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INTRODUCTION

Nowadays parallel robots are used more and more in highspeed pick-and-place operations. The drive for higher opera-tional speeds and higher payload-to-weight ratios is shifting their designs to more lightweight architectures [START_REF] Clavel | Device for the movement and positioning of an element in space[END_REF][START_REF] Bonev | Delta parallel robot -the story of success[END_REF]. The fastest industrial robot, the Quattro by Adept Technologies Inc. [START_REF] Inc | [END_REF], reaches more than 15 G of acceleration, allowing up to four standard pick-and-place cycles to be performed per second. However, as for all high-speed mechanisms, vibratory phenomena appear that worsen accuracy and dynamic performance. This crucial issue prevents from using high-speed parallel robots for special tasks that require accuracy, e.g. as assembly of electronic components.

Several robot architectures for high-speed operations have been proposed in the past decades [START_REF] Clavel | Device for the movement and positioning of an element in space[END_REF][START_REF] Angeles | Kinetostatic design of an innovative schonflies-motion generator[END_REF][START_REF] Krut | A high-speed parallel robot for scara motions[END_REF][START_REF] Nabat | High-speed parallel robot with four degrees of freedom[END_REF][START_REF] Liu | Two novel parallel mechanisms with less than six degrees of freedom and the applications[END_REF]. Many of them have four degrees of freedom (DOF): three translations and one rotation about a fixed axis, i.e., a Schoenflies motion [START_REF] Caro | The rule-based conceptual design of the architecture of serial schönflies-motion generators[END_REF]. Some simple operations need only two translational DOF in order to move a part from a working area to another. Therefore, several robot architectures with two translational DOF have been proposed. Among them, those that have the capacity to fix the orientation of the platform via the use of a planar parallelogram (also called a Π joint) are necessary in numerous operations [START_REF] Liu | Two novel parallel mechanisms with less than six degrees of freedom and the applications[END_REF][START_REF] Brogardh | Device for relative movement of two elements[END_REF][START_REF] Huang | Planar parallel robot mechanism with two translational degrees of freedom[END_REF][START_REF] Pierrot | Two degree-of-freedom parallel manipulator[END_REF]. However, most of the proposed architectures are not stiff enough along the normal to the plane of motion. As a consequence, the IRSBot-2 has been developed and outperforms its 2-DOF counterparts in terms of stiffness along the normal to the plane of motion [START_REF] Germain | Irsbot-2: A novel two-dof parallel robot for highspeed operations[END_REF].

This paper deals with the design optimization of the IRSBot-2 for fast and accurate pick-and-place operations such as the assembly of electronic components. The obtained optimal design will be used for the realization of an industrial prototype of the IRSBot-2 in the scope of the French National Project ANR-2011-BS3-006-01-ARROW 1 .

The pick-and-place operation is commonly used by industrial robots involved in both primary handling and case packing [START_REF] Germain | Irsbot-2: A novel two-dof parallel robot for highspeed operations[END_REF][START_REF] Gauthier | Optimization of a test trajectory for scara systems[END_REF]. The operation transfers an object from one position to another one in a workspace [START_REF] Germain | Irsbot-2: A novel two-dof parallel robot for highspeed operations[END_REF]. This standardized geometric path is referred to as the Adept cycle and its most used dimensions are h = 25mm and l = 300mm [START_REF] Inc | [END_REF]. The standard adept cycle, shown in Fig. 1, has square corners that introduce discontinuities in acceleration when traversed. To overcome these discontinuities, extremely high torques must be generated at the actuators, this, coupled with the inertial effect of the moving system, give rise to unwanted vibrations. To remove these discontinuities, the corners must be smoothed [START_REF] Gauthier | Optimization of a test trajectory for scara systems[END_REF][START_REF] Kanayama | Trajectory generation for mobile robots[END_REF]. However, the way to smooth the corner is not unique and, if the trajectory is not designed correctly, it can lead to very high vibrations of the end-effector [START_REF] Barnard | Trajectory generation for high speed pick and place robots[END_REF] because the acceleration on the path is much too high.

