case where F is either a smooth quasi-projective variety, or
a classifying stack BG, or the derived stack of perfect complexes RPerf . In all these
specific situations, the fact that Map(X,F ) is a derived Artin stack locally of finite
presentation can be found in [HAG-II, §2.2.6.3] and [Si2].

The Dolbeault and de Rham complexes can also be considered together at the same
time, by taking X := YHod → A1, see [Si1]. More generally, we could take X to be
any nice enough formal groupoid (as in [Si1]).

• Mapping stacks with Calabi-Yau source. Let now X be a smooth and proper
Deligne-Mumford stack over Spec k of relative dimension d, with connected geometric
fibers. We assume that we are given an isomorphism of line bundles

u : ωX/k = ∧dΩ1
X/k ' OX ≡ O.

Considered as a derived stack X, is automatically O-compact. Moreover, the iso-
morphism u, together with the trace map, defines an isomorphism

Hd(X,O)
u // Hd(X,ωX/k)

tr // k.

This isomorphism induces a well defined morphism of complexes

C(X,O) −→ k[−d],

which, by Serre duality, is indeed an O-orientation on X.

As above, the fact that Map(X,F ) is a derived Artin stack when F is one, can be
deduced from Lurie’s version of Artin representability criterion. We will be mainly
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interested in the special case where F is either a smooth quasi-projective variety, or
a classifying stack BG, or the derived stack of perfect complexes RPerf . In all these
specific situations, the fact that Map(X,F ) is a derived Artin stack locally of finite
presentation can be found in [HAG-II, §2.2.6.3] and [To-Va].

We gather the following consequences of Theorem 2.5 and of the examples above, in
the following

Corollary 2.6 Let G be a reductive affine group scheme over Spec k. Let Y be a smooth
and proper Deligne-Mumford stack over Spec k with connected geometric fibers of relative
dimension d. Assume that we have fixed a non-degenerate G-invariant symmetric bilinear
form on g.

1. The choice of a fundamental class [Y ] ∈ H2d
DR(Y,O) determines a canonical 2(1−d)-

shifted symplectic form on the derived stack

RLocDR(Y,G) := Map(YDR, BG)

of flat G-bundles on Y .

2. The choice of a fundamental class [Y ] ∈ H2d
Dol(Y,O) determines a canonical 2(1−d)-

shifted symplectic form on the derived stack

RLocDol(Y,G) := Map(YDol, BG)

of Higgs G-bundles on Y .

3. When it exists, the choice of a trivialization isomorphism ωY/k ' OY , determines a
canonical (2− d)-shifted symplectic form on the derived stack of G-bundles on Y

RBun(Y,G) := Map(Y,BG)

of G-bundles on Y .

4. If M is a compact, orientable topological manifold of dimension d, then a choice of a
fundamental class [M ] ∈ Hd(M,k) determines a canonical (2− d)-shifted symplectic
form on the derived stack

RLoc(M,G) := Map(M,BG)

of local systems of principal G-bundles on M .

In section 3 we will explain how these n-shifted symplectic structures compare with
the well known symplectic structures on certain coarse moduli spaces (e.g. on character
varieties, moduli spaces of stable sheaves on K3-surfaces, etc.).
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2.2 Lagrangian intersections

We will be interested here in the study of derived symplectic structures induced on fiber
products of derived Artin stacks. In order to do this, we first need to introduce the
notion of isotropic and Lagrangian data on a morphism with symplectic target, extend-
ing the usual notions of isotropic and Lagrangian sub-varieties of a smooth symplectic
manifold. We will show (Theorem 2.9) that the fiber product of two morphisms with
Lagrangian structures towards an n-shifted symplectic target is naturally equipped with
an (n − 1)-shifted symplectic structure. In particular, the derived intersection of two
smooth (algebraic) usual Lagrangians in a smooth (algebraic) symplectic manifold carries
a canonically induced (−1)-shifted symplectic structure.

We fix a derived Artin stack F and an n-shifted symplectic form ω ∈ Symp(F, n) on F .
For f : X −→ F a morphism of derived Artin stack, we have the pull-back closed 2-form

f∗(ω) ∈ A2,cl(X,n).

