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WEAK ERROR IN NEGATIVE SOBOLEV SPACES FOR THE

STOCHASTIC HEAT EQUATION

OMAR ABOURA

Abstract. In this paper, we make another step in the study of weak error of the sto-
chastic heat equation by considering norms as functional.

1. Introduction

Let (Ω,F , P ) a probability space and T > 0 a fixed time. (W (t))t≥0 will be a cylindrical
Brownian motion on L2(0, 1). We consider the stochastic heat equation, written in abstract
form in L2(0, 1): X(0) = 0, for all t ∈ [0, T ] X(t, 0) = X(t, 1) = 0 and

dX(t) =
1

2

d2

dx2
X(t)dt + dW (t). (1.1)

It is well know that this equation admits a unique weak solution (from the analytical point
of view).

Let N ∈ N
∗ and h := T/N . Consider (tk)0≤k≤N the uniform subdivision of [0, T ] defined

by tk := kh. We consider the implicit Euler scheme defined as follow:

XN (tk+1) = XN (tk) + h
1

2

d2

dx2
XN (tk+1) + ∆W (k + 1), (1.2)

where ∆W (k + 1) = W (tk+1)−W (tk).

Let f : L2(0, 1) → R be a functional. The stong error is the study of E
∣

∣XN (T )−X(T )
∣

∣

2

L2(0,1)
.

The weak error is the study of
∣

∣Ef
(

XN (T )
)

− Ef (X(T ))
∣

∣ with respect to the time mesh
h.

In [6], A. Debussche considers a more general stochastic equation and a more general
functional than the one considered here. He obtains a weak error of order 1/2, which is
the double of that proved by [15] for the strong speed of convergence. The novelty of this
paper his to prove that for the square of the norm the weak error his better than 1/2 in
negative Sobolev spaces.

2. Preliminaries and main result

Notations. We collect here some of the notations used through the paper. < ., . >L2(0,1)

is the inner product in L2(0, 1), H1
0 (0, 1) is the Sobolev space of functions f in L2(0, 1)

vanishing in 0 and 1 with first derivatives in L2(0, 1), H2(0, 1) is the Sobolev space of func-
tions f in L2(0, 1) with first and second derivatives in L2(0, 1). Finally, for m = 1, 2, . . . ,

let (em(x) =
√
2 sin(mπx) and λm = 1

2(πm)2 denote the eigenfunction and eigenvalues of
−∆ with Dirichlet boundary conditions on (0, 1).

An L2(0, 1)-valued stochastic process (X(t))t∈[0,T ] is said to be a solution of (1.1) if:

X(0) = 0 and for all g ∈ H1
0 (0, 1) ∩H2(0, 1) we have

< X(t), g >L2(0,1)=

∫ t

0
< X(s),

1

2

d2

dx2
g >L2(0,1) ds+ < W (t), g >L2(0,1) .

1
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It is well know that (1.1) admits a unique solution: see [4]. Then (em)m≥1 is a complete
orthonormal basis of L2(0, 1). If we denote by λm := 1

2(πm)2, Wλm
(t) := 〈W (t), em〉H

and Xλm
(t) denote the solution of the evolution equation: Xλm

(0) = 0 and for t > 0:

dXλm
(t) = −λmXλm

(t)dt+ dWλm
(t).

Then the processes (Xλm
(.))m≥1 are independent and X(t) =

∑

m≥1 Xλm
(t)em for all

t ≥ 0.
A sequence of L2(0, 1)-valued

(

XN (tk)
)

k=0,...,N
is said to be a solution of (1.2) if:

XN (t0) = 0 and for all k = 0, . . . , N − 1 and for all g ∈ H1
0 (0, 1) ∩H2(0, 1) we have

< XN (tk+1), g >L2(0,1)= < XN (tk), g >L2(0,1) +h < XN (tk+1),
1

2

d2

dx2
g >L2(0,1)

+ < ∆W (k + 1), g >L2(0,1) .

It is well know that (1.2) has a unique solution and there exists a constant C > 0,

independent of N , such that E
∣

∣XN (T )−X(T )
∣

∣

2

L2(0,1)
≤ Ch

1

2 where h = T/N . Now if

we denote by
(

XN
λm

(tk)
)

k=0,...,N
the solution of: XN

λm
(t0) = 0 and for k = 0, . . . , N − 1

XN
λm

(tk+1) = XN
λm

(tk)− λmhXN
λm

(tk+1) +Wλm
(k + 1).

The random vectors (XN
λm

(tk), k = 0, . . . , N)m=1,2,... are independent and XN (tk) =
∑

m≥1 X
N
λm

(tk)em.

Let p ≥ 0; we define the spaces H−p as the completion of L2(0, 1) for the topology

induced by the norm |u|2H−p :=
∑

m≥1 λ
−p
m < u, em >2

H . The following theorem improves

the speed of convergence of XN to X for negative Sobolev spaces.