In this paper, an optimization problem is first formulated to determine the optimal test trajectory that will be used in the design optimization process. This problem aims at finding the path defined with s-curves and the time trajectory that minimize the cycle time while the maximum acceleration of the moving platform remains lower than 20 G and the time trajectory functions are C 2 continuous.

Then, for simplifying the optimization procedure, two design optimization problems are formulated to find the optimal design parameters of the IRSBot-2 based on the previous optimal test trajectory. The first problem deals with the geometric and kinematic performances of the manipulator. The second problem considers elastostatic, dynamic and elastodynamic performances. Those two problems are expressed in such a way that they do not have any common decision variable and that the objective function and constraints of the first problem do not depend 1 http://arrow.irccyn.ec-nantes.fr/ on the decision variables of the second problem. As a result, the two problems can be solved in cascade.

The first design optimization problem aims at finding the design parameters that minimize the size of the IRSBot-2 in the plane of motion for a prescribed regular dexterous workspace by considering only kinematic and kinetostatic constraints. The second design optimization problem allows the computation of the remaining design parameters that minimize the mass in motion and the size of the manipulator along the normal to the plane of motion and maximize the first natural frequency of the IRSBot-2 along the optimized test trajectory. This problem is subject to a set of constraints related to the elastostatic and dynamic performance of the robot.

Finally, the optimal design parameters are given and will be used for the development of an industrial prototype of the IRSBot-2. The IRSBot-2 is shown in Fig. 2. It is a two degree-offreedom translational parallel manipulator dedicated to fast and accurate pick-and-place operations. The IRSBot-2 is composed of two identical spatial limbs, each one containing a proximal module and a distal module.

ROBOT ARCHITECTURE

Base

The kth leg of the IRSBot-2 is described in Fig. 3 and contains one proximal module and one distal module (k = I, II). Therefore, the IRSBot-2 has one proximal loop and one distal loop shown in Fig. 2. The former is composed of the two proximal modules and the base. The latter is composed of the two distal modules and the moving-platform.

On the one hand, the proximal module amounts to a Π joint of normal y 0 and is made up of links ℓ 0k , ℓ 1k , ℓ 2k and ℓ 3k . The
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proximal module aims to keep planes P 0 and P k parallel. The base frame (O, x 0 , y 0 , z 0 ) is attached to plane P 0 . On the other hand, the distal module is attached to link ℓ 3k of the parallelogram through two revolute joints of axis (E k , y 1 jk ) lying in plane P k and to link ℓ 7k of the moving platform through two revolute joints of axis (F k , y 1 jk ) lying in plane P 2 ( j = 1, 2).
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Axes y 11k and y 12k (z 21k and z 22k , resp.) are symmetrical with respect to plane (x 0 Oz 0 ). It should be mentioned that axes y 1 jk and z 2 jk are orthogonal and both have to be normal to link ℓ 5 jk . Links ℓ 51k and ℓ 52k (links ℓ 41k and ℓ 42k , resp.) are not parallel, otherwise the distal module would become a spatial parallelogram and the robot architecture would be singular. The distal module may be decomposed into two identical parts composed of links ℓ 4 jk , ℓ 5 jk and ℓ 6 jk , which are linked together with revolute joints of axes z 2 jk . The robot is assembled in such way that planes P k and P 2 remain parallel. Therefore, P 2 is also parallel to P 0 .

The design parameters of the IRSBot-2 are depicted in Fig. 4 [START_REF] Germain | Irsbot-2: A novel two-dof parallel robot for highspeed operations[END_REF]. q k is the actuated joint coordinate of the kth leg, b = OA k is the radius of the base, l 1 = A k B k is the length of the proximal legs, l 2 = E jk F jk is the length of the spatial distal legs, w Pa is the width of the parallelogram, a 1 and a 2 denote the lengths of segments E k E jk and F k F jk , respectively. One can notice that the angle between y 0 and E k E jk (resp. y 0 and F k F jk ) is constant and equal to β jk . Let

