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Abstract

Parallel robots have proved they can have better per-
formances than serial ones in term of rigidity and
payload-to-weight ratio. Nevertheless their workspace
is largely reduced by the presence of singularities. In
particular, the Type 2 singularities (parallel singulari-
ties) separate the workspace in different aspects, cor-
responding to one (or more) robot assembly modes.
In order to enlarge the workspace size, it has been
proved that a mechanism can cross the singularity loci
by using an optimal motion planning. However, if the
trajectory is not robust to modeling errors, the robot
can stop in the singularity and stay blocked.

Therefore, the objective of this paper is to show new
general procedure that allows the exit of a parallel ma-
nipulator from a Type 2 singularity. Two strategies
are presented. The first one proposes the computa-
tion of an optimal trajectory that makes it possible
for the robot to exit the singularity. This trajectory
must respect a criterion that ensures the consistency
of the robot dynamic model all along the singularity
loci. The second trajectory consists in declutching one
of the robot actuator in order to change the kinematic
and dynamic behavior of the mechanism so that no
singularity exists anymore. Theoretical works are il-

∗Address all correspondence to this author.

lustrated, discussed and analysed through simulations
achieved on a planar five-bar mechanism.

1 Introduction
Parallel manipulators have many advantages in terms
of acceleration capacities and payload-to-weight ra-
tio, but one of their main drawbacks concerns the
presence of singularities [1, 2, 3, 4, 5] which divide
the workspace into different aspects, each aspect cor-
responding to one (or more) assembly modes [6]. The
physical interpretation of a singularity in kinemat-
ics refers to the parallel manipulators configurations
in which either the manipulator loses the ability to
move in some directions, or its platform gains instan-
taneously some unconstrained motions.

In [2], three different types of singularities are de-
scribed:

• Type 1 singularities are configurations where the
platform loses a degree of freedom; the Type 1
singularities are configurations where the end-
effector reaches the limits of the workspace,

• Type 2 singularities are configurations where an
uncontrollable motion of the platform appears;
the Type 2 singularities have much more com-
plex loci, which divides the workspace in differ-
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ent aspects, resulting in a reduction of the ma-
nipulator’s workspace; in general, in the neigh-
borhood of such singularities, the reaction in
passive and active joints considerably increase,
thus preventing the manipulator to cross them,

• Type 3 singularities are configurations where
both Type 1 and Type 2 singular configurations
appear at the same time.

Moreover, in addition of these first works, other
types of singularities, such as the constraint singular-
ities [5], have been studied. For a global overview of
the singularity problem, the reader is referred to [3].
However, the present paper focus only on Type 2 sin-
gularities as they are probably the most constraining
singularities a parallel manipulator can meet.

In order to increase the workspace size, largely re-
duced by Type 2 singularity, several approaches have
been envisaged in the literature. The most usual one
is the design of parallel robots without singularities.
Many works have been proposed in this direction,
using optimal design approaches [7, 8] or even the
creation of decoupled mechanisms without any sin-
gularity [9, 10]. However, except in the case of de-
coupled robot that have a lack of stiffness, the design
of robots in which only a portion of the workspace is
free of singularity is generally envisaged.

Another solution was to use redundancy [11, 12,
13]. However, this solution is costly and increase the
control complexity. To avoid this problem, it has
been proposed in [4] to use mechanisms with variable
actuation modes to increase the size of the workspace.
These mechanisms allow, without the addition of any
supplementary actuators, to change the way they are
actuated, via the use of clutches. This low-cost so-
lution is attractive, however, the change in the actu-
ation mode must be done when the manipulator is
stopped, thus increasing the time for doing the re-
quested trajectory.

A last solution is to create mechanisms with singu-
larities inside the workspace, but to plan trajectories
that allow the manipulators to go from one assembly
mode to another. Two types of approaches have been
developed in this direction:

1. the non singular assembly mode changing [14,

15]: by encircling cusp points, it has been
demonstrated that the robot assembly modes
can be changed; however, the computation of
the cusp point loci is still a challenge in kine-
matics and such solution requires high mathe-
matical skills. Moreover, it does not guaranty
that the manipulator will be able to reach the
whole workspace aspects,

2. the singular assembly mode changing [16, 17, 18]:
using the manipulator inertial properties, it has
been demonstrated that it was possible to cross
a Type 2 singularity without any considerable
increase in the joint reactions and input torques;
in [16], the physical condition for crossing a Type
2 singularity has been demonstrated.