Definition 2.7 An isotropic structure on f (relative to ω) is a path between 0 and f∗(ω)
in the space A2,cl(X,n). The space of isotropic structures on f (relative to ω) is defined
to be the path space

Isot(f, ω) := Path0,f∗(ω)(A2,cl(X,n)).

A Lagrangian structure on the morphism f (with respect to ω) will be an isotropic
structure satisfying some non-degeneracy condition. To introduce this condition, let us
fix an isotropic structure h ∈ Isot(f, ω). We consider the 2-form TF ∧ TF −→ OF [n]
underlying ω, as well as its pull-back on X, f∗(TF )∧ f∗(TF ) −→ OX [n]. By definition, h
gives us a homotopy between 0 and the composite morphism

TX ∧ TX // f∗(TF ) ∧ f∗(TF ) // OX [n].

We let Tf be the relative tangent complex of f , so that we have an exact sequence of
perfect complexes on X

Tf −→ TX −→ f∗(TF ).

The isotropic structure h induces also a homotopy between 0 and the composite morphism

Tf ⊗ TX // TX ∧ TX // f∗(TF ) ∧ f∗(TF ) // OX [n].

As the morphism Tf −→ f∗(TF ) comes itself with a canonical homotopy to 0, by compos-
ing these homotopies, we end up with a loop pointed at 0 in the space
MapLqcoh(X)(Tf ⊗ TX , OX [n]). This loop defines an element in

π1(MapLqcoh(X)(Tf ⊗ TX ,OX [n]), 0) ' [Tf ⊗ TX ,OX [n− 1]].

By adjunction, we get a morphism of perfect complexes on X

Θh : Tf −→ LX [n− 1],

depending on the isotropic structure h.
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Definition 2.8 Let f : X −→ F be a morphism of derived Artin stacks and ω an n-
shifted symplectic form on F . An isotropic structure h on f is a Lagrangian structure on
f (relative to ω) if the induced morphism

Θh : Tf −→ LX [n− 1]

is a quasi-isomorphism of perfect complexes.

The usefulness of Lagrangian structures is shown by the following existence theorem.

Theorem 2.9 Let

Y

g

��
X

f
// F,

be a diagram of derived Artin stacks, ω ∈ Symp(F, n) an n-shifted symplectic form on
F , and h (respectively, k) be a Lagrangian structure on f (respectively, on g). Then, the
derived Artin stack X×hF Y is equipped with a canonical (n−1)-shifted symplectic structure
called the residue of ω, and denoted by R(ω, h, k).

Proof. Let Z := X ×hF Y . The two morphisms

p : Z // X // F q : Z // Y // F

come equipped with a natural homotopy u : p ⇒ q. This u gives rise to a homotopy
between the induced morphisms on the spaces of closed 2-forms

u∗ : p∗ ⇒ q∗ : A2,cl(X,n) −→ A2,cl(Z, n).

Moreover, h (respectively, k) defines a path in the space A2,cl(Z, n)

h : 0 ; p∗(ω)

(respectively,
k : 0 ; q∗(ω). )

By concatenation of h, u∗(ω) and k−1, we get a loop at 0 in the space A2,cl(Z, n), therefore
a well defined element

R(ω, h, k) ∈ π1(A2,cl(Z, n)) ' π0(A2,cl(Z, n− 1)).

It remains to show that this closed 2-form of degree (n−1) is non-degenerate. This follows
from the definition of a Lagrangian structure. To see this, let π := p : Z −→ F be the
natural map6, and

prX : Z −→ X prY : Z −→ Y

6Since we just want to prove that the closed 2-form is non-degenerate, we might equivalently have
chosen to run the argument for π := q, instead of π := p.
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the two projections. By definition we have a commutative diagram in Lqcoh(Z) with exact
rows

TZ
ΘR(ω,h,k)

��

// pr∗X(TX)⊕ pr∗Y (TY ) //

Θh⊕Θk
��

π∗(TF )

Θω
��

LZ [n− 1] // pr∗X(Lf )[n− 1]⊕ pr∗Y (Lg)[n− 1] // π∗(LF [n]).

