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I. INTRODUCTION

ENTIFICATION of robot dynamic parameters is a field that has been vastly studied in the past but for which several opened and fundamental questions still exist. One of them concerns the positive definiteness of the identified robot inertia matrix for some configurations.

Each robot link can be defined by a set of 10 inertial parameters plus 4 terms characterizing the drive chain of the joint. This set of parameters is called the standard inertial parameters [START_REF] Khalil | Modeling, identification and control of robots[END_REF]. The base parameters set is defined to be a minimum set of inertial parameters that are used for calculating the joint torque uniquely; they constitute also the dynamic identifiable parameters [START_REF] Mayeda | Base parameters of manipulator dynamic models[END_REF]- [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF]. Some base parameters may almost be too small or are poorly excited to have a significant contribution to the joint torque/force. They are poorly identified and cancelled to keep a set of essential parameters M. Gautier is with the Institut de Recherche en Communication et Cybernétique de Nantes (IRCCyN) and with the LUNAM, University of Nantes, 44321 Nantes, France (phone: +33(0)240376960; fax: +33(0)240376930; e-mail: Maxime.Gautier@irccyn.ec-nantes.fr).
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of a simplified dynamic model without loss of joint torque/force model accuracy [START_REF] Pham | Essential parameters of robots[END_REF].

The authors of [START_REF] Yoshida | When is the set of base-parameter values physically impossible?[END_REF] noted that some sets of values of the base or essential parameters for a manipulator are physically impossible due to measurement noise: they determine the inertia matrix not to be positive definite for some configurations of the manipulator. Therefore it has been proposed in [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF] a method for finding a set of virtual standard inertial parameters that can be related to the base or essential parameters and that guaranty the positive definiteness of the inertia matrix. However, this method is based on a trial and error algorithm and is quite complicated and time-consuming.

In our previous work [START_REF] Venture | Optimal estimation of human body segments using real-time visual feedback[END_REF] and in other works [START_REF] Ayusawa | Identification of standard inertial parameters for large-dof robots considering physical consistency[END_REF]- [START_REF] Nakanishi | Operational space control: a theoretical and empirical comparison[END_REF] the approaches are based on adding constraints to the system so that the inertia matrices are positive definite, the masses are positive and eventually that the center of mass are located into a convex hull that represents the segment. Because of the added constraints, these results are not optimal because the identified standard parameters do not minimize the norm of the model error.

All the previous works do not use a priori values of the standard parameters. However, it is now easy for robot manufacturers to get good a priori values of the robot dynamic standard parameters from their CAD data. This information should be taken as an advantage for finding a set of updated standard parameters as close as possible to the a priori parameter values, and corresponding to the actual robot parameters, taking into account the actual behaviour and the actual data of each robot which are not included in the nominal CAD data.

A method to calibrate the standard parameters with respect to a priori known values using the Singular Value Decomposition (SVD) of the regressor matrix is proposed. The obtained solution minimizes the residual norm error, thus it is one of the possible best solutions. It is also shown that if the a priori value of the parameters is physically consistent and well chosen, and if the measurement errors are small enough, then the calibrated parameters are physically consistent.

The result of the study on physical consistency of the set of base-parameter values gives an important piece of information to the knowledge on dynamics. It can be used for analyzing the integrity of a robot after a shock with its environment. Also it can be used to check if a set of base-parameter values, which are obtained through parameter identification or other methods, is physically consistent or not and to modify the set of base parameter values that was judged to be physically impossible. Hence, the result directly contributes to model-based control or motion simulation for
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II. THE INVERSE DYNAMIC IDENTIFICATION MODEL

The inverse dynamic model (IDM) of a rigid robot composed of n moving links calculates the (n×1) motor torque vector τ IDM , as a function of the generalized coordinates and their derivatives. It can be obtained from the Newton-Euler or the Lagrange equations [START_REF] Khalil | Modeling, identification and control of robots[END_REF], [START_REF] Featherstone | Dynamics[END_REF]. It is given by the following relation:

= ( ) + ( , )

idm τ M q q N q q  
(1) where q , q  and q  are respectively the (n×1) vectors of generalized joint positions, velocities and accelerations, ( ) M q is the (n×n) robot inertia matrix, and ( , )

N q q  is the (n×1) vector of centrifugal, Coriolis, gravitational and friction forces/torques. It is known that the dynamic model of any manipulator with n actuators can be linearly written in term of a (n×1) vector of standard parameters χ st [START_REF] Khalil | Modeling, identification and control of robots[END_REF], [START_REF] Gautier | Identification of robots dynamics[END_REF], [START_REF] Hollerbach | Model Identification[END_REF]:
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(2) where: st IDM is the (n×n st ) jacobian matrix of idm τ , with respect to the (n st ×1) vector χ st of the standard parameters given by 1 2

...

T T T n T st st st st        
 . For rigid robots, there are 14 standard parameters by link and joint. For the joint and link j, these parameters can be regrouped into the (14×1) vector j st  [START_REF] Khalil | Modeling, identification and control of robots[END_REF]:
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where: XX j , XY j , XZ j , YY j , YZ j , ZZ j are the 6 components of the inertia matrix of link j at the origin of frame j.

MX j , MY j , MZ j are the 3 components of the first moment of link j, M j is the mass of link j, Ia j is a total inertia moment for rotor and gears of actuator j. Fv j , Fs j are the viscous and Coulomb friction coefficients of the transmission chain, respectively, Because of perturbations due to measurement noise and modelling errors, the actual force/torque τ differs from τ idm by an error, e, such that:

( )

idm st st e IDM q,q,q e          (4 
) where τ is calculated with the drive chain relations:
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)
v τ is the (n×n) matrix of the actual motor current references of the current amplifiers ( j v  corresponds to actuator j) and g τ is the (n×1) vector of the joint drive gains ( j g  corresponds to actuator j) that is given by a priori manufacturer's data or identified [START_REF] Corke | In situ measurement of robot motor electrical constants[END_REF] [START_REF] Gautier | Global Identification of Drive Gains Parameters of Robots Using a Known Payload[END_REF]. Equation (4) represents the Inverse Dynamic Identification Model (IDIM).

III. WEIGHTED LEAST SQUARES IDENTIFICATION OF ESSENTIAL BASE PARAMETERS WITH QR FACTORIZATION (IDIM-WLS)

The general identification problem after sampling and low-pass filtering (4) can be written as follows:

    a st st a Y W (6)
Where, for r samples in total:

-Y is the (r×1) sampled vector of motor torques τ, -a st W is the (r×n st ) sampled regressor IDM st , -ρ a is the (r×1) of errors due to measurement noise and modelling error. The identification problem consists in finding χ st that minimizes the square norm of the error ρ a :

st st 2 2 a a s t s t min min Y W       (7) 
Usually, the vector of standard parameters is not calculated directly when solving the linear problem [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF] as there is a structural rank deficiency of a st W because the n st columns of the regressor IDM st are not independent: rank( a st W ) = n b such that n b ≤ n st . Consequently, there exists infinity of solutions for χ st from which only some are physically consistent: the mass positive, the inertia matrix positive definite, and the center of mass located inside the segment. It is thus common to identify the base parameters χ b which are the minimal set of parameters that calculates the motor torque with the IDIM (2) and which can be identified using linear least squares .They are obtained by linear combinations of the standard parameters which depend on the choice of the independent columns in a st W and which can be determined for the serial robots using simple closed-form rules [START_REF] Mayeda | Base parameters of manipulator dynamic models[END_REF], or by numerical method based on the QR or SVD decomposition [3]- [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF]. This leads to a non-unique minimal model, and a non-unique set of base parameters such that (6) becomes:

a a b b b b Ŷ W W Y         (8) 
with a rather small difference between  and  a in [START_REF] Yoshida | When is the set of base-parameter values physically impossible?[END_REF] and where 

     T a a r C E ρ ρ I (9)
E is the expectation operator and I r , (r×r) identity matrix. An unbiased estimation of the standard deviation   is:

2 2 ( )      a b b b Ŷ -W
r n [START_REF] Diaz-Rodriguez | A methodology for dynamic parameters identification of 3-dof parallel robots in terms of relevant parameters[END_REF] The covariance matrix of the estimation error is given by:

T 2 1 [( )( ) ] ( )         aT a ˆˆb b b b b b Ĉ E χ χ χ χ W W (11)      i 2 ˆĈ (i,i ) is the i th diagonal coefficient of  ˆĈ The relative standard deviation   ri %
is given by:

     ri i ˆˆi % / χ for i χ ≠ 0 (i-th coefficient of b χ ) (12)
The ordinary LS can be improved by taking into account different standard deviations on joint j equations errors [START_REF] Gautier | Dynamic identification of robots with power model[END_REF].

Data in Y and a b W of ( 8) are sorted and weighted with the inverse of the standard deviation of the error calculated from ordinary LS solution of the equations of joint j [START_REF] Gautier | Dynamic identification of robots with power model[END_REF].

Some small parameters remain poorly identifiable because they have no significant contribution in the joint torques. These parameters have no significant estimations and can be cancelled in order to simplify the dynamic model. Thus parameters such that the relative standard deviation   ri % is too high are cancelled to keep a set of essential parameters χ e of a simplified dynamic model with a good accuracy [START_REF] Pham | Essential parameters of robots[END_REF]. The essential parameters are calculated using an iterative procedure starting from the base parameters estimation. At each step the base parameter which has the largest relative standard deviation is cancelled.

A new LS parameter estimation of the simplified model is carried out with new relative error standard deviation 

IV. STANDARD ESSENTIAL CONSISTENT PARAMETERS IDENTIFICATION WITH SVD FACTORIZATION

A. Standard parameters identification with SVD

A solution of a linear over-determined system, such as the identification model [START_REF] Yoshida | When is the set of base-parameter values physically impossible?[END_REF], can be obtained using the SVD. As the standard identification model is considered, from the n st columns of a st W a distinction is made between the n b independent columns and the others. Thus the following decomposition is obtained:

  a st a a a W V U ,               b s t b st b b a 1 n, n n a a n n ,n 2 0 0 ( 13 
)
where: In the ideal case, i.e. without noise and perturbations on the data, a st W must be rank-deficient and  a 2 a zero matrix. However, with measured data, this is not the case but the values of  a 2 are very small and can be set to zero. The system (13) thus becomes
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)
where st W is the rank deficient matrix closest to a st W with respect to the Frobenius norm and is given by [START_REF] Gautier | Global Identification of Drive Gains Parameters of Robots Using a Known Payload[END_REF]:

     st b n a a a T st st k k k k n 1 W W s U V , (15) 
with s k is the k-th value on the diagonal of  a and a k U ( a k V , resp.) the k-th column of U a (V a , resp.) corresponding to s k , and The rank-deficient system closest to the actual one (8) is thus described by:

     st st n n 1 2 V R ,V V ,V is a matrix composed of two sub- matrices 1 V and 2 V of respective dimensions n st ×n b and n st ×(n st -n b )      st r n 1 2 U R ,U U ,U is a matrix composed of two sub-
    st st Y W ,    a ( 16 
)
with a rather small difference between  and  a .

By multiplying Y and st W χ, respectively, on the left by T U , the following relations are obtained:
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Let us define vector Z as:
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)
(18) can be rewritten as:

          st b 1 1 T st st ( n n ),1 Z U W 0 . ( 20 
)
As the product by T U keeps the norm unchanged, the identification problem ( 16) can be expressed by the following equations: Ẑ to this problem is given by:

              2 2 2 T T st st st st 2 2 2 1 1 1 2 Y W U Y U W G Z G Z G . ( 21 
)
      1 1 T 1 1 1 1 1 Ẑ G U Y, ( 22 
)
and the family of all optimal solution Ẑ is, for any

Z 2          1 2 Ẑ Ẑ Z ( 23 
)
Thus, an optimal solution  st ˆ to (21) is given by: 24) into (21), it is shown that, for any optimal solution, the minimal norm of the error  is:

      1 T st 11 1 22 V Z V U Y V Z (24) Introducing (
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)
Finally, the optimal solution  opt st ˆ that minimizes both norms of  st ˆ and  at the same time is obtained for

Z 2 = 0, i.e.:     opt 1 T st 1 1 1 ˆV U Y ( 26 
)
where

 1 T 1 1 1 V U is the Moore-Penrose pseudo-inverse of st W .

B. Standard parameters closest to a priori values

The minimal norm solution obtained by ( 26) is optimal in term of the error norm (25). However the consistency of the parameters, with respect to its physical meaning is not guaranteed. Here a new approach is proposed that takes benefits of the a priori values  ref st of the inertial parameters calculated with CAD software from the manufacturers' data.

Let us denote as Y ref the joint torques estimated with the a priori values  ref st :

  ref ref st st Y W (27) Substracting (27) to (6), it comes              ref ref st st st st st Y Y W ( ) Y W (28)
where the error  is the same as that of the system (6).

Similarly to (26), the optimal solution  opt st ˆ that minimizes the norm of  st ˆ is given by: 

     opt 1 T st 1 1 1 ˆV U Y (29) which leads to        opt ref 1 T ref st st 1 1 1 ˆV U (Y Y ). ( 30 

C. Standard essential and consistent parameters

The previous method does not take into account the fact that some parameters may almost be null and thus have no contribution to the system dynamics; or that some parameters can be identified with a very small confidence and have no significant values that lead to the loss of consistency of some standard parameters.

To overcome this problem, let us take advantage of the correct knowledge that it is possible to have on the identified essential parameters denoted as  e ˆ(  e ˆ is composed of the n e values of the essential parameters  e calculated with the IDIM-WLS method proposed in section III and of (n st -n e ) zeros). Weighting the matrix st W in (6) by this vector leads to the new system: W , corresponding to the parameters with small influence on the joint torques in (31), and the image of the transformation which allows to identify the essential parameters which are significant wrt their confidence interval, adding a small increase of the norm error of .

             e e
Thus, solving the system (31) with SVD and applying the previous method for the calibration of the standard parameters, the optimal solution becomes: 

        opt ref
0 W V U 0 0 , (33) 
where: W ranked in decreasing order. In the next section, the identification of the standard parameters of an industrial Stäubli TX-40 robot is presented. It will be shown that the best results are obtained when using the calibration that takes into account the essential parameters.
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V. CASE STUDY

A. Description of the TX 40

The Stäubli TX-40 robot (Fig. 1) has a serial structure with six rotational joints. Its kinematics is defined using the modified Denavit and Hartenberg notation (MDH) [START_REF] Khalil | A new geometric notation for open and closed loop robots[END_REF]. In this notation, the link j fixed frame is defined such that the j z axis is taken along joint j axis and the j x axis is along the common normal between j z and j 1 z  (Fig. 1). The geometric parameters defining the robot frames are given in Table I. The parameter 0 j   , means that joint j is rotational, j  and j d parameterize the angle and distance between j 1 z  and j z along j 1 x  , respectively, whereas j  and j r parameterize the angle and distance between j 1 x  and j x along j z , respectively. Since all the joints are rotational then j  is the position variable q j of joint j, except for joint two (

2 2 q /2     ), joint three ( 3 3 q /2    
) and joint 6

( 2 6 q     ), as shown in Table 1.

The TX-40 robot is characterized by a coupling between the joints 5 and 6 such that:

                   5 5 5 6 6 6 6 qr N 45 0 q qr N 32 N 32 q     ,                            5 5 6 6 c r 5 6 6 c r N N 0 N (34)
where j qr  is the velocity of the rotor of motor j, j q  is the velocity of joint j, N j is the transmission gain ratio of axis j, τ cj is the motor torque of joint j, taking into account the coupling effect on the motor side, τ rj is the electro-magnetic torque of motor j. The coupling between joints 5 and 6 also adds the effect of the inertia of rotor Ia q Fvm q Fcm q q q      where τ j already contains the terms   j j j j j j ( Ia q Fv q Fc sign( q ))   

, for j=5 and 6 respectively, with   Ia N Ja (35) Ja j is the moment of inertia of rotor j. (35) is introduced into (4) to obtain the IDIM

B. Identification results

In this section are presented the experimental results. As it is a calibration procedure, the choice of the a priori value  ref st is crucial. However, in the manufacturer's datasheets, the friction parameters and the drive chain inertia Ia j taking into account the gear box inertias are not given.