The last approach is promising. However, if
the trajectory for crossing the singularity is poorly
planned (because of problems of robustness to model-
ing errors, for example), there is a risk that the mech-
anism can stop on the singularity and stay blocked
inside. If such case appears, some methodologies for
exiting the singularities must be found. Therefore the
present paper aims at defining two strategies for exit-
ing a Type 2 singularity if the manipulator is stopped
inside.

2 Dynamic modelling of paral-
lel mechanisms

2.1 Lagrangian formalism
Let us consider a parallel manipulator composed of
m links, n degrees of freedom (dof ) and driven by n
actuators. In general, for such mechanism, the La-
grangian L of the system is expressed as a function
of both the actuator and platform coordinates, i.e.

L= L(q, q̇,x,v) (1)

where

• q = [q1, q2, ..., qn]T and q̇ = [q̇1, q̇2, ..., q̇n]T repre-
sent respectively the vector of active joints vari-
ables and active joints velocities,
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• x = [x,y,z,φ,ψ,θ]T and v =
[
ẋ, ẏ, ż, φ̇, ψ̇, θ̇

]T
are the end-effector pose parameters and their
derivatives with respect to time, respectively. x,
y and z represent the position of the platform
controlled point and φ, ψ and θ the orienta-
tion parameters of the platform about three axes
aφ,aψ and aθ.

The Lagrangian dynamic formulation for the con-
sidered parallel manipulator can be thus expressed as
[19],

τ = d

dt

(
∂L

∂q̇

)
− ∂L
∂q +BTλ (2)

where
• τ is the vector of the input efforts,

• λ is the vector of the Lagrange multipliers, whose
expression can be computed using

ATλ= d

dt

(
∂L

∂v

)
− ∂L
∂x = wp (3)

in which
• A and B are two matrices deduced from the

kinematic model, such that Av = Bq̇ [6],

• wp is the wrench applied to the platform by the
legs and external forces [20].

Then, by substituting (3) into (2), and assuming
that the matrix A is regular, one can obtain [19]:

τ = wb+JT 0wp, in which wb = d

dt

(
∂L

∂q̇

)
− ∂L
∂q

(4)
where
• 0wp is the expression of the wrench wp in the

base frame, i.e. 0wp = Dwp with D the matrix
relating the platform twist t (expressed in the
base frame) to the vector v by t = Dv [6],

• J = 0A−1B is the Jacobian matrix between the
platform twist t and q̇, with 0A is the expression
of the matrix A in the base frame, i.e. 0A =
AD−1.

Thus, by analyzing (4), it can be deduced that if
matrix 0A is singular, the dynamic model (4) cannot
be computed. As a consequence, the next part deals
with the conditions of singularity for matrix 0A.

2.2 Parallel mechanism’s singularities
As presented in the introduction, the authors of [2]
present three different types of singularities that can
be obtained through the analysis of the kinematic
model:

0At = Bq̇ (5)

Type 1 singularities occur when the mechanism
is in a position such as the kinematic matrix B be-
comes rank deficient. In such configurations, the
mechanism loses the ability to move in one given di-
rection.

Type 2 singularities occur when the kinematic
matrix 0A becomes rank deficient. The Type 2 singu-
larities divides the workspace in different aspects, re-
sulting in a reduction of the manipulator’s workspace.
Moreover, in the presence of such singularities, the
robot may also not be able to resist to an external
wrench applied on the platform and the reaction in
joints grows to infinity.

Type 3 singularities are configurations where
both Type 1 and Type 2 singular configurations ap-
pear at the same time. They are discarded in the
following of the paper as they appear if both Types
1 and 2 singularity exist.

In the next section, it is explained how to pass
through a Type 2 singularity without making the dy-
namic model (4) degenerating, thus keeping the joint
reactions in the parallel manipulator finite.