The morphism Θω is a quasi-isomorphism because ω is non-degenerate. The morphism
Θh ⊕ Θk is also a quasi-isomorphism because of the definition of Lagrangian structures.
This implies that ΘR(ω,h,k) is a quasi-isomorphism, and thus that R(ω, h, k) is an (n− 1)-
shifted symplectic structure. 2

An immediate corollary is the following statement.

Corollary 2.10 Let X be a smooth Deligne-Mumford stack over Spec k, ω a symplectic
form on X, and L,L′ ⊂ X two smooth closed Lagrangian substacks (in the sense that ω
vanishes on L and L′, and both L and L′ are of middle dimension). Then, the derived
fiber product L×hX L′ carries a canonical (−1)-shifted symplectic structure.

Proof. It follows by the following simple observations. As X, L and L′ are smooth,
the spaces of closed 2-forms of degree 0 on X, L and L′ are (homotopically) discrete (and

equal to H0(X,Ω2,cl
X/k), H

0(L,Ω2,cl
L/k), H

0(L′,Ω2,cl
L′/k)). From this it follows that the spaces

of isotropic and Lagrangian structures on the two inclusions

L ↪→ X L′ ↪→ X

are either empty or (equivalent to) a point. As L and L′ are Lagrangian substacks it is
easy to see that these spaces are non-empty and hence both equivalent to a point. In
particular, there are unique Lagrangian structures on the above two inclusion morphisms,
and thus Theorem 2.9 implies that L ×hX L′ is endowed with a canonical (−1)-shifted
symplectic structure. 2

A particular case of the above corollary is the existence of (−1)-shifted symplectic
forms on derived critical loci of functions on smooth Deligne-Mumford stacks (see also
[Ve] for a more direct local approach).

Corollary 2.11 Let X be a smooth Deligne-Mumford stack over Spec k, and f ∈ O(X)
a global function on X, with differential df : X −→ T ∗X. Then, the derived critical locus
of f , defined as the derived fiber product

RCrit(f) := X ×df,T ∗X,0 X,

of the zero section with the section df inside the total cotangent stack T ∗X, carries a
canonical (−1)-shifted symplectic structure.

Proof. We simply observe that T ∗X carries a canonical symplectic structure and that
X sits inside T ∗X as two Lagrangian substacks, either via the zero section of via the
section df . 2
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2.3 2-shifted symplectic structure on RPerf

We now state our third existence theorem, giving a canonical 2-shifted symplectic struc-
ture on the derived stack of perfect complexes RPerf . This 2-shifted symplectic form will
be constructed using the Chern character of the universal object on RPerf , with values
in negative cyclic homology. We will use the construction in [To-Ve-1], as it is perfectly
suited to our context, but any functorial enough construction of the Chern character could
be used instead.

We recall from [To-Va] the definition of the derived stack RPerf , which was denoted
there by M1. The functor RPerf sends a differential non-positively graded algebra A to
the nerve of the category of perfect (i.e. homotopically finitely presentable, or equivalently,
dualizable in the monoidal model category of A-dg-modules) A-dg-modules which are
cofibrant in the projective model structure of all A-dg-modules. It is a locally geometric
derived stack, that is a union of open substacks which are derived Artin stacks of finite
presentation over Spec k. Everything we said about derived Artin stacks locally of finite
presentation also make sense for RPerf , in particular we can speak about p-forms, closed
p-forms and symplectic structures on RPerf , even though RPerf is not strictly speaking
a derived Artin stack.

On the derived stack RPerf we have the universal perfect complex E ∈ Lparf (RPerf).
The endomorphisms of this perfect complexes define a perfect dg-algebra over RPerf ,
denotes by

A := RHom(E , E) ' E∨ ⊗ E .

The derived loop stack of RPerf

LRPerf := Map(S1,RPerf) −→ RPerf

can be identified with the derived group stack over RPerf of invertible elements in A

LRPerf ' A∗ := GL1(A),

where GL1(A) is the group stack of auto-equivalences of A considered as an A-module.
As A is a perfect dg-algebra over RPerf , we see that A∗ is a derived Artin group stack
over RPerf , and that the corresponding quasi-coherent dg-Lie algebra over RPerf is A
itself, endowed with its natural bracket structure given by the commutator. This implies
that we have a natural quasi-isomorphism of perfect complexes over RPerf

TRPerf ' A[1].

