
HAL Id: hal-00818100
https://hal.science/hal-00818100v1

Submitted on 27 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Design of the IRSBot-2 Based on an Optimized
Test Trajectory

Coralie Germain, Stéphane Caro, Sébastien Briot, Philippe Wenger

To cite this version:
Coralie Germain, Stéphane Caro, Sébastien Briot, Philippe Wenger. Optimal Design of the IRSBot-
2 Based on an Optimized Test Trajectory. ASME 2013 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference IDETC/CIE 2013, Aug 2013,
Portland, Oregon, United States. �10.1115/DETC2013-13037�. �hal-00818100�

https://hal.science/hal-00818100v1
https://hal.archives-ouvertes.fr


the ASME 2013 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2013
August 4-72013Portland, OregonUSA

DETC2013-13037

DRAFT: OPTIMAL DESIGN OF THE IRSBOT-2 BASED ON AN OPTIMIZED TEST
TRAJECTORY
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ABSTRACT

This paper deals with the design optimization of the IRSBot-

2 based on an optimized test trajectory for fast pick and place

operations. The IRSBot-2 is a two degree-of-freedom transla-

tional parallel manipulator dedicated to fast and accurate pick-

and-place operations.

First, an optimization problem is formulated to determine

the optimal test trajectory. This problem aims at finding the path

defined with s-curves and the time trajectory that minimize the

cycle time while the maximum acceleration of the moving plat-

form remains lower than 20 G and the time trajectory functions

are C2 continuous.

Then, two design optimization problems are formulated to

find the optimal design parameters of the IRSBot-2 based on the

previous optimal test trajectory. These two problems are for-

mulated so that they can be solved in cascade. The first prob-

lem aims to define the design parameters that affect the geomet-

ric and kinematic performances of the manipulator. The second

problem is about the determination of the remaining parameters

by considering elastostatic and dynamic performances.

Finally, the optimal design parameters are given and will be

used for the realization of an industrial prototype of the IRSBot-

2.

1 INTRODUCTION

Nowadays parallel robots are used more and more in high-

speed pick-and-place operations. The drive for higher opera-

tional speeds and higher payload-to-weight ratios is shifting their

designs to more lightweight architectures [1, 2]. The fastest

industrial robot, the Quattro by Adept Technologies Inc. [3],

reaches more than 15 G of acceleration, allowing up to four stan-

dard pick-and-place cycles to be performed per second. How-

ever, as for all high-speed mechanisms, vibratory phenomena

appear that worsen accuracy and dynamic performance. This

crucial issue prevents from using high-speed parallel robots for

special tasks that require accuracy, e.g. as assembly of electronic

components.

Several robot architectures for high-speed operations have

been proposed in the past decades [4–8]. Many of them have four

degrees of freedom (DOF): three translations and one rotation

about a fixed axis, i.e., a Schoenflies motion [9]. Some simple

operations need only two translational DOF in order to move a

part from a working area to another. Therefore, several robot

architectures with two translational DOF have been proposed.

Among them, those that have the capacity to fix the orientation of

the platform via the use of a planar parallelogram (also called a Π
joint) are necessary in numerous operations [8,10–12]. However,

most of the proposed architectures are not stiff enough along the

normal to the plane of motion. As a consequence, the IRSBot-2

has been developed and outperforms its 2-DOF counterparts in

terms of stiffness along the normal to the plane of motion [13].

This paper deals with the design optimization of the IRSBot-

2 for fast and accurate pick-and-place operations such as the

assembly of electronic components. The obtained optimal de-

sign will be used for the realization of an industrial prototype of
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the IRSBot-2 in the scope of the French National Project ANR–

2011–BS3–006–01–ARROW1.

The pick-and-place operation is commonly used by indus-

trial robots involved in both primary handling and case pack-

ing [13, 14]. The operation transfers an object from one position

to another one in a workspace [13]. This standardized geometric

path is referred to as the Adept cycle and its most used dimen-

sions are h = 25mm and l = 300mm [3].
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FIGURE 1. PICK-AND-PLACE TRAJECTORY.