2.3 Condition for passing through a
Type 2 singularity

In [16], it has been proved that a parallel mecha-
nism can cross a Type 2 singularity without making
the dynamic model (4) degenerating if and only if
the trajectory respects a particular criterion at the
singular point. Indeed, on a Type 2 singularity, the
columns of 0A are linearly dependent, i.e. there exist
a vector ts such that:

0Ats = 0⇔ ts
T 0AT = 0 (6)

The vector ts represents the twist of the uncontrol-
lable motion of the platform in the singularity locus
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[6]. Thus, multiplying (3) by tTs leads to :

tTs 0ATλ= 0⇒ tTs 0wp = 0 (7)

As a result, if the desired manipulator motion
doesn’t guaranty the creation of a wrench wp that
respects the condition (7), the dynamic model is de-
generated and the manipulator desired input efforts
must grow to infinity to produce the desired plat-
form motion. Physically, this condition means that
the parallel manipulator can cross the Type 2 singu-
larity if and only if the wrench 0wp exerted by the
legs and external efforts on the platform is reciprocal
to the twist ts of the uncontrollable motion in the
Type 2 singularity. Based on this observation, it has
been proved in [16] that it is possible to plan a trajec-
tory that crosses a Type 2 singularity as long as the
criterion (7) is respected on the singularity. It should
be finally mentioned that, for one given set of robot
inertial parameters, this condition depends only on
the input joint and platform coordinates, velocities
and accelerations.

3 Methodologies for exiting a
singularity

If any parallel manipulator user wants to cross a Type
2 singularity by applying the criterion (7), it should
be aware that if the trajectory is poorly planned (be-
cause of problems of robustness to modeling errors,
for example), the mechanism can stop on the sin-
gularity and stay blocked inside. If such case ap-
pears, some methodologies for exiting the singulari-
ties must be found. This part aims at defining two
strategies for getting out of Type 2 singularities. The
first one consists in generating an optimal motion for
the mechanism in order to follow an exit trajectory
that guaranties the input efforts continuity all along
the path. The second solution proposed relies on de-
clutching one of the motor in order to change the
mechanism’s dynamical behaviour.

O
x

y

x
s

Exit trajectory

Zone of bad
conditioning

Figure 1: A PLANAR 5R MECHANISM BLOCKED
ON A TYPE 2 SINGULARITY

3.1 First solution: generation of an
optimal motion

The main idea of this solution can be explained as fol-
lows. Let us assume that the mechanism is stopped
on the singularity locus at a point of coordinate xs
(as the 5R mechanism presented in Fig. 1). To exit
the singularity, the mechanism must generate a tra-
jectory that:

• is tangent to the singularity locus at point xs
as, when stopped, it cannot generate a motion
ortogonal to the singularity locus,

• is C2 continuous to ensure the input effort con-
tinuity all along the path,

• respects the criterion (7) at point xs.

However, the mechanism being stopped into the
singularity, i.e. its velocity being null when starting
the motion at xs, if there is no external wrench ap-
plied such as the gravity field, this trajectory may fail
exiting the robot from the singularity as it may have
not enough energy to compensate the friction and lo-
cal mechanical instability effects (due to the robot
loss of stiffness) around the singularity point. As a
result, in order to acquire enough energy, it is worth
moving the robot inside the singularity loci during a
certain amount of time before exiting the singularity.
Thus, the trajectory can be cut into two parts:

1. a first trajectory that makes the robot platform
move along the singularity locus,
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2. a second trajectory that is C2 continuous with
the first one and able to make the robot go away
from the singularity locus.

Obviously, the whole trajectory must guarantee
that the input efforts remain finite during the whole
motion. The way to compute these two different tra-
jectories is detailed in the next sections.

3.1.1 First trajectory: moving along the sin-
gularity locus

Trajectory generation along the singularity

In general, the computation of the singularity loci
in the workspace is not an easy and straightforward
problem [6]. Therefore, it is mostly difficult to get
the symbolic constraint equations for the platform
pose coordinates that impose the robot to stay in
singularity. On the contrary, it is shown below that
it is possible to find some sets of platform velocity
parameters that can guaranty the robot to stay on
the singularity loci.