This identification can be used to define a 2-form of degree 2 on RPerf

TRPerf ∧ TRPerf ' Sym2(A)[2] −→ ORPerf [2],

which, by definition, is (the shift by 2 of) the composition

A⊗A mult // A Tr // ORPerf ,

of the multiplication and the trace (or evaluation) morphism

A ' E∨ ⊗ E −→ ORPerf .
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This 2-form is clearly non-degenerate. We will now see that this 2-form of degree 2 on
RPerf is the underlying 2-form of a canonical 2-shifted symplectic structure on RPerf .

We consider two derived stacks

|NC| : dAffop
k −→ S HC− : dAffop

k −→ S,

defined as follows. We have the derived stack in mixed complexes DR (we forget the
extra grading here), on which we can apply the construction NC to get a derived stack in
complexes of k-modules. The derived stack |NC| is obtained by applying the ∞-functor
E 7→ |E| (i.e. the Dold-Kan construction) to turn NC into a derived stack of spaces. In
other words, |NC| sends a commutative k-dg-algebra A to the simplicial set obtained from
the complex NC(DR(A)).

The derived stack HC− sends an affine derived scheme X to O(LX)hS
1
, the space of

S1-homotopy fixed functions on the loop space of X. It is easy to describe this derived
stack algebraically using simplicial commutative algebras. To a commutative k-dg-algebra
A we form A′ the corresponding commutative simplicial k-algebra (see [To-Ve-2]), and
consider S1⊗L

kA
′, which is another simplicial commutative algebra on which the simplicial

group S1 = BZ acts. The space of homotopy fixed point of this action is a model for
HC−(SpecA)

HC−(SpecA) ' (S1 ⊗L
k A
′)hS

1
.

The main theorem of [To-Ve-2] states that these two derived stacks |NC| and HC−

are naturally equivalent (and that there is moreover a unique equivalence respecting the
multiplicative structures). Furthermore, the Chern character construction of [To-Ve-1,
§4.2] produces a morphism of derived stacks Ch : RPerf −→ HC−, and thus, by the
mentioned equivalence, a morphism

Ch : RPerf −→ |NC|.

This is the Chern character of the universal perfect complex, and defines a natural element
in

Ch(E) ∈ π0(Map(RPerf , |NC|)) ' H0(NC(RPerf)).

We can project this element by the projection on the weight 2 piece NC −→ NCw(2) to
get

Ch(E)2 ∈ H0(NCw(RPerf)(2)) ' π0(A2,cl(RPerf , 2)),

which is a closed 2-form of degree 2.

Theorem 2.12 The closed 2-form Ch(E)2 defined above is a 2-shifted symplectic structure
on RPerf .

Proof. The proof consists in identifying the underlying 2-form (of degree 2) of Ch(E)2,
and show that it coincides (up to a factor 1

2) with the 2-form described earlier in this section

A⊗A mult // A Tr // ORPerf .
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This identification can be seen as follows. For a perfect complex E on a derived Artin
stack X, its Chern character Ch(E) has an image in Hodge cohomology

Ch(E) =
∑

Chp(E) ∈ ⊕pHp(X,∧pLX/k),

induced by the natural morphism from negative cyclic homology to Hochschild homology
(i.e. the projection NC → |DR|). These Hodge cohomology classes can be described
using the Atiyah class of E

aE : E −→ E ⊗OX LX/k[1].

We can compose this class with itself to get

aiE : E −→ E ⊗OX (∧iLX/k)[i],

which we write as
aiE : OX −→ E∨ ⊗OX E ⊗OX (∧iLX/k)[i].

Composing with the trace E∨ ⊗OX E −→ OX , we obtain classes in H i(X,∧iLX/k). We
have

Chi(E) =
Tr(aiE)

i!
∈ H i(X,∧iLX/k).

We come back to our specific situation where X = RPerf and E = E is the universal
perfect complex. The shifted cotangent complex LX/k[1] is naturally equivalent to E ⊗OX
E∨, and the Atiyah class

aE : E −→ E ⊗OX E ⊗OX E
∨

is simply the adjoint of the multiplication morphism

E ⊗ A −→ E ,

where A = RHom(E , E) is the endomorphism dg-algebra of E . From this we get the
required formula

Ch2(E) =
1

2
· Tr(mult) ∈ H2(RPerf ,∧2LRPerf ).