Theorem 2.1. Suppose that h < 1 and let p ∈ [0, 12 ). There exists a constant C > 0,
independent of N , such that

∣

∣

∣
E
∣

∣XN (T )
∣

∣

2

H−p − E |X(T )|2H−p

∣

∣

∣
≤ Chp+

1

2 .

3. Proof of the theorem 2.1

The proof of the theorem will be done in several steps. First we recall the weak error
of the Ornstein-Uhlenbeck process. Secondly we prove some technical lemmas. Then we
decompose the weak error and analyse each term of these decomposition.

3.1. Weak error of the Ornstein-Uhlenbeck process. Let λ > 0, (Wλ(t))t≥0 be a one
dimensional Brownian motion and (Xλ(t))t≥0 be the Ornstein Uhlenbeck process solution
of the following stochastic differential equation: Xλ(0) = x ∈ R and

dXλ(t) = −λXλ(t)dt+ dWλ(t). (3.1)

In this step, we study two properties associated with this process: the Kolmogorov
equation and the implicit Euler scheme.

Let
(

Xt,x
λ (s)

)

t≤s≤T
be the solution of (3.1) starting from x at time t. It is well know

that Xt,x
λ (T ) is a normal random variable:

Xt,x
λ (T ) ∼ N

(

e−λ(T−t)x,
1− e−2λ(T−t)

2λ

)

.
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For t ∈ [0, T ] and x ∈ R set uλ(t, x) := E
∣

∣

∣
Xt,x

λ (T )
∣

∣

∣

2
. Then uλ is the solution of the follow-

ing partial differential equation, called Kolmogorov equation: for all x ∈ R, uλ(T, x) = |x|2
and for all (t, x) ∈ [0, T )× R

− ∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x)− λx

∂

∂x
u(t, x). (3.2)

Since Xt,x
λ (T ) has a normal law, we can write uλ explicitely:

uλ(t, x) =
1− e−2λ(T−t)

2λ
+ e−2λ(T−t)x2. (3.3)

With this expression we see that uλ ∈ C1,2([0, T ] × R) and we have the following deriva-
tives:

∂

∂x
uλ(t, x) =2e−2λ(T−t)x, (3.4)

∂2

∂x2
uλ(t, x) =2e−2λ(T−t), (3.5)

∂

∂t
uλ(t, x) =− e−2λ(T−t) + 2λe−2λ(T−t)x2, (3.6)

∂2

∂t∂x
uλ(t, x) =4λe−2λ(T−t)x. (3.7)

The implicit Euler scheme for the Ornstein-Uhlenbeck equation (3.1) starting from 0 at
time t0, is defined as follow: XN

λ (t0) = 0 and for k = 0, . . . , N − 1

XN
λ (tk+1) = XN

λ (tk)− λhXN
λ (tk+1) + ∆Wλ(k + 1), (3.8)

where ∆Wλ(k + 1) = Wλ(tk+1)−Wλ(tk). Since we have the following equation

XN
λ (tk+1) =

1

1 + λh
XN

λ (tk) +
1

1 + λh
∆Wλ(k + 1), (3.9)

we see that the scheme is well defined.

Lemma 3.1. For k = 1, . . . , N we have XN
λ (tk) =

∑k−1
j=0

∆Wλ(k−j)
(1+λh)j+1 .

Proof. We proceed by induction. If k = 1, we have XN
λ (t1) =

1
1+λh

∆Wλ(1). Suppose the

result true until k. Using (3.9), we have

XN
λ (tk+1) =

k−1
∑

j=0

∆Wλ(k − j)

(1 + λh)j+2
+

1

1 + λh
∆Wλ(k + 1)

=
k
∑

l=1

∆Wλ(k + 1− l)

(1 + λh)l+1
+

1

(1 + λh)0+1
∆Wλ(k + 1− 0),

which concludes the proof. �

Lemma 3.2. For all k = 0, . . . , N , we have the following bound E
∣

∣XN
λ (tk)

∣

∣

2 ≤ 1
2λ .

Proof. Using the independence of the increments of the Brownian motion and Lemma 3.1,
we have

E
∣

∣XN
λ (tk)

∣

∣

2
=

k−1
∑

j=0

1

(1 + λh)2(j+1)
E |∆Wλ(k − j)|2 = h

k−1
∑

j=0

1

(1 + λh)2(j+1)
.
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Let a := 1/(1 + λh)2; we deduce that E
∣

∣XN
λ (tk)

∣

∣

2
= ha1−ak

1−a
. Simple computations yield

ha/(1 − a) = 1/(2λ + λ2h), which implies

E
∣

∣XN
λ (tk)

∣

∣

2
=

1

2λ+ λ2h

(

1− 1

(1 + λh)2k

)

.