Differentiating (6) with respect to time, it comes
that:

0Aṫs+ 0Ȧts = 0 (8)
in which, as matrix 0A depends on the variables x
and q only [6],

0Ȧ =
∑
i

(
∂0A
∂xi

ẋi+ ∂0A
∂qi

q̇i

)
(9)

where xi (qi, resp.) is the i-th coordinate of the vec-
tor x (q, resp.). Multiplying the right side of (9) by
ts, it comes:

0Ȧts =
∑
i

(
∂0A
∂xi

tsẋi+ ∂0A
∂qi

tsq̇i
)

= Ad
xv+Ad

q q̇ = Ad
xD−1t+Ad

q q̇
(10)

where the i-th column of Ad
x (Ad

q , resp.) is equal to
∂0A
∂xi

ts (∂
0A
∂qi

ts, resp.).
Introducing (5) into (10) leads to

0Ȧts = Ad
xD−1t+Ad

qB−1 0At

=
(
Ad
xD−1 +Ad

qB−1 0A
)

t

= Axt

(11)

Putting this expression into (8), it comes that

0Aṫs+Axt = 0⇒ t =−A−1
x

0Aṫs = Atṫs (12)

As vectors ts and ṫs are only defined on the sin-
gularity loci, (12) gives the conditions such that the
robot stays in singularity. If the condition (12) is not
verified for at least one value of the vector ṫs, the
manipulator could potentially exit the singularity.

As a result, to move the robot on the singularity,
two conditions must be achieved:

• (12) for obtaining the kinematic constraints such
that the robot can stay in singularity,

• (7) for obtaining the dynamic constraints that
guarantee the dynamic model to be not degen-
erated.

Introducing (12) into (7) leads to the obtention of
a nonlinear differential equation of the second order
that must be solved for computing the robot displace-
ment on the singularity loci.

Computation of the input efforts

Even if the criterion (7) is respected, it is still prob-
lematic to compute the input efforts when the robot
is in the singularity. Having a look at (3), if p denotes
the rank of the matrix A in singularity (p < n), it
appears that only p equations are linearly dependent.
Thus, there is an infinity of possible sets for the val-
ues of the n Lagrange multipliers λ that satisfies the
equation (3). Physically speaking, this means that
the robot is locally over-constrained in the singular-
ity. As a result, several approaches could be chosen to
compute the values of the Lagrange multipliers such
as the use of the pseudo-inverse of the matrix A (as it
was done in the case of actuation redundant parallel
robots [21]) or setting (n−p) Lagrange multipliers to
a given constant value. This last approach will be
used in the following of the paper.
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3.1.2 Second trajectory: exiting the singu-
larity locus

Trajectory generation for exiting the singular-
ity

Once the mechanism has acquired enough energy, the
second trajectory that allows the exit from the sin-
gularity loci must be followed. This trajectory must
be C2 continuous with the first one in order to avoid
any torque discontinuity (Fig. 1). Several types of
C2 curves can thus be used, such as Lamé curves [22],
clothoids [23, 24] or also S-curves [25]. In the follow-
ing of the paper, clothoids are used. The way to link
the clothoids to the trajectory defined in the section
3 is not detailed here. For more informations the
reader is referred to [26].

One could wonder how to choose the aspect of the
workspace in which the robot must go after exiting
the singularity? Indeed, as on the singularity loci,
one platform dof is not constrained, the robot is lo-
cally under-actuated. As a result, it seems impossible
to plan a trajectory that is opposed to the free dy-
namics of this unconstrained dof. To know what is
the best assembly mode to reach, the natural direc-
tion of motion of the mechanism free of actuation
forces must be defined at the exit point. This can be
done in simulation by declutching all actuators at the
exit point after the motion along the singularity locus
and by using the direct dynamic model that express
the mechanism acceleration as a function of the in-
put efforts (that are null in this case) to compute the
robot displacement [19]. The mechanism will spon-
taneously move to one of the workspace aspects that
will be the one to reach with the exit trajectory.