2

As a corollary of the last theorem and of theorem 2.5, we have the following statement,
which is an extension of the corollary 2.6 from the case of vector bundles to the case of
perfect complexes.

Corollary 2.13 Let Y be a smooth and proper Deligne-Mumford stack with connected
geometric fibers of relative dimension d.

1. The choice of a fundament class [Y ] ∈ H2d
DR(Y,O) determines a canonical 2(1− d)-

shifted symplectic form on the derived stack of perfect complexes with flat connexions
on Y

RPerfDR(Y ) := Map(YDR,RPerf).
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2. The choice of a fundament class [Y ] ∈ H2d
Dol(Y,O) determines a canonical 2(1− d)-

shifted symplectic form on the derived stack of perfect complexes with Higgs fields

RPerfDol(Y ) := Map(YDol,RPerf).

3. The choice of a trivialization (when it exists) ωY/k ' OY , determines a canonical
2− d-shifted symplectic form on the derived stack of perfect complexes on Y

RPerf(Y ) := Map(Y,RPerf).

4. If M is a compact, orientable topological manifold of dimension d, then a choice of a
fundamental class [M ] ∈ Hd(M,k) determines a canonical (2− d)-shifted symplectic
form on the derived stack of perfect complexes on M

RPerf(M) := Map(M,RPerf).

3 Examples and applications

We present in this last section some examples and consequences of our results.

3.1 0-shifted symplectic structures on moduli of sheaves on curves and
surfaces

We start here by explaining how theorems 2.5 and 2.12 can be used in order to recover
the existence of well known symplectic forms on certain moduli spaces of local systems on
curves, and vector bundles (or more generally of perfect complexes) on K3 and abelian
surfaces.

Local systems on curves. To start with, assume that G is a simple algebraic group
over some field k, and C be a (geometrically connected) smooth and proper curve over k.
We have the derived moduli stacks RLocDR(C,G), RLocDol(C,G) and RLocB(C,G) :=
RLoc(Ctop, G), of local systems of principal G-bundles on C, Higgs G-bundles on C, and
flat G-bundles on the underlying topological space Ctop of C. According to our corollary
2.6, a choice of an orientation of C determines 0-shifted symplectic structures on these
spaces. These spaces contain smooth Deligne-Mumford substacks consisting of simple
objects

LocDR(C,G)s ⊂ RLocDR(C,G) LocDol(C,G)s ⊂ RLocDol(C,G)

LocB(C,G)s ⊂ RLocB(C,G).

These substacks of simple objects are moreover étale gerbes over smooth algebraic varieties,
bounded by the center of G (so they are algebraic varieties as soon as this center is trivial).
Therefore, the restriction of these 0-shifted symplectic forms on these substacks define
symplectic forms on the corresponding smooth algebraic varieties. We recover this way
well known symplectic structures on the coarse moduli space of simple flat G-bundles,
simple Higgs G-bundles, and simple flat G-bundles on Ctop (see e.g. [Go, Je, In-Iw-Sa]).
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It is interesting to note here that our results imply that these symplectic forms existing
on the smooth locus of simple objects have canonical extension to the whole derived
moduli stacks. Another interesting remark is the case of C = P1 is a projective line. The
corresponding coarse moduli of simple objects is just a point, but the derived stacks are
non-trivial. For instance, in the de Rham setting, we have

RLocDR(C,G) ' [(SpecSym(g∨[1]))/G].

This derived stack has already been considered in [La], and according to our results carries
a canonical 0-shifted symplectic form. The tangent complex at the unique closed point is

T ' g[1]⊕ g[−1],

and the 0-shifted symplectic form there is the canonical identification

g[1]⊕ g[−1] ' g∨[1]⊕ g∨[−1]

induced by the isomorphism g ' g∨ given by the data of the (essentially unique) symmet-
ric, non-degenerate, bilinear G-invariant form on g.