β denote β 2II = β, then β 1I = π + β, β 2I = -β and β 1II = π -β.
Angle β is strictly bounded between 0 and π/2, i.e., 0 < β < π/2, as links ℓ 41k and ℓ 42k can not be parallel. Finally, γ k is the aperture angle of the parallelogram of the kth leg. α k denotes the orientation angle of the fixed segment of the kth parallelogram as shown in Fig. 8.

prox 1 denotes the actuated proximal arms. prox 2 denotes the passive proximal arms. elb denotes the elbow that is composed of segments C k B k , B k H k and E 2k E 1k . dist denotes the distal arms and EE denotes the moving-platform. Let M ν and S ν be the mass and the section of body ν, ν standing for prox 1 , prox 2 , elb or dist. The foregoing bodies have hollow cylindrical cross-sections of outer diameter φ oν and thickness t ν except for the movingplatform that can be seen as a parallelepiped of length, height and width equal to 2p, h EE , w EE , respectively.

The parameters of the IRSBot-2 are classified with regard to their type below: b,p,w Pa , e, a 1 and a 2 ; Angles : β and α k ; Cross-section parameters : φ oν , t ν , h EE , w EE . Material : E: Young Modulus; ρ: material density; G shear modulus.

Lengths: l 1 , l 2 ,
After some discussions with industrial partners in the scope of the French National Project ANR-2011-BS3-006-01-ARROW, the specifications that the IRSBot-2 should satisfy are summed up in Tab. 1. The the robot should be as compact as possible due to some industrial constraints. Moreover, in order to minimize the robot vibrations due to the high accelerations, the natural frequencies should be as high as possible. Besides, a project partner imposes the use of TMB140-70 ETEL direct drive motors on us for the actuation of the IRSBot-2. Table 2 gives the characteristics of the TMB140-70 ETEL motor2 : V max is the maximal motor velocity; T peak is the peak torque; T C is 

V max r T peak T C Φ J [rpm] [pt/rev] [Nm] [Nm] [mm] [Kg.m -2 ] 600 200000 89.1 45 166 2.3e -3
the continuous torque; Φ is the motor external diameter; J is the rotor inertia; r is the encoder resolution.

Table 1 shows the global dimensions of the Adept cycle, the cycle time and the maximal end-effector acceleration. Nevertheless, the path and motion generator are not strictly defined. Consequently, a test trajectory is optimized in Sec. 3 in order to minimize the cycle time and to be sure that the acceleration of the moving-platform remains lower than 20 G. The corresponding optimal test trajectory will be also used later to verify that the required motor torques can be achieved by the TMB140-70 ETEL motors.

OPTIMAL TEST TRAJECTORY

S-curves are used to determine the optimal test trajectory for a matter of simplicity. The optimal test trajectory is expected to minimize the cycle time while the maximum acceleration of the moving-platform of the IRSBot-2 remains lower than 20 G along the path. An optimization problem is formulated and solved in this section in order to find the optimal test trajectory.

Trajectory Definition

As mentioned in Table 1, the IRSBot-2 must be capable of producing a test cycle in at most 200 ms. The path adopted for the manipulator design is illustrated in Fig. 5. It consists of:

(a) a vertical segment from point A to point B of length h ′ ; (b) a curve BD, which is symmetrical with respect to the vertical line passing through point C and of direction z 0 . C is the mid-point of the path;

A B C D E t 0 t 1 t 2 t 3 t 4 h = 25mm h ′ w = 300mm x 0 z 0 FIGURE 5. PATH ADOPTED FOR THE MANIPULATOR DESIGN. (c) a vertical segment from point D to point E of length h ′ .
The witdth w of the path is equal to 300 mm and its height h is equal to 25 mm. Let t 0 , t 1 , t 2 , t 3 and t 4 be the trajectory time at points A, B, C, D and E, respectively. As A is the starting point of the trajectory, t 0 = 0 s and t 2 = t 4 /2 and t 3 = t 4t 1 because of the symmetry of the trajectory.

z A is the z-coordinate of point A expressed in the robot base frame F b defined as (O, x 0 , y 0 , z 0 ).