The standard adept cycle, shown in Fig. 1, has square

corners that introduce discontinuities in acceleration when tra-

versed. To overcome these discontinuities, extremely high

torques must be generated at the actuators, this, coupled with

the inertial effect of the moving system, give rise to unwanted

vibrations. To remove these discontinuities, the corners must be

smoothed [14, 15]. However, the way to smooth the corner is

not unique and, if the trajectory is not designed correctly, it can

lead to very high vibrations of the end-effector [16] because the

acceleration on the path is much too high.

In this paper, an optimization problem is first formulated to

determine the optimal test trajectory that will be used in the de-

sign optimization process. This problem aims at finding the path

defined with s-curves and the time trajectory that minimize the

cycle time while the maximum acceleration of the moving plat-

form remains lower than 20 G and the time trajectory functions

are C2 continuous.

Then, for simplifying the optimization procedure, two de-

sign optimization problems are formulated to find the optimal

design parameters of the IRSBot-2 based on the previous op-

timal test trajectory. The first problem deals with the geomet-

ric and kinematic performances of the manipulator. The second

problem considers elastostatic, dynamic and elastodynamic per-

formances. Those two problems are expressed in such a way that

they do not have any common decision variable and that the ob-

jective function and constraints of the first problem do not depend

1http://arrow.irccyn.ec-nantes.fr/

on the decision variables of the second problem. As a result, the

two problems can be solved in cascade.

The first design optimization problem aims at finding the

design parameters that minimize the size of the IRSBot-2 in the

plane of motion for a prescribed regular dexterous workspace by

considering only kinematic and kinetostatic constraints. The sec-

ond design optimization problem allows the computation of the

remaining design parameters that minimize the mass in motion

and the size of the manipulator along the normal to the plane of

motion and maximize the first natural frequency of the IRSBot-2

along the optimized test trajectory. This problem is subject to a

set of constraints related to the elastostatic and dynamic perfor-

mance of the robot.

Finally, the optimal design parameters are given and will

be used for the development of an industrial prototype of the

IRSBot-2.

2 ROBOT ARCHITECTURE
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FIGURE 2. CAD MODELING OF THE IRSBOT-2.

The IRSBot-2 is shown in Fig. 2. It is a two degree-of-

freedom translational parallel manipulator dedicated to fast and

accurate pick-and-place operations. The IRSBot-2 is composed

of two identical spatial limbs, each one containing a proximal

module and a distal module.

The kth leg of the IRSBot-2 is described in Fig. 3 and con-

tains one proximal module and one distal module (k = I, II).

Therefore, the IRSBot-2 has one proximal loop and one distal

loop shown in Fig. 2. The former is composed of the two prox-

imal modules and the base. The latter is composed of the two

distal modules and the moving-platform.

On the one hand, the proximal module amounts to a Π joint

of normal y0 and is made up of links ℓ0k, ℓ1k, ℓ2k and ℓ3k. The
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FIGURE 3. KINEMATIC CHAIN OF THE kTH LEG (k = I, II).

proximal module aims to keep planes P0 and Pk parallel. The

base frame (O,x0,y0,z0) is attached to plane P0.
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FIGURE 4. PARAMETERS OF THE kTH LEG (k = I, II).

On the other hand, the distal module is attached to link ℓ3k of

the parallelogram through two revolute joints of axis (Ek, y1 jk)
lying in plane Pk and to link ℓ7k of the moving platform through

two revolute joints of axis (Fk, y1 jk) lying in plane P2 ( j = 1, 2).

Axes y11k and y12k (z21k and z22k, resp.) are symmetrical with

respect to plane (x0Oz0). It should be mentioned that axes y1 jk

and z2 jk are orthogonal and both have to be normal to link ℓ5 jk.

Links ℓ51k and ℓ52k (links ℓ41k and ℓ42k, resp.) are not parallel,

otherwise the distal module would become a spatial parallelo-

gram and the robot architecture would be singular. The distal

module may be decomposed into two identical parts composed

of links ℓ4 jk, ℓ5 jk and ℓ6 jk, which are linked together with revo-

lute joints of axes z2 jk. The robot is assembled in such way that

planes Pk and P2 remain parallel. Therefore, P2 is also parallel

to P0.