Perfect complexes on CY surfaces. As a second example we let S be a Calabi-Yau
surface (either a K3 or an abelian surface) over a field k, equipped with a trivialization
ωS ' OS . We have RPerf(S), the derived moduli stack of perfect complexes on S. Ac-
cording to our corollary 2.13, this derived stack is equipped with a canonical 0-shifted
symplectic form. We let RPerf(S)s ⊂ RPerf(S) be the derived open substack of sim-
ple objects, that is perfect complexes with no negative self extensions and only scalar
multiplication as endomorphisms (see [To-Va]). We denote by Ms

S its truncation

Ms
S := h0(RPerf(S)s).

The (underived) stack Ms
S is a Gm-gerbe over an algebraic space M s

S , locally of finite
presentation over k. It is proven in [In] that M s

S is smooth and comes equipped with
a natural symplectic structure. The existence of a non-degenerate 2-form is easy, but
there are relatively heavy computations in order to prove that this 2-form is closed. We
will explain how this symplectic structure can be deduced from the 0-shifted symplectic
structure on the whole derived stack RPerf(S). First of all, the 0-shifted symplectic
form restricts to a 0-shifted symplectic form on the open RPerf(S)s. We consider the
determinant morphism of [Sch-To-Ve, 3.1]

det : RPerf(S)s −→ RPic(S),

where RPic(S) is the derived Picard stack of S, defined to be MapdStk
(S,BGm). As

explained in [Sch-To-Ve, 4.2] there is a natural projection RPic(S) −→ Spec k[e1], with e1

of degree −1. The choice of a point s ∈ S(k) (assume there is one for simplicity) defines by
pull-back along s : Spec k −→ S, another projection RPic(S) −→ RPic(Spec k) = BGm.
These two projections, pre-composed with the determinant map, defines a morphism of
derived stacks

π : RPerf(S)s −→ Spec k[e1]×BGm.
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It is easy to see that this projection is smooth and representable by an algebraic space.
Thus, its fiber at the natural base point is a smooth algebraic space X, equipped with a
natural morphism

j : X −→ RPerf(S)s.

By definition, X is naturally isomorphic to M s
S , the coarse moduli of the truncation Ms

S

of RPerf(S)s. Finally, the 0-shifted symplectic form on RPerf(S)s can be pulled back to
X by j, and defines a closed 2-form on X. The tangent of X at a point corresponding to
a perfect complex E is Ext1(E,E), and this 2-form is the natural pairing

Ext1(E,E)× Ext1(E,E)
∩ // Ext2(E,E)

tr // Ext2(OS ,OS) ' k ,

and thus is a symplectic form on the smooth algebraic space X, which is the one con-
structed in [In].

Again, the interesting remark here is that this symplectic structure on M s
S is induced

by a 0-shifted symplectic structure on the whole derived stack RPerf(S), which includes
all perfect complexes, and in particular non-simple ones, and even complexes with possibly
non trivial negative self-extensions.

Remark 3.1 As the morphism

π : RPerf(S)s −→ Spec k[e1]×BGm

is smooth with fibers X, it is locally (for the smooth topology) on RPerf(S)s equivalent
to the projection

X × Spec k[e1]×BGm −→ Spec k[e1]×BGm.

To be more precise, we have a commutative diagram of derived stacks, with cartesian
squares

RPerf(S)s
π // Spec k[e1]×BGm

Y

p

OO

// Spec k[e1]

OO

X

i

OO

// Spec k.

OO

Here, Y and X are derived algebraic spaces, respectively smooth over Spec k[e1] and
Spec k. Moreover, X ' h0(Y ) is the truncation of Y , and i : X → Y is the natural closed
embedding. Locally for the étale topology, Y is a direct product U × Spec k[e1], where
U is an étale scheme over X. Indeed, any affine scheme Z smooth over Spec k[e1], splits
(uniquely , the space of splitting is connected) as a product Z0 × Spec k[e1] where Z0 is
a smooth affine variety. Finally, the morphism p is a Gm-torsor and thus is smooth and
surjective. This shows that locally for the smooth topology on RPerf(S)s, the morphism
π is a direct product.
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Remark 3.2 It is also possible to show that this local decomposition of the previous
remark 3.1 is compatible with the symplectic structure. More precisely, locally RPerf(S)s

looks like X × Spec k[e1]× BGm. Now, the derived stack Spec k[e1]× BGm possesses a
natural 0-shifted symplectic structure, for instance by using our corollary 2.6 and the fact
that we have a natural identification

Spec k[e1]×BGm ' RMap(S2, BGm).