The trajectory is defined in the (x 0 Oz 0 ) plane with parametric piecewise-polynomials as a function of time t, i.e., x(t) and z(t). Each polynomial-continuous function is of degree 5 for the acceleration profile to be continuous with respect to time. As a consequence, z(t) is expressed with four piecewise-polynomial continuous functions:

z(t) =          z 1 (t) = h ′ s 1 (t) + z A , if t ∈ [t 0 ,t 1 [ z 2 (t) = (h -h ′ ) s 2 (t) + h ′ + z A , if t ∈ [t 1 ,t 2 [ z 3 (t) = -(h -h ′ ) s 3 (t) + h + z A , if t ∈ [t 2 ,t 3 [ z 4 (t) = -h ′ s 4 (t) + h ′ + z A , if t ∈ [t 3 ,t 4 ] (1) 
Likewise, x(t) is expressed with three piecewise-polynomial continuous functions to go from point A to point E, namely,

x(t) =      x 1 (t) = w/2, if t ∈ [t 0 ,t 1 [ x 2 (t) = -w s 5 (t) + w/2, if t ∈ [t 1 ,t 3 [ x 3 (t) = -w/2, if t ∈ [t 3 ,t 4 ] (2) 
where s k (t) with k = 1, . . . , 5 take the form: The boundary conditions are defined as follows:

s k (t) = a k t 5 + b k t 4 + c k t 3 + d k t 2 + e k t + f k (3) 
                                               s 1 (t 0 ) = 0 ṡ1 (t 0 ) = 0 s1 (t 0 ) = 0 s 1 (t 1 ) = 1 ṡ1 (t 1 ) = v B /h ′ s1 (t 1 ) = a B /h ′ s 2 (t 1 ) = 0 ṡ2 (t 1 ) = v B /(h -h ′ ) s2 (t 1 ) = a B /(h -h ′ ) s 2 (t 2 ) = 1 ṡ2 (t 2 ) = 0 s2 (t 2 ) = 0 s 3 (t 2 ) = 0 ṡ3 (t 2 ) = 0 s3 (t 2 ) = 0 s 3 (t 3 ) = 1 ṡ3 (t 3 ) = v B /(h -h ′ ) s3 (t 3 ) = -a B /(h -h ′ ) s 4 (t 3 ) = 0 ṡ4 (t 3 ) = v B /h ′ s4 (t 3 ) = -a B /h ′ s 4 (t 4 ) = 1 ṡ4 (t 4 ) = 0 s4 (t 4 ) = 0 s 5 (t 1 ) = 0 ṡ5 (t 1 ) = 0 s5 (t 1 ) = 0 s 5 (t 3 ) = 1 ṡ5 (t 3 ) = 0 s5 (t 3 ) = 0 (4) 
where v B and a B are the velocity and acceleration of the movingplatform at point B, respectively. Note that -v B and a B are the velocity and acceleration of the moving-platform at point D, respectively, due to the symmetry of the trajectory. For given t 4 , t 1 , h ′ , v B , and a B values, Eqs. ( 3) and ( 4) lead to a system of 30 linear equations with the 30 unknowns a k , b k , k , d k , e k , f k , k = 1, . . . , 5 that can be solved easily.

Optimization Problem Formulation

In order to find the trajectory that minimizes the cycle time t 4 , whereas the maximum acceleration of the moving-platform of the IRSBot-2 remains lower than 20 G along the path, the following optimization problem should be solved: minimize t 4

(5)

over x = t 4 t 1 h ′ v B a B subject to max ẍ2 (t) + z2 (t) ≤ 20 G ∀t ∈ [t 0 , t 4 ] t 1 < t 4 /2 2 mm ≤ h ′ ≤ h
The decision variables t 4 , t 1 , h ′ , v B , a B of this optimization problem are the components of decision variable vector x.

Optimization problem (5) was solved by means of MATLAB fmincon function using multi-starting points. The optimum decision variables of problem ( 5) are gathered in Table 3 and characterize the optimal test trajectory.