The design parameters of the IRSBot-2 are depicted in

Fig. 4 [13]. qk is the actuated joint coordinate of the kth leg,

b = OAk is the radius of the base, l1 = AkBk is the length of

the proximal legs, l2 = E jkFjk is the length of the spatial dis-

tal legs, wPa is the width of the parallelogram, a1 and a2 denote

the lengths of segments EkE jk and FkFjk, respectively. One can

notice that the angle between y0 and EkE jk (resp. y0 and FkFjk) is

constant and equal to β jk. Let β denote β2II = β, then β1I = π+β,

β2I =−β and β1II = π−β. Angle β is strictly bounded between 0

and π/2, i.e., 0 < β < π/2, as links ℓ41k and ℓ42k can not be par-

allel. Finally, γk is the aperture angle of the parallelogram of the

kth leg. αk denotes the orientation angle of the fixed segment of

the kth parallelogram as shown in Fig. 8.

prox1 denotes the actuated proximal arms. prox2 denotes the

passive proximal arms. elb denotes the elbow that is composed

of segments CkBk, BkHk and E2kE1k. dist denotes the distal arms

and EE denotes the moving-platform. Let Mν and Sν be the mass

and the section of body ν, ν standing for prox1, prox2, elb or

dist. The foregoing bodies have hollow cylindrical cross-sections

of outer diameter φoν and thickness tν except for the moving-

platform that can be seen as a parallelepiped of length, height

and width equal to 2p, hEE , wEE , respectively.

The parameters of the IRSBot-2 are classified with regard to

their type below:

Lengths: l1, l2, b, p, wPa, e, a1 and a2;

Angles : β and αk;

Cross-section parameters : φoν, tν, hEE , wEE .

Material : E: Young Modulus; ρ: material density; G shear

modulus.

After some discussions with industrial partners in the

scope of the French National Project ANR–2011–BS3–006–01–

ARROW, the specifications that the IRSBot-2 should satisfy are

summed up in Tab. 1. The the robot should be as compact as

possible due to some industrial constraints. Moreover, in or-

der to minimize the robot vibrations due to the high accelera-

tions, the natural frequencies should be as high as possible. Be-

sides, a project partner imposes the use of TMB140–70 ETEL

direct drive motors on us for the actuation of the IRSBot-2. Ta-

ble 2 gives the characteristics of the TMB140–70 ETEL motor 2:

Vmax is the maximal motor velocity; Tpeak is the peak torque; TC is

2http://www.etel.ch/torque motors/TMB
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TABLE 1. SPECIFICATIONS FOR THE IRSBot-2

Accuracy εlim 20 µm

Acceleration max 20 G

Cycle time 200 ms

Path 25 mm × 300 mm × 25 mm

Regular workspace size 800 mm × 100 mm

Deformation δδδt lim under

a force fs = [0, 20, 0] N

and a moment

ms = [0.1, 0.1, 0.1] N.m

[0.5, 0.5, 0.5] mm, [0.5, 0.5, 0.5] deg

TABLE 2. DATASHEET OF THE TMB140–70 ETEL MOTOR

Vmax r Tpeak TC Φ J

[rpm] [pt/rev] [Nm] [Nm] [mm] [Kg.m−2]

600 200000 89.1 45 166 2.3e−3

the continuous torque; Φ is the motor external diameter; J is the

rotor inertia; r is the encoder resolution.

Table 1 shows the global dimensions of the Adept cycle, the

cycle time and the maximal end-effector acceleration. Never-

theless, the path and motion generator are not strictly defined.

Consequently, a test trajectory is optimized in Sec. 3 in order to

minimize the cycle time and to be sure that the acceleration of

the moving-platform remains lower than 20 G. The correspond-

ing optimal test trajectory will be also used later to verify that

the required motor torques can be achieved by the TMB140–70

ETEL motors.

3 OPTIMAL TEST TRAJECTORY
S-curves are used to determine the optimal test trajectory for

a matter of simplicity. The optimal test trajectory is expected to

minimize the cycle time while the maximum acceleration of the

moving-platform of the IRSBot-2 remains lower than 20 G along

the path. An optimization problem is formulated and solved in

this section in order to find the optimal test trajectory.