Computation of the input efforts

Theoretically, the matrix 0A is not invertible only
on the Type 2 singularity locus. However when the
mechanism is very close to a singular position, the
conditioning of the matrix 0A is very high (Fig. 1).
The dynamic model is therefore still degenerated in
a area around the singularity locus. Inside this zone,
it is irrelevant to use the numerical invert of 0A to
compute the input efforts. The best way to do is
to consider that the robot is still in singularity in

this area and to compute the input efforts using the
methods presented in the Section 3.1.1.

When the robot exits this zone, i.e. when the con-
ditioning of the matrix 0A becomes acceptable, the
input efforts can be computed using (2) and (3). In
the following of the paper, the value of the condition-
ing of the matrix 0A is said acceptable if it is equal
or inferior to 100. Obviously, this value is arbitrary,
but it will be shown in the next section that it leads
to correct results.

3.1.3 Discussion on the amount of energy
necessary for exiting the singularity

It has been explained above that the change between
the two trajectories must be achieved when the mech-
anism has acquired enough energy to exit the singu-
larity. So, when does this appear and how to have
the corresponding information? This point is still an
open question for the moment, however, one possible
answer is to consider the energy consumpted by the
actuators for compensating the friction in the passive
joints and the energy of the moving robot platform
and passive links. If the amount of the robot plat-
form and passive links energy is large enough (e.g. 5
times larger) with respect to the amount of energy for
compensating the dissipative terms, thus the change
on the trajectory can be done. This point must be
deeply analyzed in our future work.

3.2 Second solution: declutch one of
the actuators

A second solution for exiting the singularity is to
change the robot dynamics by changing its actuation
mode, e.g. by declutching one of the actuators from
the rest of the robot. As a consequence, the paral-
lel mechanism becomes underactuated, which com-
pletely changes its singular configurations and dy-
namic properties.

Without loss of generality, let us assume that the
input effort of the actuator n is vanished, i.e. the last
component of vector τ of (2) is set to 0. Rewritting
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(2), it comes that:
τ1
...

τn−1
0

=


wb1

...
wbn−1
wbn

+


b1
...

bn−1
bn

λ,wp =


a1
...

an−1
an

λ
(13)

where τi is the i-th component of the vector τ , wbi

the i-th component of the vector wb, λi is the i-th
component of the vector λ, ai the i-th row of the
matrix AT and bi the i-th row of the matrix BT .
Rearranging these equations, τ1

...
τn−1

=

 wb1
...

wbn−1

+

 b1
...

bn−1

λ (14)

[
wp

−wbn

]
=


a1
...

an−1
an
bn

λ= A∗λ (15)

in which the matrix A∗ is now invertible and can be
used to compute the Lagrange multipliers in the sin-
gularity loci. Obviously, the expression (15) must be
used on the singularity only (and also in a small zone
around, as explained in the Section 3.1.2). As soon
as the robot is nomore on the singularity, matrix A
becomes regular and (13) can be used as it. How-
ever, as one actuator is declutched and as the robot
is under-actuated, the direct dynamic model must be
used for computing the robot displacement and being
sure that there is no link collision during the motion
[19]. In order to avoid this problem, the best way to
proceed is to give a small impulse of motion to only
one of the actuators and to stop it quite quickly in
order to avoid a too large platform displacement.

3.3 Discussion
The two proposed solutions have advantages and
drawbacks. In the first solution, the mechanism is
fully controlled during its whole motion while in the
second one, as one actuator is declutched, there is

A

B

C (x,y)

D

E
O x

y
q

2
q

1

ψ
1

L
1

a

L
4

L
3L

2

ψ
2

Figure 2: PLANAR 5R PARALLEL MECHANISM
DESCRIPTION

a risk that the robot falls down under the applica-
tion of external efforts such as the gravity. However,
the first solution requires larger computational skills
and needs to define two special types of trajectories
whereas the second one seems simpler in terms of
computation complexity. Therefore, both solutions
have interests, depending of robots on which they
are applied.

Another question concerns the fact that, in reality,
the mechanism will never be exactly stopped on the
singularity locus. However, it can be decided that,
if the determinant of the matrix A is greater than
a given value, the eigenvector of A corresponding to
the smallest eigenvalue is equal to the twist ts and all
derivations can be achieved using this assumption.