This concludes the proof. �

For t ≥ 0, we denote Fλ
t := σ (Wλ(s), s ≤ t) and D1,2

λ the Malliavin Sobolev space with
respect to Wλ.

Lemma 3.3. For all k = 1, . . . , N , we have XN
λ (tk) ∈ D1,2

λ ∩ L2
(

Fλ
tk

)

.

Proof. This is a consequence of Lemma 3.1, the fact that L2
(

Fλ
tk

)

and D1,2
λ are linear

space and for all j = 0, . . . , k − 1, ∆Wλ(k − j) ∈ D1,2
λ ∩ L2

(

Fλ
tk

)

. �

As usual in the study of weak error, we need to use a continuous process that interpolates
the Euler scheme. The interpolation process that we use was introduced in [1]. We recall
its construction and prove some of its properties.

Let k ∈ {0, . . . , N − 1} be fixed. In order to interpolate the scheme between the points
(

tk,X
N
λ (tk)

)

and
(

tk+1,X
N
λ (tk+1)

)

, we define the process as follows: for t ∈ [tk, tk+1], set

XN
λ (t) := XN

λ (tk)− λE
(

XN
λ (tk+1)|Ft

)

(t− tk) +Wλ(t)−Wλ(tk). (3.10)

In the sequel, we will use the following processes: for t ∈ [tk, tk+1]

βk,N
λ (t) :=− λE

(

XN
λ (tk+1)|Ft

)

, (3.11)

zk,Nλ (t) :=− λE
(

DtX
N
λ (tk+1)|Ft

)

, (3.12)

γk,Nλ (t) :=1 + (t− tk)z
k,N
λ (t). (3.13)

The next lemma relates the above processes.

Lemma 3.4. Let k = 0, . . . , N − 1. For t ∈ [0, T ], we have

dβk,N
λ (t) =zk,Nλ (t)dWλ(t), zk,Nλ (t) = − λ

1 + λh
,

γk,Nλ (t) =1− (t− tk)
λ

1 + λh
, dXN

λ (t) = βk,N
λ (t)dt+ γk,Nλ (t)dWλ(t).

Proof. Using the Clark-Ocone formula and Lemma 3.3, we have

XN
λ (tk+1) = E

(

XN
λ (tk+1)|Ft

)

+

∫ tk+1

t

E
(

DsX
N
λ (tk+1)|Fs

)

dWλ(s).

Multiplying by (−λ), we deduce

−λXN
λ (tk+1) = βk,N

λ (t) +

∫ tk+1

t

zk,Nλ (s)dWλ(s),

which gives the first identity. Applying the Malliavin derivative to (3.9), we have for
s ∈ [tk, tk+1] DsX

N
λ (tk+1) =

1
1+λh

. Multiplying by (−λ), we deduce the second and third
equalities.

Finaly, Itô’s formula gives us

d
(

(t− tk)β
k,N
λ (t)

)

= (t− tk)z
k,N
λ (t)dWλ(t) + βk,N

λ (t)dt,

which concludes the proof. �
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Lemma 3.5. Let k ∈ {0, . . . , N − 1}. For any s ∈ [tk, tk+1], we have

E
∣

∣

∣
βk,N
λ (s)

∣

∣

∣

2
≤2λ, E

∣

∣XN
λ (s)

∣

∣

2 ≤ 1

2λ
+ h, Eβk,N

λ (s)XN
λ (s) ≤ 1.

Proof. Applying the conditionnal expectation with respect to Fs on both sides of (3.9) for
s ∈ [tk, tk+1) we have

E
(

XN
λ (tk+1)|Fs

)

=
1

1 + λh

[

XN
λ (tk) + (Wλ(s)−Wλ(tk))

]

.

Multiplying by (−λ) and using (3.11), we obtain

βk,N
λ (s) = − λ

1 + λh
XN

λ (tk)−
λ

1 + λh
(Wλ(s)−Wλ(tk)) . (3.14)

The independence of Ftk and Wλ(s)−Wλ(tk) yields

E
∣

∣

∣
βk,N
λ (s)

∣

∣

∣

2
=

λ2

(1 + λh)2
E
∣

∣XN
λ (tk)

∣

∣

2
+

λ2

(1 + λh)2
(s− tk).