3.1 Trajectory Definition
As mentioned in Table 1, the IRSBot-2 must be capable of

producing a test cycle in at most 200 ms. The path adopted for

the manipulator design is illustrated in Fig. 5. It consists of:

(a) a vertical segment from point A to point B of length h′;

(b) a curve BD, which is symmetrical with respect to the vertical

line passing through point C and of direction z0. C is the

mid-point of the path;

A
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t1
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h = 25mm
h′

w = 300mm

x0

z0

FIGURE 5. PATH ADOPTED FOR THE MANIPULATOR DESIGN.

(c) a vertical segment from point D to point E of length h′.

The witdth w of the path is equal to 300 mm and its height h

is equal to 25 mm. Let t0, t1, t2, t3 and t4 be the trajectory time at

points A, B, C, D and E , respectively. As A is the starting point

of the trajectory, t0 = 0 s and t2 = t4/2 and t3 = t4 − t1 because of

the symmetry of the trajectory.

zA is the z–coordinate of point A expressed in the robot base

frame Fb defined as (O, x0, y0,z0).

The trajectory is defined in the (x0Oz0) plane with paramet-

ric piecewise-polynomials as a function of time t, i.e., x(t) and

z(t). Each polynomial-continuous function is of degree 5 for the

acceleration profile to be continuous with respect to time. As a

consequence, z(t) is expressed with four piecewise-polynomial

continuous functions:

z(t) =



















z1(t) = h′ s1(t)+ zA, if t ∈ [t0, t1[

z2(t) = (h− h′)s2(t)+ h′+ zA, if t ∈ [t1, t2[

z3(t) =−(h− h′)s3(t)+ h+ zA, if t ∈ [t2, t3[

z4(t) =−h′ s4(t)+ h′+ zA, if t ∈ [t3, t4]

(1)

Likewise, x(t) is expressed with three piecewise-polynomial con-

tinuous functions to go from point A to point E , namely,

x(t) =











x1(t) = w/2, if t ∈ [t0, t1[

x2(t) =−ws5(t)+w/2, if t ∈ [t1, t3[

x3(t) =−w/2, if t ∈ [t3, t4]

(2)

where sk(t) with k = 1, . . . , 5 take the form:

sk(t) = akt5 + bkt
4 + ckt3 + dkt

2 + ekt + fk (3)
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FIGURE 6. OPTIMAL PATH AND OPTIMAL VELOCITY, ACCELERATION AND JERK PROFILES.

The boundary conditions are defined as follows:































































































s1(t0) = 0 ṡ1(t0) = 0 s̈1(t0) = 0

s1(t1) = 1 ṡ1(t1) = vB/h′ s̈1(t1) = aB/h′

s2(t1) = 0 ṡ2(t1) = vB/(h− h′) s̈2(t1) = aB/(h− h′)
s2(t2) = 1 ṡ2(t2) = 0 s̈2(t2) = 0

s3(t2) = 0 ṡ3(t2) = 0 s̈3(t2) = 0

s3(t3) = 1 ṡ3(t3) = vB/(h− h′) s̈3(t3) =−aB/(h− h′)

s4(t3) = 0 ṡ4(t3) = vB/h′ s̈4(t3) =−aB/h′

s4(t4) = 1 ṡ4(t4) = 0 s̈4(t4) = 0

s5(t1) = 0 ṡ5(t1) = 0 s̈5(t1) = 0

s5(t3) = 1 ṡ5(t3) = 0 s̈5(t3) = 0

(4)

where vB and aB are the velocity and acceleration of the moving-

platform at point B, respectively. Note that −vB and aB are the

velocity and acceleration of the moving-platform at point D, re-

spectively, due to the symmetry of the trajectory.

For given t4, t1, h′, vB, and aB values, Eqs. (3) and (4) lead

to a system of 30 linear equations with the 30 unknowns ak, bk,

ck, dk, ek, fk, k = 1, . . . , 5 that can be solved easily.