These values are extracted from a first identification of the dynamic parameters using the IDIM-WLS procedure described section III. They are given in bold font in Table II, with the a priori parameter values  ref st . The TX40 has n st =86 standard parameters, n b =61 base parameters and n e =31 essential parameters.

The standard parameters are calibrated using the approach presented above. The path of the trajectory used for identification consists of 11 intermediate points. The trajectory between the points is carried out using the trapezoidal acceleration interpolation function of the controller CS8C of the Stäubli robots. In Table II, the parameters  0b st ˆ are those computed using the matrix st W [START_REF] Gautier | Global Identification of Drive Gains Parameters of Robots Using a Known Payload[END_REF] defined with the n b =61 independent columns of the base parameters and the parameters  0e st ˆ are those calculated using the matrix e st W (31) defined with the n e =31 independent columns of the essential parameters. The difference with respect to the a priori value is also shown. It can be clearly observed that the difference between the a priori parameters and those estimated using the essential parameters is smaller. In Fig. 2 are also plotted the joint torques calculated with (5) from the measure of the current reference and with the IDIM (2) computed with the parameters  0e st ˆ. It should be mentioned that another trajectory is used for plotting these figures, i.e. the identification results are cross-validated. It can be observed that the joint torques are well estimated.

Let us now verify the physical consistency of the identified parameters. The identified parameters are computed at the joint centre position of each link. They are physically consistent if the identified mass is positive and the inertia matrix written at the center of mass (CoM) of each link is positive definite. We use the Huygens theorem matrix transformation formula to compute the inertia matrix J j at the CoM, from the identified parameters according to:

                               2 2 j j j j j j j j j 2 2 j j j j j j j j j j j 2 2 j j j j j j j j j XX XY XZ MY MZ MX MY MX MZ 1 J XY Y Y Y Z M X MY M X M Z M YM Z M XZ YZ ZZ MX MZ MY MZ MX MY (36)
The positive definitiveness of J j can be tested either with eigenvalue decomposition, with the Sylvester theorem, or a Cholesky decomposition. Each method is equivalent; however, as noted in [START_REF] Yoshida | Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters[END_REF], the Sylvester theorem allows us to find conditions that the parameters must verify to obtain the positive definitiveness. In the case of a failed test, these conditions make it possible to adjust the parameters to obtain a positive definite matrix by modifying the inertial parameters that are in the null-space of the regressor, i.e. the non-base parameters.

The parameters are not independent, thus modifying one parameter results in the modification of all the non-base parameters and manipulations need precautions.

The Cholesky decomposition presents the advantage that a tolerance ε ≤ 0 can be set in the algorithm and allows for taking into account noise and measurement error, which in the case of experimental data is of importance. It is similar to setting the tolerance that defines a numerical rank in the SVD or QR decomposition. The tolerance is chosen according to the error and the level of noise in the collected data. Results on the positiveness of inertia matrices using the Cholesky decomposition are shown in Table III. The parameters obtained with the base parameters  0b st ˆ need a tolerance | ≥ 0.04 to obtain definitive positive matrices for all the links, while the use of essential parameters needs only the zero tolerance. 