Figure 6 illustrates the obtained optimal test trajectory, namely, the optimal path adopted for the IRSBot-2 design and the optimal velocity, acceleration and jerk profiles. 

FIRST DESIGN OPTIMIZATION PROBLEM

The first design optimization problem aims at finding the design parameters that minimize the size of the IRSBot-2 in the plane of motion for a prescribed regular dexterous workspace, taking into account only kinematic and kinetostatic constraints. The problem formulation is described thereafter.

Objective Function

The objective function of the optimization problem corresponds to the size of the projection of the IRSBot-2 into the plane of motion (x 0 Oz 0 ) as the manipulator should be as compact as possible.

The objective function amounts to the surface area A bb of the bounding parallelepiped rectangle shown in Fig. 7. The surface area A bb is calculated for the IRSBot-2 in its home configuration, which is depicted in Fig. 8. Leg I and leg II are symmetrical with respect to plane (y 0 Oz 0 ) and the distal and proximal modules are perpendicular to each other in this configuration. Therefore, A bb is expressed as follows, A bb = bb l bb h [START_REF] Krut | A high-speed parallel robot for scara motions[END_REF] bb l and bb h are the length and the height of the bounding parallelepiped rectangle and take the form: with

bb l = 2(b -w p cos(α I ) -l 1 cos(q 1 )) (7a) bb h = -z HP -w p sin(α I ) (7b) 
z HP = -l 2 1 + l 2 2eq -(b -p) 2 (8a
)

q 1 = θ 1 + θ 2 (8b) θ 1 = arccos((b -p)/l p) (8c) θ 2 = arccos(l 1 /l p) (8d) l p = l 2 1 + l 2 2eq (8e)

Decision Variables

The decision variables of the first design optimization problem are the design parameters of the IRSBot-2 that affect A bb as well as the workspace size and the kinematic performances of the manipulator, namely,

x 1 = l 1 l 2eq b p α I (9)
l 1 , l 2eq , b, p and α I are depicted in Fig. 4 and defined in Sec. 2.

The offset e, shown in Fig. 4, may also affect A bb , but is supposed to be null for a matter of clarity.

Optimization Problem Formulation

From Tab. 1, the IRSBot-2 should cover a rectangular shaped workspace, called Regular Workspace RW , of length w l = 800 mm and height w h = 100 mm. Some geometric and q1 q2 ẋ ż J ṗmin ṗmax

V max V max -V max -V max FIGURE 9. TRANSMISSION FACTOR.
kinematic constraints should be also satisfied throughout RW , thus obtaining a Regular Dexterous Workspace (RDW ), for the IRSBot-2 to respect the specifications described in Tab. 1. Let LRDW denote the Largest Regular Dexterous Workspace of the manipulator.

The design problem aims at finding the decision variable vector x 1 that minimizes the surface area A bb while the length l LRDW and the height h LRDW of LRDW are higher or equal than w l and w h , respectively. The base radius b of the manipulator should be also larger the motor external radius Φ/2 defined in Tab. 2. The base radius b should be larger than the moving-platform radius p too. Thus, the design optimization problem is formulated as follows, minimize A bb [START_REF] Brogardh | Device for relative movement of two elements[END_REF] over

x 1 = l 1 l 2eq b p α I T subject to l LRDW ≥ w l h LRDW ≥ w h b ≥ p b > Φ/2
The methodology used to determine LRDW for a given decision variable vector x 1 is explained thereafter.

Largest Regular Dexterous Workspace

The following geometric and kinematic constraints should be respected throughout a Regular Workspace RW for the latter to become Regular Dexterous Workspace RDW :

1. The assembly of the manipulator should be possible. 2. The IRSBot-2 should not reach any parallel singularity throughout RW [START_REF] Germain | Design parameters for the irsbot-2 to be free of parallel singularity[END_REF]; 3. In order to avoid the degeneracy of the parallelogram joints, the following constraints are fixed:

π/6 ≤ γ I ≤ 5π/6 (11a) π + π/6 ≤ γ II ≤ π + 5π/6 (11b) γ k being equal to α k -q k , k = I, II.
4. Velocity transmission: From Fig. 6, the IRSBot-2 should be able to reach a velocity equal to v lim = 6 m.s -1 throughout RW . Knowing the maximum motor velocity V max from Tab. 2 and the kinematic Jacobian matrix J of the manipulator from [START_REF] Germain | Irsbot-2: A novel two-dof parallel robot for highspeed operations[END_REF], Fig. 9 can be used to find the minimum velocity transmission ṗmin at any point of RW [START_REF] Briot | Optimal technology-oriented design of parallel robots for high-speed machining applications[END_REF]. Therefore, the following constraint should be satisfied throughout RW : ṗmin > v lim [START_REF] Pierrot | Two degree-of-freedom parallel manipulator[END_REF] 5. Error transmission: Knowing the resolution r of the motor encoders from Tab. 2, the maximum pointdisplacement δp max of the moving-platform due to encoder errors can be assessed with matrix J. Therefore, δp max should be lower than ε lim throughout RW , ε lim being given in Tab. 1. 6. The forces exerted into the passive joints are proportional to 1/ sin ξ [START_REF] Briot | Investigation on the effort transmission in planar parallel manipulators[END_REF], ξ being the angle the distal and shown in Fig. 8. Consequently, it is decided that sin ξ should be higher than 0.1 throughout RW to avoid excessive effort in the joints.

Algorithm 1 is used to find the LRDW amongst the RDWs of the manipulator [START_REF] Briot | Optimal technology-oriented design of parallel robots for high-speed machining applications[END_REF] for a given decision variable vector x 1 .

{G i j } defines the workspace grid that includes the manipulator workspace RDW = w l × w h and possesses uniform but different steps along the Cartesian axes, namely

(L G = d x N 0 × H G = d z N 0 )
, where L G and H G define the length and the height of the workspace grid, d x and d z the discretisation pitch along x 0 and z 0 , and N 0 the number of nodes in each direction. Besides, let us define a 2D binary matrix Ω i j ∈ {0, 1}, where Ω i j = 1 if the foregoing geometric and kinematic constraints are all satisfied at node G i j , Ω i j = 0 otherwise. For computation convenience, Ω i j = 0 if {G i j } does not belong to RDW .

Then we look for the largest sub-matrix inside {Ω i j } containing non-zero values only. Algorithm 1 uses an additional integer matrix {Φ i j } that defines the size of the candidate solutions workspace with the vertex G i j .

Optimal Solution of Problem (10)

A genetic algorithm, i.e., the MATLAB ga function, was used to solve problem [START_REF] Brogardh | Device for relative movement of two elements[END_REF]. It converged after six generations with a population containing 150 individuals. Then, a local optimum x * 1 was obtained with the MATLAB fmincon function, taking the best individual of the final population as the starting point. Input:

{Ω i j }, {G i j }, d x , dz Output: l LRDW , h LRDW , (i 0 , j 0 ) 1 Φ i j = 0; 2 for {i = 1&∀ j} ∪ { j = 1&∀i} do 3 Φ i j = Ω i j 4 end 5 ; 6 for i = 2 : N 0 do 7 for j = 2 : N 0 do 8 if Ω i j = 1 then 9 Φ i j = 1 + min Φ i-1, j , Φ i, j-1 , Φ i-1, j-1 10 end 11 end 12 end ; 14 Find d = max(Φ i j ) -1; (i 0 , j 0 ) = argmax(Φ i j );
15 Retrieve from the grid {G i j } the desired square bounded by the indices (i 0d, j 0d) and (i 0 , j 0 ); 16 Give l LRDW = d x d and h LRDW = d z d; The optimal design variables of problem and the associated surface area A bb are given in Tab.4. The corresponding dimensions of the IRSBot-2 and LRDW are depicted in Fig. 10.
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SECOND DESIGN OPTIMIZATION PROBLEM

The second design optimization problem aims to find the design parameters that minimize the mass in motion and the size of the manipulator along the normal to the plane of motion and maximize the first natural frequency of the IRSBot-2 at both ends of the optimized test trajectory. This problem is also subject to a set of constraints related to the elastostatic and dynamic performance of the robot. The required actuated torques should be also smaller than the maximum torque provided by the motors along the trajectory.