3.2 Optimization Problem Formulation
In order to find the trajectory that minimizes the cycle

time t4, whereas the maximum acceleration of the moving-

platform of the IRSBot-2 remains lower than 20 G along the path,

the following optimization problem should be solved:

minimize t4 (5)

over x =
[

t4 t1 h′ vB aB

]

subject to max

√

ẍ2(t)+ z̈2(t)≤ 20 G ∀t ∈ [t0, t4]

t1 < t4/2

2 mm ≤ h′ ≤ h

The decision variables t4, t1, h′, vB, aB of this optimization

problem are the components of decision variable vector x.

Optimization problem (5) was solved by means of MATLAB

fmincon function using multi-starting points. The optimum deci-

sion variables of problem (5) are gathered in Table 3 and charac-

terize the optimal test trajectory.

Figure 6 illustrates the obtained optimal test trajectory,

namely, the optimal path adopted for the IRSBot-2 design and

the optimal velocity, acceleration and jerk profiles.

TABLE 3. OPTIMUM DECISION VARIABLES OF PB (5).

t4 [s] t1 [s] h′ [mm] vB [m.s−1] aB [m.s−2]

0.1041 0.0055 2 0.6205 4.5313
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FIGURE 7. BOUNDING BOX OF THE IRSBOT-2.

4 FIRST DESIGN OPTIMIZATION PROBLEM

The first design optimization problem aims at finding the

design parameters that minimize the size of the IRSBot-2 in the

plane of motion for a prescribed regular dexterous workspace,

taking into account only kinematic and kinetostatic constraints.

The problem formulation is described thereafter.

4.1 Objective Function

The objective function of the optimization problem corre-

sponds to the size of the projection of the IRSBot-2 into the plane

of motion (x0Oz0) as the manipulator should be as compact as

possible.

The objective function amounts to the surface area Abb of the

bounding parallelepiped rectangle shown in Fig. 7. The surface

area Abb is calculated for the IRSBot-2 in its home configuration,

which is depicted in Fig. 8. Leg I and leg II are symmetrical with

respect to plane (y0Oz0) and the distal and proximal modules are

perpendicular to each other in this configuration. Therefore, Abb

is expressed as follows,

Abb = bbl bbh (6)

bbl and bbh are the length and the height of the bounding paral-

lelepiped rectangle and take the form:

bbl = 2(b−wp cos(αI)− l1 cos(q1)) (7a)

bbh = −zHP −wp sin(αI) (7b)

αI = qI + γI

b

p

l1

l2eq

zHP l p

θ1

θ2

wp

x0

z0

b
b

h

bbl

ξ

FIGURE 8. HOME CONFIGURATION OF THE IRSBOT-2.

with

zHP = −
√

l2
1 + l2

2eq − (b− p)2 (8a)

q1 = θ1 +θ2 (8b)

θ1 = arccos((b− p)/l p) (8c)

θ2 = arccos(l1/l p) (8d)

lp =
√

l2
1 + l2

2eq (8e)

4.2 Decision Variables
The decision variables of the first design optimization prob-

lem are the design parameters of the IRSBot-2 that affect Abb as

well as the workspace size and the kinematic performances of

the manipulator, namely,

x1 =
[

l1 l2eq b p αI

]

(9)

l1, l2eq, b, p and αI are depicted in Fig. 4 and defined in Sec. 2.

The offset e, shown in Fig. 4, may also affect Abb, but is

supposed to be null for a matter of clarity.

4.3 Optimization Problem Formulation
From Tab. 1, the IRSBot-2 should cover a rectangular

shaped workspace, called Regular Workspace RW , of length

wl = 800 mm and height wh = 100 mm. Some geometric and

6
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kinematic constraints should be also satisfied throughout RW ,

thus obtaining a Regular Dexterous Workspace (RDW ), for the

IRSBot-2 to respect the specifications described in Tab. 1. Let

LRDW denote the Largest Regular Dexterous Workspace of the

manipulator.