The projection π is a symplectic morphism, and the local decomposition

RPerf(S)s ' X × Spec k[e1]×BGm

becomes a decomposition of symplectic derived stacks.

3.2 (−1)-shifted symplectic structures and symmetric obstruction theo-
ries

We compare here our notion of (−1)-shifted symplectic structure with the notion of a
symmetric obstruction theory of [Be-Fa, Def. 1.10]. Recall first from [Sch-To-Ve, §1]
that for any derived stack F which is locally of finite presentation, its truncation h0(F )
comes equipped with a natural perfect obstruction theory. It is constructed by considering
the inclusion j : h0(F ) −→ F , and by noticing that the induced morphism of cotangent
complexes

j∗ : j∗(LF/k) −→ Lh0(F )

satisfies the property to be a perfect obstruction theory. In practice all obstruction theories
arise this way.

Assume now that F comes equipped with a (−1)-shifted symplectic structure ω. We
write the underlying 2-form of degree −1 as a morphism of perfect complexes

ω : TF ∧ TF −→ OF [−1].

We use the fact that ω is non-degenerate and the equivalence

Θω : TF ' LF [−1],

to get another morphism

Sym2(LF )[−2] ' (LF [−1]) ∧ (LF [−1]) ' TF ∧ TF −→ OF [−1],

which we rewrite as
Sym2(LF ) −→ OF [1].

This pairing stays non-degenerate, and thus defines a equivalence

LF ' TF [1].

When restricted to the truncation h0(F ) ↪→ F , we find that the perfect obstruction theory
E := j∗(LF/k), comes equipped with a natural equivalence

E ' E∨[1],

which is symmetric (i.e. comes from a morphism Sym2(E) → O[1]). It is, by definition
[Be-Fa, Def. 1.10], a symmetric obstruction theory on h0(F ).
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Remark 3.3 As explained in [Sch-To-Ve], the datum of the truncation h0(F ) together
with the obstruction theory j∗(LF ) is strictly weaker than the datum of the derived stack
F . In the same way, the passage from a (−1)-shifted symplectic form on F to a symmetric
obstruction theory on h0(F ) looses important informations. The most important one is
that the corresponding symmetric obstruction theory only depends on the underlying 2-
form of ω, and thus does not see that ω comes with the important further closedness
datum.
An interesting related question is whether a symmetric obstruction theory that is induced
by a (−1)-shifted symplectic form, is étale locally isomorphic to the canonical one given
by lagrangian intersections on a smooth scheme, or even to that existing on the derived
zero locus of a closed 1-form on a smooth scheme - instead of just an almost-closed 1-
form, as in the case of a general symmetric obstruction theory, see [Be, §3.4]. Some very
interesting formal and local (for the analytic topology) results in this direction have been
proven in [Br-Bu-Du-Jo] slightly after the appearance of the first preprint version of this
paper, and efficiently applied by the same authors to show the existence of local potentials
for Donaldson-Thomas theory on Calabi-Yau 3-folds.

Three main sources of examples of (−1)-shifted symplectic structures, and thus of
symmetric obstruction theories, are the following.

Sheaves on CY 3-folds. Let X be a smooth and proper CY manifold of dimension
3, together with a trivialization ωX/k ' OX . It is a O-compact object endowed with an
O-orientation of dimension 3, so our theorem 2.5 can be applied. We find in particu-
lar that the derived stack RPerf(X) of perfect complexes on X is canonically endowed
with a (−1)-shifted symplectic structure. This defines a symmetric obstruction theory
on the truncation h0(RPerf(X)). The (−1)-shifted symplectic structure also induces a
(−1)-shifted symplectic structure on the derived stack of perfect complexes with fixed
determinant. For this, we use the determinant map of [Sch-To-Ve]

det : RPerf(X) −→ RPic(X),

and consider the fiber at a given global point L ∈ Pic(X), corresponding to a line bundle
on X

RPerf(X)L := det−1({L}).