A simplified planar dynamic model of the manipulator and an elastic model are taken from [START_REF] Barnard | Trajectory generation for high speed pick and place robots[END_REF] and [START_REF] Germain | Irsbot-2: A novel two-dof parallel robot for highspeed operations[END_REF], respectively. An model has been written to compute the natural frequencies of the robot. This model is not described in this paper, but is based on the methodology presented in [START_REF] Briot | Recursive symbolic calculation of the dynamic model of flexible parallel robots[END_REF]. The elastodynamic model could be used instead of the elastostatic model to evaluate the robot deformations under external loading. However, the former is more time consuming than the latter.

The links of the IRSBot-2 are made up of Duraluminum. Its Young modulus E = 74 MPa, its shear modulus G = 27.8 MPa and its density ρ = 2800 Kg.m -3 . The links have hollow cylindrical cross-sections and are supposed to have the same thickness th in order to minimize the number of decision variables.

Three Objective Functions

The optimization problem is multi-objective and contains three objective functions. The first objective function is the width bb w of the bounding box shown in Fig. 7 and is defined as follows:

bb w = 2 a 1 cos β (13) 
The second objective function is the mass M IRS in motion of the manipulator and is expressed as:

M IRS = 2M prox 1 + 2M prox 2 + 2M elb + 4M dist ( 14 
)
with

M prox 1 = ρ l 1 S prox 1 (15a) M prox 2 = ρ l 1 S prox 2 (15b) l elb = w p + 2 a 1 cos(β) + e (15c) M elb = ρ l elb S elb (15d) M dist = ρ l 2 S dist (15e) l 2 = l 2 2eq + (a 1 -a 2 ) 2 (cos(β)) 2 (15f)
The natural frequencies of the manipulator are derived from its elastodynamic model obtained with the Matrix Structural Analysis method. Let M and K be the mass and stiffness matrices of the IRSBot-2, respectively. The natural frequencies of the manipulator are proportional to the square root of the eigenvalues of matrix M -1 K. Let f 1 IRS be the smallest frequency from the first natural frequencies computed at both ends of the optimal trajectory. f 1 IRS is the third objective function of the optimization problem at hand.

Let bb max w , M max IRS and f 1min IRS be the maximum value of bb w , the maximum value of M IRS and the minimum value of f 1 IRS , respectively. Those values were assessed by selecting 10000 designs randomly in the definition domain.

As a consequence, the three objective functions are normalized and weighted in order to convert the multi-objective optimization problem into mono-objective optimization problem. The obtained objective function f pb2 is expressed as:

f pb2 = 0.2 bb w bb max w + 0.3 M IRS M max IRS + 0.5 f 1min IRS f 1 IRS (16)
Note that f pb2 is bounded between 0 and 1. The weighting factors were chosen based on some discussions between the partners of the French National Project ANR-2011-BS3-006-01-ARROW.

Decision Variables

The decision variables of the optimization problem are the components of vector x 2 , namely,

x 2 = a 1 a 2 w Pa β φ oprox 1 φ oprox 2 φ odist φ oelb th (17) 
It is apparent that those decision variables, described in Sec. 2, do not affect the objective function and constraints of the first design optimization problem [START_REF] Brogardh | Device for relative movement of two elements[END_REF]. Besides, the two design optimization problems do not have any decision variable in common. Consequently, they can be solved in cascade.

Constraints

The optimization problem is subject to a set of constraints related to the elastostatic and dynamic performance of the robot. First, the required motor torques should be lower than the peak torque T peak given in Tab.2, T Peak = 89.1 Nm, along the trajectory not to damage the motors. Then, the root-mean-square τ RMS of the motor torques should be smaller than the continuous torque T C = 45 Nm to avoid temperature increase.