Using Lemma 3.2, we deduce

E
∣

∣

∣
βk,N
λ (s)

∣

∣

∣

2
≤ λ

2(1 + λh)2
+

λ2h

(1 + λh)2
,

which proves the first upper estimate.
Using (3.10) and (3.14), we have for s ∈ [tk, tk+1]

XN
λ (s) =

(

1− λ(s− tk)

1 + λh

)

[

XN
λ (tk) + (Wλ(s)−Wλ(tk))

]

. (3.15)

Taking the expectation of the square and using the independence of Ftk and Wλ(s) −
Wλ(tk), we have

E
∣

∣XN
λ (s)

∣

∣

2
=

(

1− λ(s− tk)

1 + λh

)2
[

E
∣

∣XN
λ (tk)

∣

∣

2
+ (s− tk)

]

≤ E
∣

∣XN
λ (tk)

∣

∣

2
+ h ≤ 1

2λ
+ h,

where the last upper estimates follows from Lemma 3.2.
Multiplying (3.14) and (3.15), taking expectation we obtain

E
(

XN
λ (s)βk,N

λ (s)
)

=
−λ

1 + λh

(

1− λ(s− tk)

1 + λh

)

[

E
∣

∣XN
λ (tk)

∣

∣

2
+ (s − tk)

]

.

Using Lemma 3.2, we deduce
∣

∣

∣
E
(

XN
λ (s)βk,N

λ (s)
)∣

∣

∣
≤ λ

1 + λh

1

2λ
+

λh

1 + λh
.

This concludes the proof. �

3.2. Some useful analytical lemmas. We at first give a precise upper bound of a
series defined in terms of the eigenvalues of the Laplace operator with Dirichlet boundary
conditions.

Lemma 3.6. Let p ∈ [0, 12 ). There exists a constant C > 0, such that for all α > 0, we
have

∑

m≥1

λ−p
m e−2λmα ≤ Cαp− 1

2
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Proof. The function (x ∈ R+ 7→ x−2pe−2x2α) is decreasing. So by comparaison, we obtain

∑

m≥1

m−2pe−2m2α ≤
∫ ∞

0
x−2pe−2x2αdx ≤ αp− 1

2

∫ ∞

0
y−2pe−2y2dy = Cαp− 1

2 .

Since λm = 1
2(πm)2, we deduce the desired upper estimate. �

Lemma 3.7. Let q > 0. There exists a constant C > 0, such that for all α > 0

∑

m≥1

λq
me−λmα ≤ C

(

1 +
1

αq+ 1

2

)

.

Proof. Let f(x) = x2qe−x2α. His derivatives is given by f ′(x) = 2x2q−1e−x2α(q − αx2).
Case 1: α > q/4. Then f is decreasing on [2,∞) and a standard comparaison argument
yields

∑

m≥1

m2qe−m2α ≤e−α + 4qe−4α +
∑

m≥3

∫ m

m−1
x2qe−x2αdx

≤C +

∫ ∞

0
x2qe−x2αdx

≤C + α−q− 1

2

∫ ∞

0
y2qe−y2dy

≤C(1 + α−q− 1

2 ).

Case 2: α ≤ q/4. The function f is increasing on [0,
√

q/α]. So for each m = 1, . . . , [
√

q
α
]−

1, we have

m2qe−m2α ≤
∫ m+1

m

x2qe−x2αdx.

On the interval [
√

q
α
,∞), f is decreasing. So for each integer m ≥ [

√

q
α
] + 2, we have

m2qe−m2α ≤
∫ m

m−1
x2qe−x2αdx.

The above upper estimates yield

∑

m≥1

m2qe−m2α ≤
∑

m≤[
√

q

α
]−1

∫ m+1

m

x2qe−x2αdx+
∑

m≥[
√

q

α
]+2

∫ m

m−1
x2qe−x2αdx

+
∑

m∈{[
√

q

α
],[
√

q

α
]+1}

m2qe−m2α

≤
∫ ∞

0
x2qe−x2αdx+

∑

m∈{[
√

q

α
],[
√

q

α
]+1}

m2qe−m2α

≤Cα−q− 1

2 +
∑

m∈{[
√

q

α
],[
√

q

α
]+1}

m2qe−m2α

Now we study each term of the sum in the right hand side. Since q ≥ α, we have
[
√

q

α

]2q

e−[
√

q

α ]
2
α ≤

( q

α

)q

≤
( q

α

)q+ 1

2 ≤ Cα−q− 1

2 .
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For the second term, we remark that since q ≥ α
[√

q
α

]

+ 1 ≤ 2
[√

q
α

]

≤ 2
√

q
α
. This

implies
([
√

q

α

]

+ 1

)2q

e−([
√

q

α ]+1)
2
α ≤

(

2

√

q

α

)2q

≤ Cα−q− 1

2 .

Therefore, in both cases we obtain

∑

m≥1

m2qe−m2α ≤ C

(

1 +
1

αq+ 1

2

)

.

Since λm = 1
2(πm)2, the proof is complete. �

Lemma 3.8. Let p ∈ [0, 12) and n ∈ N
∗. Let (v(k,m))(k,m)∈{0,...,N−2}×N∗ be a sequence

such that for all k ∈ {0, . . . , N − 2} and m ≥ 1, we have

0 ≤ v(k,m) ≤ λn−p
m hn+1e−2λm(T−tk+1).