4 Illustrative example
The two methodologies proposed to exit a Type 2
singularity are applied and simulated using the model
of a 5R planar mechanism.

4.1 Description and modelling of the
5R mechanism

The planar 5R parallel mechanism is composed of
two legs connecting the end-effector located at point
C to the base by a revolute joint, as shown in Fig.
2. Each leg is composed of two rigid elements, called
the proximal and distal elements, respectively. The
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A

B

C

D

EO x

y

(a) ψ1 = ψ2

A

B

C

D

E
O x

y

(b) ψ1 = ψ2 +π

Figure 3: TYPE 2 SINGULARITIES OF THE 5R
PLANAR MECHANISM.

proximal element is linked to the base via an actu-
ated revolute joint and to the proximal element via
a passive revolute joint. The two revolute joints con-
necting the legs to the base are actuated (located at
the points A and E on the Fig. 2), which enables the
end-effector located at point C to be positionned in
the plane (Oxy).

The notations used in the following of the paper
are:

• q1 and q2 are the angles of the actuated revolute
joints

• ψ1 and ψ2 are the passive angles of joints located
at points B and D

• Li is the length of the leg i

• x and y are the end-effector’s positions along the
x and y axes, respectively,

• a is the distance between the two actuators.

For the 5R planar mechanism, Type 2 singularities
occur when the two distal elements are parallel [27].
Two different cases may appear, as shown on the Fig.
3, either ψ1 = ψ2 (Fig. 3(a)) or ψ1 = ψ2 + π (Fig.
3(b)).

In the following of the paper, the gravity field is di-
rected along the z-axis. The equations of the dynamic
model for the 5R mechanisms have been described in
[16], and the vectors and matrices necessary for com-

A

B
C

D
EO

x

y

Type 1 singularity locus
(workspace boundaries)

Type 2 singularity loci

Figure 4: SINGULARITY LOCI FOR THE PLA-
NAR 5R MECHANISM UNDER STUDY.

puting the dynamic model (2) take the form:

wb =
[
mB1L

2
1q̈1 +mC1L1 (ÿ cosq1− ẍsinq1)

mD2L
2
4q̈2 +mC3L4 (ÿ cosq2− ẍsinq2)

]
(16)

wp =
[
mC2 ẍ−mC1L1

(
q̈1 sinq1 + q̇1

2 cosq1
)

mC2 ÿ+mC1L1
(
q̈1 cosq1− q̇1

2 sinq1
)]

+
[
−mC3L4

(
q̈2 sinq2 + q̇2

2 cosq2
)

mC3L4
(
q̈2 cosq2− q̇2

2 sinq2
) ]

(17)

A =
[
x+a/2−L1 cosq1 y−L1 sinq1

x−a/2−L4 cosq2 y−L4 sinq2

]
=
[
a11 a12

a21 a22

]
(18)

B =−
[
L1 (sinq1a11− cosq1a12) 0

0 L4 (sinq2a21− cosq2a22)

]
(19)

with [
q̇1
q̇2

]
= B−1A

[
ẋ
ẏ

]
[
q̈1
q̈2

]
= B−1

(
A
[
ẍ
ÿ

]
+ Ȧ

[
ẋ
ẏ

]
− Ḃ

[
q̇1
q̇2

]) (20)
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and

mC1 =m22r2(1− r2)
mC2 =m22r

2
2 +m32 r

2
3 +m23 +m21

mC3 =m32r3(1− r3)
mB1 =m12r

2
1 +m22(1− r2)2 +m13 +m21

mD2 =m32(1− r3)2 +m42 r
2
4 +m31 +m41

(21)

in which r1 (r2, r3, r4, resp.) is a ratio such that
r1L1 (r2L2, r3L3, r4L4, resp.) is the distance be-
tween the center of masses of the element 1 (2, 3, 4,
resp.) and the point A (B, D, E, resp.), andmj1
mj2
mj3

=

 1 1 1
rj 0 1− rj
r2
jL

2
j 0 (1− rj)2L2

j

−1mj

0
Ij

 , for j= 1, ...,4

(22)
where mj is the mass of the link j and Ij its axial
moment of inertia expressed at the center of masses
(for j = 1, ...,4). For deeper explanations on the way
to obtain these expressions, the reader is referred to
[16].