The design problem aims at finding the decision vari-

able vector x1 that minimizes the surface area Abb while the

length lLRDW and the height hLRDW of LRDW are higher or equal

than wl and wh, respectively. The base radius b of the manip-

ulator should be also larger than the motor external radius Φ/2

defined in Tab. 2. The base radius b should be larger than the

moving-platform radius p too. Thus, the design optimization

problem is formulated as follows,

minimize Abb (10)

over x1 =
[

l1 l2eq b p αI

]T

subject to lLRDW ≥ wl

hLRDW ≥ wh

b ≥ p

b > Φ/2

The methodology used to determine LRDW for a given de-

cision variable vector x1 is explained thereafter.

4.4 Largest Regular Dexterous Workspace

The following geometric and kinematic constraints should

be respected throughout a Regular Workspace RW for the latter

to become Regular Dexterous Workspace RDW :

1. The assembly of the manipulator should be possible.

2. The IRSBot-2 should not reach any parallel singularity

throughout RW [17];

3. In order to avoid the degeneracy of the parallelogram joints,

the following constraints are fixed:

π/6 ≤ γI ≤ 5π/6 (11a)

π+π/6 ≤ γII ≤ π+ 5π/6 (11b)

γk being equal to αk − qk, k = I, II.

4. Velocity transmission: From Fig. 6, the IRSBot-2 should be

able to reach a velocity equal to vlim = 6 m.s−1 through-

out RW . Knowing the maximum motor velocity Vmax from

Tab. 2 and the kinematic Jacobian matrix J of the manipu-

lator from [13], Fig. 9 can be used to find the minimum ve-

locity transmission ṗmin at any point of RW [18]. Therefore,

the following constraint should be satisfied throughout RW :

ṗmin > vlim (12)

5. Error transmission: Knowing the resolution r of the

motor encoders from Tab. 2, the maximum point-

displacement δpmax of the moving-platform due to encoder

errors can be assessed with matrix J. Therefore, δpmax

should be lower than εlim throughout RW , εlim being given

in Tab. 1.

6. The forces exerted into the passive joints are proportional to

1/sinξ [19], ξ being the angle between the distal modules

and shown in Fig. 8. Consequently, it is decided that sinξ
should be higher than 0.1 throughout RW to avoid excessive

effort in the joints.

Algorithm 1 is used to find the LRDW amongst the RDWs

of the manipulator [18] for a given decision variable vector x1.

{Gi j} defines the workspace grid that includes the manipu-

lator workspace RDW = wl ×wh and possesses uniform but dif-

ferent steps along the Cartesian axes, namely (LG = dxN0×HG =
dzN0), where LG and HG define the length and the height of the

workspace grid, dx and dz the discretisation pitch along x0 and

z0, and N0 the number of nodes in each direction. Besides, let

us define a 2D binary matrix Ωi j ∈ {0, 1}, where Ωi j = 1 if the

foregoing geometric and kinematic constraints are all satisfied

at node Gi j, Ωi j = 0 otherwise. For computation convenience,

Ωi j = 0 if {Gi j} does not belong to RDW .

Then we look for the largest sub-matrix inside {Ωi j} con-

taining non-zero values only. Algorithm 1 uses an additional in-

teger matrix {Φi j} that defines the size of the candidate solutions

workspace with the vertex Gi j.

4.5 Optimal Solution of Problem (10)
A genetic algorithm, i.e., the MATLAB ga function, was

used to solve problem (10). It converged after six generations

with a population containing 150 individuals. Then, a local opti-

mum x∗1 was obtained with the MATLAB fmincon function, tak-

ing the best individual of the final population as the starting point.
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Algorithm 1: DETERMINATION OF

THE LARGEST REGULAR DEXTEROUS

WORKSPACE.