Then, there exists a constant C > 0, independent of N , such that

∑

m≥1

N−2
∑

k=0

v(k,m) ≤ Chp+
1

2 .

Proof. First we remark that T − tk+1 = h(N − k − 1). Using Lemma 3.7, we deduce the
existence of C depending on n and p, but independent of N , such that for k = 0, . . . , N−2
:

∑

m≥1

v(k,m) ≤Chn+1

(

1 +
1

hn−p+ 1

2 (N − k − 1)n−p+ 1

2

)

≤C

(

hn+1 +
hp+

1

2

(N − k − 1)n−p+ 1

2

)

.

Therefore, there exists a constant C as above such that

∑

m≥1

N−2
∑

k=0

v(k,m) ≤C

(

hn + hp+
1

2

N−2
∑

k=0

1

(N − k − 1)n−p+ 1

2

)

≤C

(

hn + hp+
1

2

N−1
∑

l=1

1

ln−p+ 1

2

)

≤ Chp+
1

2 ,

which concludes the proof. �

3.3. Decomposition of the weak error. We follow the classical decomposition intro-
duced in [16]. The definition of uλ(t, x) in section 3.1 yields

E
∣

∣XN (T )
∣

∣

2

H−p − E |X(T )|2H−p =
∑

m≥1

λ−p
m

(

E
∣

∣XN
λm

(T )
∣

∣

2 − E |Xλm
(T )|2

)

=
∑

m≥1

λ−p
m

(

Euλm

(

T,XN
λm

(T )
)

− uλm

(

0,XN
λm

(0)
))

.

Let δN (k,m) := λ−p
m

(

Euλm

(

tk+1,X
N
λm

(tk+1)
)

− Euλm

(

tk,X
N
λm

(tk)
))

; then

E
∣

∣XN (T )
∣

∣

2

H−p − E |X(T )|2H−p =
∑

m≥1

N−1
∑

k=0

δN (k,m).
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Note that using Lemmas 3.3, 3.4 and (3.4) we deduce that for any k = 0, . . . , N − 1

E

∫ tk+1

tk

∣

∣

∣

∣

γk,Nλ (t)
∂u

∂x
(t,XN

λ (t))

∣

∣

∣

∣

2

dt < ∞.

From now, we do not justify that the stochastic integral are centered. Itô’s formula and
Lemma 3.4, we imply that for k = 0, . . . , N − 1

δN (k,m) =λ−p
m E

∫ tk+1

tk

{

∂

∂t
uλm

+ βk,N
λm

(t)
∂

∂x
uλm

+
1

2

∣

∣

∣
γk,Nλm

(t)
∣

∣

∣

2 ∂2

∂x2
uλm

}

(

t,XN
λm

(t)
)

dt

= λ−p
m E

∫ tk+1

tk

{

Ik,Nλm
(t) +

1

2
Jk,N
λm

(t)

}

dt,

where

Ik,Nλm
(t) :=

(

βk,N
λm

(t) + λmXN
λm

(t)
) ∂

∂x
uλm

(

t,XN
λm

(t)
)

, (3.16)

Jk,N
λm

(t) :=

(

∣

∣

∣
γk,Nλm

(t)
∣

∣

∣

2
− 1

)

∂2

∂x2
uλm

(

t,XN
λm

(t)
)

. (3.17)

This yields the following decomposition:

E
∣

∣XN (T )
∣

∣

2

H−p −E |X(T )|2H−p =
∑

m≥1

δN (N − 1,m) +
∑

m≥1

N−2
∑

k=0

λ−p
m E

∫ tk+1

tk

Ik,Nλm
(t)dt

+
1

2

∑

m≥1

N−2
∑

k=0

λ−p
m E

∫ tk+1

tk

Jk,N
λm

(t)dt. (3.18)

Now we study each term of this decomposition.

Lemma 3.9. There exists a constant C, independant of N , such that
∑

m≥1

∣

∣δN (N − 1,m)
∣

∣ ≤ Chp+
1

2 .

This study is similar to the third step of [6], page 97.

Proof. Using the definition of uλm
(t, x) (3.3) and (3.9), we have

uλm

(

tN ,XN
λm

(tN )
)

=
∣

∣XN
λm

(tN )
∣

∣

2
=

1

(1 + λmh)2
∣

∣XN
λm

(tN−1) + ∆Wm(N)
∣

∣

2
,

uλm

(

tN−1,X
N
λm

(tN−1)
)

=
1− e−2λmh

2λm

+ e−2λmh
∣

∣XN
λm

(tN−1)
∣

∣

2
.

By independence between ∆Wm(N) and XN
λm

(tN−1), we have

δN (N − 1,m) =λ−p
m

{

1

(1 + λmh)2
− e−2λmh

}

E
∣

∣XN
λm

(tN−1)
∣

∣

2

+
h

λp
m (1 + λmh)2

− 1− e−2λmh

2λ1+p
m

.