In the following of the paper, the values of the ge-
ometric and inertial parameters of the robot are set
to:

• L1 = L2 = L3 = L4 = 0.25 m and a=0.2 m

• m1 =m4 = 2.81 kg

• m2 =m3 = 1.41 kg

• I1 = I4 = 0.02 kg.m2

• I2 = I3 = 0.01 kg.m2

4.2 Moving a 5R mechanism out of a
singular position

Let us now assume that the 5R mechanism is blocked
on the singularity, such as represented in Fig. 4.
In this example, the end-effector position is set at:
x0 = [0.13m,0.12m]T . This section presents the cal-
culation of the exit trajectory computed using the
two methodologies.
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0.15

0.16
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0.18

End-effector coordinates (m)

x(t)

y(t)

t (s)
0.2 0.4 0.6 0.8 1 1.2

mechanism moving on the singularity loci

mech. out of 
the sing. loci

Figure 5: EVOLUTION OF THE END EFFEC-
TOR COORDINATES ALONG THE EXIT TRA-
JECTORY

y (m)

x (m)

x
s

x
0

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.05

0.1

0.15

0.2

0.25

0.35

Workspace aspect no 1

Workspace aspect no 2

Figure 6: EXIT TRAJECTORY OF THE 5R
MECHANISM

4.2.1 First Solution: generation of an opti-
mal motion

Moving along the singularity locus

In order to move along the singularity, it has been
shown in Section 3 that the two conditions (7) and
(12) must be respected. For the studied robot,
the vector ts that defined the uncontrollable twist
of the robot in the Type 2 singularity is equal to
[−sinψ,cosψ]T [16], where

ψ = tan−1
(

y−L1 sinq1
x−L1 cosq1−a/2

)
(23)
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Figure 7: TORQUES VALUES ON THE EXIT
TRAJECTORY

Thus, condition (7) can be expressed as:

−sinψ [mC2 ẍ−mC1L1
(
q̈1 sinq1 + q̇1

2 cosq1
)

−mC3L4
(
q̈2 sinq2 + q̇2

2 cosq2
)
]

+cosψ [mC2 ÿ+mC1L1
(
q̈1 cosq1− q̇1

2 sinq1
)

+mC3L4
(
q̈2 cosq2− q̇2

2 sinq2
)
] = 0

(24)

in which the values of q̇i and q̈i are expressed in (20).
Moreover, developping condition (12), it comes

that:[
ẋ
ẏ

]
= A−1

x A
[
ψ̇ cosψ
ψ̇ sinψ

]
where Ax = Ad

x+Ad
q A

(25)

Ad
x =

[
−sinψ cosψ
−sinψ cosψ

]
, Ad

q =−
[
L1 cos(ψ− q1) 0

0 L4 cos(ψ− q2)

]
(26)

Starting with ẋ=−0.0127 m/s and ẏ= 0.0124 m/s,
the non-linear differential equations are solved using
Matlab toolboxes for a trajectory duration of 1 s. The
resulting values are plotted in Fig. 5 for t≤ 1s.

After 1 s of motion, the mechanism is in the posi-
tion xs = [0.11,0.15]T (Fig. 6), with a velocity of 0.26
m/s and an acceleration of 0.44 m/s2. To know in
which workspace aspect the mechanism should exit,

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

τ = 0.3 Ν.m τ = 0 Ν.m
1 2

Figure 8: EXIT TRAJECTORY WITH THE SEC-
OND ACTUATOR DECLUTCHED

its free behavior is simulated, i.e. the actuators are
virtually suppressed in simulation at t = 1s. In the
studied case, the mechanism is spontaneously moving
to workspace aspect numbered as the aspect 1 in the
Fig. 6.

It can be demonstrated that the radius of curvature
of the singularity locus at xs is equal to Rc = 0.137m,
which permits to define the clothoid that can extend
the exit trajectory after t = 1s. The values of the
end-effector position when moving along the clothoid
path are presented in Fig. 5 when t > 1s. The total
trajectory in the workspace is shown in Fig. 6.