Moreover, for a 20 N force exerted on the moving-platform along y 0 , the point-displacement of the latter should be smaller than 0.5 mm. Likewise, for a 0.1 Nm moment applied on the moving-platform about any axis, the corresponding orientation displacement of the moving-platform should be smaller than 0.5 deg. The foregoing constraints related to the manipulator stiffness are expressed as δ max t ≤ δ t lim in the problem formulation.

Optimization Problem Formulation

The second design optimization problem can be formulated as follows, minimize f pb2 [START_REF] Briot | Optimal technology-oriented design of parallel robots for high-speed machining applications[END_REF] over x 2 = a 1 a 2 w Pa β φ oprox 1 φ oprox 2 φ odist φ oelb th subject to τ max ≤ T Peak τ RMS ≤ T C δ max t ≤ δ t lim

Optimal Solution of Problem (18)

A genetic algorithm was used to solve problem (18) and converged after seven generations, each population containing 50 individuals. Then, a local optimum decision variable vector x * 2 of optimization problem [START_REF] Briot | Optimal technology-oriented design of parallel robots for high-speed machining applications[END_REF] was obtained with MATLAB fmincon function and is summed up in Tab. 5. The corresponding objective functions and constraint values are given in Tab. 6. The size of the robot and its shape are illustrated in Fig. 11. 

CONCLUSION

This paper dealt with the design optimization of the IRSBot-2 based on an optimized test trajectory for fast pick and place operations. The goal was to minimize the size of the manipulator and its mass while maximizing its first natural frequency, as function of prescribed geometric, elastostatic and dynamic performances. This is a classical but rather complex problem because of the number of decision variables, constraints and criteria involved. To make the problem more tractable, it was decomposed into two independent problems that could be solved in cascade. The optimal test trajectory was defined in such a way that the cycle time is a minimum while the maximum acceleration of the moving platform remains lower than 20 G and the time trajectory functions are C 2 continuous. S-curves were used to define the path and the motion profile of the trajectory simultaneously.

The optimal design of the IRSBot-2 minimizes volume of its bounding box, its mass in motion and maximizes its first natural frequencies at both ends of the optimal test trajectory. This optimal design will be used for the realization of an industrial prototype of the IRSBot-2 later on. The design methodology followed for the IRSBot-2 will be further studied for application to other parallel manipulators.
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TABLE 1 .

 1 SPECIFICATIONS FOR THE IRSBot-2

	Accuracy ε lim

TABLE 2 .

 2 DATASHEET OF THE TMB140-70 ETEL MOTOR

TABLE 3 .

 3 OPTIMUM DECISION VARIABLES OF PB[START_REF] Angeles | Kinetostatic design of an innovative schonflies-motion generator[END_REF].

	0.1041 0.0055	2	0.6205	4.5313

t 4 [s] t 1 [s] h ′ [mm] v B [m.s -1 ] a B [m.s -2 ] h FIGURE 7. BOUNDING BOX OF THE IRSBOT-2.

TABLE 4 .

 4 OPTIMAL SOLUTION OF PROBLEM (10)A bb [m 2 ] l 1 [mm] l 2eq [mm] b [mm] p [mm] α I [rad]

	0.2528	331.08	430.56	121.42	30.20	2.0350

TABLE 5 .

 5 DESIGN PARAMETERS OF THE OPTIMAL DESIGN OF THE IRSBOT-2

	a 1	a 2	w Pa	β	φ oprox 1 φ oprox 2	φ odist	φ oelb	th
	[mm]	[mm]	[mm]	[rad]	[mm]	[mm]	[mm]	[mm] [mm]
	183.131 36.345 80.675 0.76814 99.803	10	37.854 75.454	2

TABLE 6 .

 6 OBJECTIVE FUNCTIONS AND CONSTRAINTS ASSOCIATED WITH THE OPTIMAL SOLUTION OF PROBLEM (18) Kg] [Hz] [Nm] [Nm] [mm] [mm] [mm] [deg] [deg] [deg] 0.26 2.15 52.31 75.88 44.03 0.001 0.104 0.001 0.033 0.003 0.006

	bb w M IRS	f 1 IRS	max T mean T	δ tx	δ ty	δ tz	δ rx	δ ry	δ rz
	[m] [								
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