Let δ1 (λm) := 1−2e−2λmh

2λm
1+p , δ2 (λm) := h

λm
p(1+λmh)2

, and

δ3 (λm) := λ−p
m

{

1

(1 + λmh)2
− e−2λmh

}

E
∣

∣XN
λm

(tN−1)
∣

∣

2
.
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With these notations we have

δN (N − 1,m) ≤ δ1 (λm) + δ2 (λm) + δ3 (λm) .

First, we study δ1 (λm). Since 1−e−2λh

2λ =
∫ h

0 e−2λxdx, using Lemma 3.6, we obtain

∑

m≥1

δ1 (λm) =

∫ h

0

∑

m≥1

λ−p
m e−2λmxdx ≤ C

∫ h

0
xp−

1

2dx = Chp+
1

2 . (3.19)

Now we study δ2 (λm). Since
(

x ∈ [0,∞) 7→ x−2p(1 + x2h)2
)

is decreasing, we have for

p ∈ [0, 12 )

∑

m≥1

δ2 (λm) ≤Ch

∫ ∞

0

1

x2p (1 + x2h)2
dx ≤ Chp+

1

2

∫ ∞

0

y−2p

(1 + y2)2
dy ≤ Chp+

1

2 . (3.20)

Finally, we study δ3 (λm). Using Lemma 3.2, we have

δ3 (λm) ≤ λ−p
m

{

1

(1 + λmh)2
− e−2λmh

}

1

2λm

.

Since 1
(1+λh)2

− e−2λh = 2λ
∫ h

0

{

e−2λx − 1
(1+λx)3

}

dx, we have

δ3 (λm) ≤ λ−p
m

∫ h

0

{

e−2λmx +
1

(1 + λmx)3

}

dx.

Using Lemma 3.6, we have for p ∈ [0, 12)

∑

m≥1

λ−p
m

∫ h

0
e−2λmxdx ≤ C

∫ h

0
xp−

1

2 dx ≤ Chp+
1

2 .

Now since for x ≥ 0 the map
(

y ∈ R+ 7→ y−2p(1 + y2x)−3
)

is decreasing, we have for

p ∈ [0, 12 )

∑

m≥1

λ−p
m

(1 + λmx)3
≤ C

∫ ∞

0

1

y2p (1 + y2x)
dy ≤ Cxp−

1

2

∫ ∞

0

1

z2p (1 + z2)3
dz ≤ Cxp−

1

2 ,

and hence Fubini’s theorem yields

∑

m≥1

∫ h

0

λ−p
m

(1 + λmx)3
dx ≤ C

∫ h

0
xp−

1

2 dx ≤ Chp+
1

2 .

The above inequalities imply
∑

m≥1 δ3 (λm) ≤ Chp+
1

2 . This inequality, (3.19) and (3.20)
give the stated upper estimate. �

Lemma 3.10. There exists a constant C > 0, independent of N , such that

∑

m≥1

N−1
∑

k=0

λ−p
m E

∫ tk+1

tk

∣

∣

∣
Jk,N
λm

(t)
∣

∣

∣
dt ≤ Chp+

1

2 .

Proof. Using Lemma 3.4, we have
∣

∣

∣
γk,Nλm

(t)
∣

∣

∣

2
− 1 = −2(t− tk)λm

1 + λmh
+

|t− tk|2 λm
2

(1 + λmh)2
.

Using (3.5) and (3.17), we have

λ−p
m E

∫ tk+1

tk

∣

∣

∣
Jk,N
λm

(t)
∣

∣

∣
dt ≤ C

(

λ1−p
m h2 + λ2−p

m h3
)

e−2λm(T−tk+1).

Lemma 3.8 concludes the proof. �
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Lemma 3.11. There exists a constant C > 0, independant of N , such that

∑

m≥1

N−2
∑

k=0

λ−p
m E

∫ tk+1

tk

∣

∣

∣
Ik,Nλm

(t)
∣

∣

∣
dt ≤ Chp+

1

2 .

Proof. Let Ik,N1,λm
(t) := Eβk,N

λm
(t) ∂

∂x
uλm

(

t,XN
λm

(t)
)

+EλmXN
λm

(tk+1)
∂
∂x

uλm

(

tk+1,X
N
λm

(tk+1)
)

and Ik,N2,λm
(t) := −λmEXN

λm
(tk+1)

∂
∂x

uλm

(

tk+1,X
N
λm

(tk+1)
)

+λmEXN
λm

(t) ∂
∂x

uλm

(

t,XN
λm

(t)
)

.