Input: {Ωi j}, {Gi j}, dx, dz

Output: lLRDW , hLRDW , (i0, j0)
1 Φi j = 0;

2 for {i = 1&∀ j}∪{ j = 1&∀i} do

3 Φi j = Ωi j

4 end

5 ;

6 for i = 2 : N0 do

7 for j = 2 : N0 do

8 if Ωi j = 1 then

9 Φi j = 1+min
{

Φi−1, j, Φi, j−1, Φi−1, j−1

}

10 end

11 end

12 end

13 ;

14 Find d = max(Φi j)− 1;(i0, j0) = argmax(Φi j);
15 Retrieve from the grid {Gi j} the desired square

bounded by the indices (i0 − d, j0 − d) and (i0, j0);
16 Give lLRDW = dx d and hLRDW = dz d;
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FIGURE 10. OPTIMAL 2D-DESIGN OF THE IRSBOT-2 AND

LARGEST REGULAR DEXTEROUS WORKSPACE (SCALED)

The optimal design variables of problem (10) and the asso-

ciated surface area Abb are given in Tab.4. The corresponding

dimensions of the IRSBot-2 and LRDW are depicted in Fig. 10.

5 SECOND DESIGN OPTIMIZATION PROBLEM

The second design optimization problem aims to find the

design parameters that minimize the mass in motion and the size

of the manipulator along the normal to the plane of motion and

maximize the first natural frequency of the IRSBot-2 at both ends

TABLE 4. OPTIMAL SOLUTION OF PROBLEM (10)

Abb [m2] l1 [mm] l2eq [mm] b [mm] p [mm] αI [rad]

0.2528 331.08 430.56 121.42 30.20 2.0350

of the optimized test trajectory. This problem is also subject to a

set of constraints related to the elastostatic and dynamic perfor-

mance of the robot. The required actuated torques should be also

smaller than the maximum torque provided by the motors along

the trajectory.

A simplified planar dynamic model of the manipulator and

an elastic model are taken from [16] and [13], respectively. An

elastodynamic model has been written to compute the natural fre-

quencies of the robot. This model is not described in this paper,

but is based on the methodology presented in [20]. The elasto-

dynamic model could be used instead of the elastostatic model

to evaluate the robot deformations under external loading. How-

ever, the former is more time consuming than the latter.

The links of the IRSBot-2 are made up of Duraluminum. Its

Young modulus E = 74 MPa, its shear modulus G = 27.8 MPa

and its density ρ = 2800 Kg.m−3. The links have hollow cylin-

drical cross-sections and are supposed to have the same thick-

ness th in order to minimize the number of decision variables.

5.1 Three Objective Functions
The optimization problem is multi-objective and contains

three objective functions. The first objective function is the

width bbw of the bounding box shown in Fig. 7 and is defined

as follows:

bbw = 2a1 cosβ (13)

The second objective function is the mass MIRS in motion of the

manipulator and is expressed as:

MIRS = 2Mprox1
+ 2Mprox2

+ 2Melb + 4Mdist (14)

with

Mprox1
= ρ l1 Sprox1

(15a)

Mprox2
= ρ l1 Sprox2

(15b)

lelb = wp + 2a1 cos(β)+ e (15c)

Melb = ρ lelb Selb (15d)

Mdist = ρ l2 Sdist (15e)

l2 =
√

l2
2eq +(a1 − a2)2(cos(β))2 (15f)

The natural frequencies of the manipulator are derived from

its elastodynamic model obtained with the Matrix Structural

8



Analysis method. Let M and K be the mass and stiffness ma-

trices of the IRSBot-2, respectively. The natural frequencies of

the manipulator are proportional to the square root of the eigen-

values of matrix M−1 K. Let f 1
IRS be the smallest frequency from

the first natural frequencies computed at both ends of the optimal

trajectory. f 1
IRS is the third objective function of the optimization

problem at hand.

Let bbmax
w , Mmax

IRS and f 1min
IRS be the maximum value of bbw, the

maximum value of MIRS and the minimum value of f 1
IRS, respec-

tively. Those values were assessed by selecting 10000 designs

randomly in the definition domain.

As a consequence, the three objective functions are normal-

ized and weighted in order to convert the multi-objective op-

timization problem into mono-objective optimization problem.

The obtained objective function fpb2 is expressed as:

fpb2 = 0.2
bbw

bbmax
w

+ 0.3
MIRS

Mmax
IRS

+ 0.5
f 1min
IRS

f 1
IRS

(16)

Note that fpb2 is bounded between 0 and 1. The weighting factors

were chosen based on some discussions between the partners of

the French National Project ANR–2011–BS3–006–01–ARROW.