VI. CONCLUSION

A new method for computing a set of standard essential and consistent dynamic parameters closest to a priori CAD values, using SVD factorization and LS techniques, was presented. This method was experimentally validated on an industrial Stäubli TX-40 robot and give extremely conclusive results. The positiveness of inertia matrices using the 3,62e-01 3,62e-01 3,62e-01 0,00 0,00 MY 4 -7,24e-03 -7,55e-03 -7,24e-03 0,00 0,00 Fv 1 7,96e+00 7,96e+00 7,93e+00 0,00 0,03 MZ 4 -5,86e-01 -5,86e-01 -5,86e-01 0,00 0,00 Fs 1 6,79e+00 6,81e+00 6,86e+00 0,02 0,07 M 4 3,62e+00 3,62e+00 3,62e+00 0,00 0,00 τ off1 0,00e+00 5,07e-01 5,07e-01 5,07e-01 0,00 0,00 MX 5 0,00e+00 8,24e-03 0,00e+00 0,01 0,00 Fv 2 5,92e+00 5,93e+00 5,92e+00 0,01 0,00 MY 5 -3,06e-03 -1,05e-02 2,39e-03 0,01 0,01 Fs 2 7,38e+00 7,47e+00 7,42e+00 0,09 0,04 MZ 5 -1,02e-03 -1,02e-03 -1,02e-03 0,00 0,00 τ off2 0,00e+00 8,60e-01 0,00e+00 0,86 0,00 M 5 1,02e+00 1,02e+00 1,02e+00 0,00 0,00 XX [START_REF] Gautier | Numerical calculation of the base inertial parameters[END_REF] 2,23e-02 1,30e-01 6,91e-02 0,11 0,05 Ia 5 3,61e-02 3,22e-02 3,46e-02 0,00 0,00 XY 3 -1,95e-04 -6,97e-03 -1,95e-04 0,01 0,00 Fv 5 1,24e+00 1,24e+00 1,24e+00 0,00 0,00 XZ 3 -1,16e-02 2,20e-03 -1,16e-02 0,01 0,00 Fs 5 2,62e+00 2,60e+00 2,62e+00 0,02 0,00 YY [START_REF] Gautier | Numerical calculation of the base inertial parameters[END_REF] 2,24e-02 2,24e-02 2,24e-02 0,00 0,00 τ off5 0,00e+00 1,05e-01 0,00e+00 0,11 0,00 YZ 3 -2,22e-03 4,53e-03 -2,22e-03 0,01 0,00 XX 6 3,53e-04 4,71e-04 3,53e-04 0,00 0,00 ZZ [START_REF] Gautier | Numerical calculation of the base inertial parameters[END_REF] 4,41e-03 1,08e-01 4,20e-02 0,10 0,04 XY 6 0,00e+00 8,46e-04 0,00e+00 0,00 0,00 MX [START_REF] Gautier | Numerical calculation of the base inertial parameters[END_REF] 3,26e-02 8,41e-02 3,08e-02 0,05 0,00 XZ 6 0,00e+00 3,53e-04 0,00e+00 0,00 0,00 MY [START_REF] Gautier | Numerical calculation of the base inertial parameters[END_REF] 2,44e-02 -6,31e-01 -1,15e-01 0,66 0,14 YY 6 3,53e-04 3,53e-04 3,53e-04 0,00 0,00 MZ [START_REF] Gautier | Numerical calculation of the base inertial parameters[END_REF] 2,65e-01 2,65e-01 2,65e-01 0,00 0,00 YZ 6 0,00e+00 -4,41e-04 0,00e+00 0,00 0,00 M 3 4,07e+00 4,07e+00 4,07e+00 0,00 0,00 ZZ 6 0,00e+00 7,04e-04 0,00e+00 0,00 0,00 Ia 3 8,29e-02 1,02e-01 9,14e-02 0,02 0,01 MX 6 0,00e+00 1,07e-03 0,00e+00 0,00 0,00 Fv 3 1,98e+00 1,99e+00 2,01e+00 0,01 0,03 MY 6 0,00e+00 -3,71e-03 0,00e+00 0,00 0,00 Fs 3 6,43e+00 6,41e+00 6,37e+00 0,02 0,06 MZ 6 8,40e-03 8,40e-03 8,40e-03 0,00 0,00 τ off3 0,00e+00 4,48e-01 0,00e+00 0,45 0,00 M 6 2,00e-01 2,00e-01 2,00e-01 0,00 0,00 XX [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF] 1,09e-01 5,60e-03 1,09e-01 0,10 0,00 Ia 6 1,14e-02 1,10e-02 1,12e-02 0,00 0,00 XY [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF] 2,90e-05 -3,66e-03 2,90e-05 0,00 0,00 Fv 6 6,94e-01 6,40e-01 6,37e-01 0,05 0,06 XZ [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF] 1,35e-03 -2,60e-03 1,35e-03 0,00 0,00 Fs 6 0,00e+00 4,20e-01 4,08e-01 0,42 0,41 YY [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF] 1,08e-01 1,08e-01 1,08e-01 0,00 0,00 τ off6 0,00e+00 Cholesky decomposition have shown that the standard parameters identified on the space spanned by the n e columns of e st W corresponding to the essential parameters and closest to a priori consistent values, are consistent for all the links with a zero Cholesky tolerance. This is a strong result, which means that the essential parameters, which have significant identified values with respect to their small standard deviation (depending on measurement and modelling errors), are consistent because they lead to identify a set of standard essential consistent parameters. The base parameters which are not well identified are inconsistent because they lead to inconsistent standard parameters.