Using (3.16), we have

EIk,Nλm
(t) = Ik,N1,λm

(t) + Ik,N2,λm
(t). (3.21)

First we study Ik,N1,λm
(t). Using (3.4), we know that ∂

∂x
uλm

∈ C1,2. So using Itô’s formula
and Lemma 3.4, we have

d
∂

∂x
uλm

(

s,XN
λm

(s)
)

=

{

∂2

∂t∂x
uλm

+ βk,N
λm

(s)
∂2

∂x2
uλm

}

(

s,XN
λm

(s)
)

ds

+ γk,Nλm
(s)

∂2

∂x2
uλm

(

s,XN
λm

(s)
)

dWλm
(s) (3.22)

Using this equation, Lemma 3.4 and the Itô formula we deduce

d

[

βk,N
λm

(s)
∂

∂x
uλm

(

s,XN
λm

(s)
)]

=

{

βk,N
λm

(s)
∂2

∂t∂x
uλm

+
∣

∣

∣
βk,N
λm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

+zk,Nλm
(s)γk,Nλm

(s)
∂2

∂x2
uλm

}

(

s,XN
λm

(s)
)

ds

+

{

βk,N
λm

(s)γk,Nλm
(s)

∂2

∂x2
uλm

+ zk,Nλm
(s)

∂

∂x
uλm

}

(

s,XN
λm

(s)
)

dWλm
(s).

Integrating between t and tk+1, taking expectation, and using the fact that βk,N
λm

(tk+1) =

−λmXN
λm

(tk+1), so that Ik,N1,λm
(tk+1) = 0, we obtain

Ik,N1,λm
(t) = −E

∫ tk+1

t

{

βk,N
λm

(s)
∂2

∂t∂x
uλm

+
∣

∣

∣
βk,N
λm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

+zk,Nλm
(s)γk,Nλm

(s)
∂2

∂x2
uλm

}

(

s,XN
λm

(s)
)

ds. (3.23)

Using (3.7) and Lemma 3.5, we have for s ∈ [t, tk+1]

Eβk,N
λm

(s)
∂2

∂t∂x
uλm

(

s,XN
λm

(s)
)

= 4λme−2λm(T−s)Eβk,N
λm

(s)XN
λm

(s) ≤ Cλme−2λm(T−tk+1),

and hence

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsEβk,N
λm

(s)
∂2

∂t∂x
uλm

(

s,XN
λm

(s)
)

≤ Cλ1−p
m h2e−λm(T−tk+1).

Using Lemma 3.8, and the above inequality, we deduce

∑

m≥1

N−2
∑

k=0

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsEβk,N
λm

(s)
∂2

∂t∂x
uλm

(

s,XN
λm

(s)
)

≤ Chp+
1

2 . (3.24)

Using (3.5) and Lemma 3.5, we have for s ∈ [tk, tk+1]

E
∣

∣

∣
βk,N
λm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

(

s,XN
λm

(s)
)

= 4λme−2λm(T−s) ≤ 4λme−2λm(T−tk+1),
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so that

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsE
∣

∣

∣
βk,N
λm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

(

s,XN
λm

(s)
)

≤ Cλ1−p
m h2e−2λ(T−tk+1).

Thus, Lemma 3.8 yields

∑

m≥1

N−2
∑

k=0

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsE
∣

∣

∣
βk,N
λm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

(

s,XN
λm

(s)
)

≤ Chp+
1

2 . (3.25)

Using equations (3.5) and Lemma 3.4 we have for all s ∈ [t, tk+1]

E

∣

∣

∣

∣

zk,Nλm
(s)γk,Nλm

(s)
∂2

∂x2
uλm

(

s,XN
λm

(s)
)

∣

∣

∣

∣

=
2λm

1 + λmh

(

1− (s− tk)λm

1 + λmh

)

e−2λm(T−s)

≤Cλme−2λm(T−tk+1).

Therefore, we obtain

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsE

∣

∣

∣

∣

zk,Nλm
(s)γk,Nλm

(s)
∂2

∂x2
uλm

(

s,XN
λm

(s)
)

∣

∣

∣

∣

≤ Cλ1−p
m h2e−2λm(T−tk+1).

Using once more Lemma 3.8, we deduce

∑

m≥1

N−2
∑

k=0

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsE

∣

∣

∣

∣

zk,Nλm
(s)γk,Nλm

(s)
∂2

∂x2
uλm

(

s,XN
λm

(s)
)

∣

∣

∣

∣

≤ Chp+
1

2 .