5.2 Decision Variables

The decision variables of the optimization problem are the

components of vector x2, namely,

x2 =
[

a1 a2 wPa β φoprox1
φoprox2

φodist φoelb th
]

(17)

It is apparent that those decision variables, described in Sec. 2,

do not affect the objective function and constraints of the first

design optimization problem (10). Besides, the two design opti-

mization problems do not have any decision variable in common.

Consequently, they can be solved in cascade.

5.3 Constraints

The optimization problem is subject to a set of constraints

related to the elastostatic and dynamic performance of the robot.

First, the required motor torques should be lower than the peak

torque Tpeak given in Tab.2, TPeak = 89.1 Nm, along the trajectory

not to damage the motors. Then, the root-mean-square τRMS of

the motor torques should be smaller than the continuous torque

TC = 45 Nm to avoid temperature increase.

Moreover, for a 20 N force exerted on the moving-platform

along y0, the point-displacement of the latter should be smaller

than 0.5 mm. Likewise, for a 0.1 Nm moment applied on

the moving-platform about any axis, the corresponding orien-

tation displacement of the moving-platform should be smaller
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FIGURE 11. OPTIMAL DESIGN OF THE IRSBOT-2 (SCALED).

than 0.5 deg. The foregoing constraints related to the manipula-

tor stiffness are expressed as δmax
t ≤ δt lim in the problem formu-

lation.

5.4 Optimization Problem Formulation

The second design optimization problem can be formulated

as follows,

minimize fpb2 (18)

over x2 =
[

a1 a2 wPa β φoprox1
φoprox2

φodist φoelb th
]

subject to τmax ≤ TPeak

τRMS ≤ TC

δmax
t ≤ δt lim

5.5 Optimal Solution of Problem (18)

A genetic algorithm was used to solve problem (18) and con-

verged after seven generations, each population containing 50 in-

dividuals. Then, a local optimum decision variable vector x∗2 of

optimization problem (18) was obtained with MATLAB fmincon

function and is summed up in Tab. 5. The corresponding objec-

tive functions and constraint values are given in Tab. 6. The size

of the robot and its shape are illustrated in Fig. 11.
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TABLE 5. DESIGN PARAMETERS OF THE OPTIMAL DESIGN OF THE IRSBOT-2

a1 a2 wPa β φoprox1
φoprox2

φodist φoelb th

[mm] [mm] [mm] [rad] [mm] [mm] [mm] [mm] [mm]

183.131 36.345 80.675 0.76814 99.803 10 37.854 75.454 2

TABLE 6. OBJECTIVE FUNCTIONS AND CONSTRAINTS ASSOCIATED WITH THE OPTIMAL SOLUTION OF PROBLEM (18)

bbw MIRS f 1
IRS maxT meanT δtx δty δtz δrx δry δrz

[m] [Kg] [Hz] [Nm] [Nm] [mm] [mm] [mm] [deg] [deg] [deg]

0.26 2.15 52.31 75.88 44.03 0.001 0.104 0.001 0.033 0.003 0.006

6 CONCLUSION

This paper dealt with the design optimization of the IRSBot-

2 based on an optimized test trajectory for fast pick and place

operations. The goal was to minimize the size of the manipula-

tor and its mass while maximizing its first natural frequency, as

function of prescribed geometric, elastostatic and dynamic per-

formances. This is a classical but rather complex problem be-

cause of the number of decision variables, constraints and cri-

teria involved. To make the problem more tractable, it was de-

composed into two independent problems that could be solved in

cascade. The optimal test trajectory was defined in such a way

that the cycle time is a minimum while the maximum acceler-

ation of the moving platform remains lower than 20 G and the

time trajectory functions are C2 continuous. S-curves were used

to define the path and the motion profile of the test trajectory

simultaneously.

The optimal design of the IRSBot-2 minimizes the volume

of its bounding box, its mass in motion and maximizes its first

natural frequencies at both ends of the optimal test trajectory.

This optimal design will be used for the realization of an indus-

trial prototype of the IRSBot-2 later on. The design methodology

followed for the IRSBot-2 will be further studied for application

to other parallel manipulators.
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