W

  is the pseudo-inverse of a b W and  b ˆis the least squares (LS) solution of (8) which is computed using the QR factorization of a matrix and ρ a is a zero-mean additive independent Gaussian noise, with a covariance matrix C  , such that:

  where  r is a ratio ideally chosen between 10 and 30 depending on the level of perturbation in Y and a st W .

submatrices a 1 U and a 2 U

 12 of respective dimensions r×n b and r×(n st -n b ) matrix composed of the singular values of W st sorted in decreasing order;  a is decomposed into two submatrices  a 1 and  a 2 of respective dimensions n b ×n b and (n st -n b )×(n st -n b ).

matrices 1 U and 2 U

 2 of respective dimensions r×n b and r×(n st -n b ).

Fig. 1 .

 1 Fig. 1. Link frames of the TX-40 robot

Fig. 2 .

 2 Fig.2. Motor torques (joint side units) estimated from the measure of the current reference (red) and with IDIM (blue) of the TX-40.

  )

	 opt st ˆ minimizes the norm of given in (16) and the norm
	of    ref st s t	at the same time.  opt st ˆ	is the optimal standard
	solution closest to a consistent solution  ref st , then it is the
	best optimal standard solution that can keep the physical
	consistency of  ref st	if the minimal norm of    ref st s t	is
	small and if the measurement errors are small.

TABLE I GEOMETRIC

 I PARAMETERS OF THE TX-40 ROBOT WITH THE PAYLOAD j

  of respective dimensions n st ×n e and n st ×(n st -n e )

	V R	,V	1 e V ,V 2 e	is a matrix composed of two
	submatrices 1e V and 2e
	 r n st U R ,U  e	e	  U ,U 1 e	2 e	 	is a matrix composed of two
	submatrices 1e U and 2e U of respective dimensions r×n e and
	r×(n st -n e )			
		1e	  e e n n R	is a diagonal matrix composed of the singular
	values of e st			

V

  [START_REF] Yoshida | When is the set of base-parameter values physically impossible?[END_REF] and new viscous and Coulomb friction parameters Fvm 6 and Fcm 6 , to both τ c5 and τ c6 .

		It is possible to write:					
		5 c	   5	6 6 Ia q 		6 6 Fvm q 		6 Fcm	sign( ) 6 q  and	
		6 c	   6	6 5		6 5		6		sign( + ) sign( )  5 6 6	

TABLE II IDENTIFIED

 II STANDARD DYNAMIC PARAMETERS OF THE TX-40.

	Param.	 ref st	 0b st ˆ	 0e st ˆ	e bi	e ei	Param.	 ref st	 0b st ˆ	 0e st ˆ	e bi	e ei
	ZZ 1	3,92e-02 1,24e+00	3,15e-01	1,20	0,28	MX 4	1,45e-02 -3,26e-02 -1,27e-02	0,05	0,03
	Ia 1											
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