Plugging this inequality together with (3.24) and (3.25) into (3.23) gives us

∑

m≥1

N−2
∑

k=0

λ−p
m E

∫ tk+1

tk

∣

∣

∣
Ik,N1,λm

(t)
∣

∣

∣
dt ≤ Chp+

1

2 . (3.26)

Now we study Ik,N2,λm
(t). Using Lemma 3.4, equation (3.22) and the Itô formula we have

dXN
λm

(s)
∂

∂x
uλm

(

s,XN
λm

(s)
)

=

{

XN
λm

(s)
∂2

∂t∂x
uλm

+XN
λm

(s)βk,N
λm

(s)
∂2

∂x2
uλm

+βk,N
λm

(s)
∂

∂x
uλm

+
∣

∣

∣
γk,Nλm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

}

(

s,XN
λm

(s)
)

ds

+

{

γk,Nλm
(s)

∂

∂x
uλm

+XN
λm

(s)γk,Nλm
(s)

∂2

∂x2
uλm

}

(

s,XN
λm

(s)
)

dWλm
(s)

So integrating between t and tk+1 and taking expectation, we obtain

Ik,N2,λm
(t) = −λmE

∫ tk+1

t

{

XN
λm

(s)
∂2

∂t∂x
uλm

+ βk,N
λm

(s)
∂

∂x
uλm

+XN
λm

(s)βk,N
λm

(s)
∂2

∂x2
uλm

+
∣

∣

∣
γk,Nλm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

}

(

s,XN
λm

(s)
)

ds. (3.27)

Using equation (3.7) and Lemma 3.5, we have for all s ∈ [t, tk+1]

λmEXN
λm

(s)
∂2

∂t∂x
uλm

(

s,XN
λm

(s)
)

=4λ2
me−2λm(T−s)E

∣

∣XN
λm

(s)
∣

∣

2

≤Cλ2
m(

1

λm
+ h)e−2λm(T−tk+1).

Therefore,

λ−p
m

∫ tk+1

tk

∫ tk+1

t

λmEXN
λm

(s)
∂2

∂t∂x
uλm

(

s,XN
λm

(s)
)

≤ C
(

λ1−p
m h2 + λ2−p

m h3
)

e−2λm(T−tk+1),
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and using Lemma 3.8, we deduce

∑

m≥1

N−2
∑

k=0

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsλmEXN
λm

(s)
∂2

∂t∂x
uλm

(

s,XN
λm

(s)
)

≤ Chp+
1

2 . (3.28)

The equation (3.4) and Lemma 3.5 yield for all s ∈ [t, tk+1]

λmEβk,N
λm

(s)
∂

∂x
uλm

(

s,XN
λm

(s)
)

= 2λme−2λm(T−s)Eβk,N
λm

(s)XN
λm

(s) ≤ Cλme−2λm(T−tk+1).

This upper estimate implies

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsλmEβk,N
λm

(s)
∂

∂x
uλm

(

s,XN
λm

(s)
)

≤ Cλ1−p
m h2e−2λm(T−tk+1),

and Lemma 3.8 yields

∑

m≥1

N−2
∑

k=0

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsλmEβk,N
λm

(s)
∂

∂x
uλm

(

s,XN
λm

(s)
)

≤ Chp+
1

2 . (3.29)

Using equation (3.5) and Lemma 3.5, we have for all s ∈ [t, tk+1]

λmEXN
λm

(s)βk,N
λm

(s)
∂2

∂x2
uλm

(

s,XN
λm

(s)
)

≤ Cλme−2λm(T−tk+1).

Therefore, we obtain

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsλmEXN
λm

(s)βk,N
λm

(s)
∂2

∂x2
uλm

(

s,XN
λm

(s)
)

≤ Cλ1−p
m h2e−2λm(T−tk+1),

and Lemma 3.8 implies

∑

m≥1

N−2
∑

k=0

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsλmEXN
λm

(s)βk,N
λm

(s)
∂2

∂x2
uλm

(

s,XN
λm

(s)
)

≤ Chp+
1

2 . (3.30)

Finally, (3.5) and Lemma 3.4 imply that for all s ∈ [t, tk+1]

λmE
∣

∣

∣
γk,Nλm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

(

s,XN
λm

(s)
)

≤ Cλme−2λm(T−tk+1).

This yields

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsλmE
∣

∣

∣
γk,Nλm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

(

s,XN
λm

(s)
)

≤ Cλ1−p
m h2e−2λm(T−tk+1),

and Lemma 3.8 implies

∑

m≥1

N−2
∑

k=0

λ−p
m

∫ tk+1

tk

dt

∫ tk+1

t

dsλmE
∣

∣

∣
γk,Nλm

(s)
∣

∣

∣

2 ∂2

∂x2
uλm

(

s,XN
λm

(s)
)

≤ Chp+
1

2 .

Plugging this inequality together with (3.28) - (3.30) into (3.27), we deduce

∑

m≥1

N−2
∑

k=0

λ−p
m E

∫ tk+1

tk

∣

∣

∣
Ik,N2,λm

(t)
∣

∣

∣
dt ≤ Chp+

1

2 .

This equation together with (3.21) and (3.26) conclude the proof. �

Theorem 2.1 is a straightforward consequence of equation (3.18) and Lemmas 3.9-3.11.

Acknowledgments: The author wishes to thank Annie Millet for many helpful com-
ments.
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