Using the methodology presented in section 3.1,
the input torques are computed with a constant value
for the Lagrange multiplier λ2 = λ2(Xr) = 1.72 till
the mechanism is on the singularity (or in the zone
of bad conditionning of matrix A). The input torques
values are shown in Fig. 7. It can be observed that
the input torques are completely finite on the whole
trajectory, even when moving on the singularity loci.

4.2.2 Second Solution: Declutch one of the
actuators

In this section the mechanism is stopped in the same
singular position as in Section 4.2.1.
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The second actuator is declutched and a constant
torque equal to 0.3 N.m is applied on the first ac-
tuator. Using the equations defined in section 3.2,
the mechanism displacement can be computed. Af-
ter 250 ms, the mechanism is out of the area where
the condition number of the matrix A is superior to
100. Figure 8 represents the computed exit trajectory
in the mechanism workspace. It can be shown that
the mechanism exit the singularity in the workspace
aspect number 1. The end effector coordinates along
this trajectory are represented on Figure 9.

It could also be shown that by applying on motor 1
the opposite torque, the mechanism exit the singular-
ity in the other workspace aspect (number 2). Based
on the initial singular position, the input torques can
be adjusted in order to move the mechanism in the
desired assembly mode.

5 Conclusion
In order to increase the workspace size, past works
have proved that a mechanism can cross the singular-
ity loci by using an optimal motion planning. How-
ever, if the trajectory is not robust to modelling er-
rors, the robot can stop in the singularity and stay
blocked. Therefore, this paper proposes a new generic
method dedicated to parallel manipulators in order to
allow the exit from a Type 2 singularity. Based on
the robot dynamic model, two strategies have been
presented. The first one consists in a new algorithm
dedicated to the computation of an optimal trajec-

tory that allows the robot to exit the singularity.
More precisely, the optimal trajectory is computed
according to a specific dynamic criterion that ensures
the consistency of the robot dynamic model all along
the singularity loci. Then, the second trajectory is
characterized by the declutching of one of the robot
actuator in order to change the kinematic and dy-
namic behavior of the mechanism. Therefore, the
under-actuated mechanism is no longer in a singular
position, and its dynamic model is used to move away
from the original mechanism Type 2 singularity.

Theoretical developments are illustrated, discussed
and analysed through advanced simulations achieved
on a planar five-bar mechanism. Simulations results
demonstrate that the proposed algorithms permit to
exit the parallel manipulator from the singularity.
Furthermore, the optimal trajectory planning guar-
antee that the mechanism input torques stay finite
even when the mechanism is moving on a singularity.

Future works will be dedicated to the implemen-
tation of the proposed algorithms on a real five-bar
mechanism that is currently being developed.
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[20] Khalil, W., and Guégan, S., 2002. “A novel solu-
tion for the dynamic modeling of gough-stewart
manipulators”. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automa-
tion (ICRA 2002).

[21] Müller, A., 2005. “Internal preload control of
redundantly actuated parallel manipulators - its
application to backlash avoiding control”. IEEE
Transactions on Robotics, 21(4), pp. 668–677.

[22] Gauthier, J.-F., Angeles, J., and Nokleby, S.,
2008. “Optimization of a test trajectory for scara
systems”. Advances in Robot Kinematics: Anal-
ysis and Design.

12



[23] Kanayama, Y., and Miyake, N., 1985. “Trajec-
tory generation for mobile robots”. In Interna-
tional Symposium on Robotics Research, pp. 333
– 340.

[24] Walton, D., and Meek, D., 2005. “A con-
trolled clothoid spline”. Computers and Graph-
ics, 29(3).

[25] Meckl, P., and Arestides, P., 1998. “Optimized
s-curve motion profiles for minimum residual vi-
bration”. In Proceedings of the American Con-
trol Conference.

[26] Wilde, D., 2009. “Computing clothoid segments
for trajectory generation”. Intelligent Robots and
Systems, IROS 2009, pp. 2440–2445.

[27] Liu, X.-J., Wang, J., and Pritschow, G., 2006.
“Kinematics, singularity and workspace of pla-
nar 5r symmetrical parallel mechanisms”. Mech-
anism and Machine Theory, 44(2), pp. 145–
169.

13