The (−1)-shifted symplectic form on RPerf(X) can be pulled-back to a closed 2-form on
RPerf(X)L using the natural morphism RPerf(X)L −→ RPerf(X). It is easy to see that
this closed 2-form stays non-degenerate, and thus defines a (−1)-shifted symplectic struc-
ture on RPerf(X)L. Finally, restricting to simple objects, we get a quasi-smooth derived
stack RPerf(X)sL, endowed with a (−1)-shifted symplectic structure. On the truncation
h0(RPerf(X)sL) we thus find a perfect symmetric obstruction theory of amplitude [−1, 0].

We could also consider similar examples, like RLoc(M,G) - for M an oriented com-
pact 3-dimension topological manifold, and G a reductive group scheme over k - or
RPerf(M) := RMap(M,RPerf).

Maps from elliptic curves to a symplectic target. The second source of examples of
(−1)-shifted symplectic structures is by considering maps from an elliptic curve towards
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a symplectic smooth target. Let E be a fixed elliptic curve endowed with a trivialization
ωE/k ' OE , and (X,ω) a smooth symplectic variety over k (for instance X can be T ∗Z
for some smooth Z, with its canonical symplectic form. This example is of fundamental
interests in elliptic cohomology, see [Co-Gw]). We let F := RMap(E,X), which by our
theorem 2.5 is endowed with a canonical (−1)-shifted symplectic structure. The derived
stack F is a derived algebraic space, and in fact a quasi-projective derived scheme if X
is itself quasi-projective. It is moreover quasi-smooth, as its tangent at a given point
f : E → X is the Zariski cohomology complex C∗(E, f∗(TX)). We thus have a quasi-
smooth derived algebraic space (or even scheme), endowed with a (−1)-shifted symplectic
structure. It gives rise to a symmetric perfect obstruction theory of amplitude [−1, 0] on
the truncation h0(F ). Once again, the existence of the (−1)-shifted symplectic form is
a stronger statement than the existence of a symmetric obstruction theory. This (−1)-
shifted symplectic structure induces, by passing to the derived formal completion at a
given point, the degree −1 symplectic structure recently considered by Costello in [Co].
As explained in [Co] it can be used to construct a quantization of the moduli F , and for
this the datum of the symmetric obstruction theory is not enough.

Lagrangian intersections. Let (X,ω) be a smooth symplectic scheme over k, with two
smooth Lagrangian subschemes L and L′. Then, the two closed immersions L,L′ ⊂ X
are endowed with a unique Lagrangian structure in the sense of our definition 2.8, and
thus our theorem 2.9 implies that the derived intersection L×hX L′ carries a natural (−1)-
shifted symplectic structure. Again this defines a symmetric perfect obstruction theory of
amplitude [−1, 0] on the truncation, that is on the usual schematic fiber product L×X L′.
The data of the (−1)-shifted symplectic structure is again stronger than the data of the
corresponding symmetric obstruction theory, as for instance it can be used to quantize
the intersection L×X L′. We will come back to the quantization construction in a future
work.
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[Sch-To-Ve] T. Schürg, B. Toën, G. Vezzosi, Derived algebraic geometry, determinants of
perfect complexes, and applications to obstruction theories for maps and complexes,
Journal für die reine und angewandte Mathematik, to appear.

[Si1] C. Simpson, Algebraic aspects of higher nonabelian Hodge theory, Motives, polylog-
arithms and Hodge theory, Part II (Irvine, CA, 1998), 417-604, Int. Press Lect. Ser.,
3, II, Int. Press, Somerville, MA, 2002.

[Si2] C. Simpson, Geometricity of the Hodge filtration on the∞8-stack of perfect complexes
over XDR, Mosc. Math. J. 9 (2009), no. 3, 665-721.

[Si3] C. Simpson, Homotopy theory of higher categories, to appear in Cambrigde Univer-
sity Press.

51



[Ta-Ts] D. Tamarkin, B. Tsygan, Noncommutative differential calculus, homotopy BV
algebras and formality conjectures, Methods Funct. Anal. Topology 6 (2000), no. 2,
85-100.
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