Weak error in negative Sobolev spaces for the stochastic heat equation
Omar Aboura

To cite this version:

Omar Aboura. Weak error in negative Sobolev spaces for the stochastic heat equation. 2013. hal-00818037

HAL Id: hal-00818037
https://hal.science/hal-00818037
Preprint submitted on 25 Apr 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
WEAK ERROR IN NEGATIVE SOBOLEV SPACES FOR THE
STOCHASTIC HEAT EQUATION

OMAR ABOURA

ABSTRACT. In this paper, we make another step in the study of weak error of the sto-
chastic heat equation by considering norms as functional.

1. Introduction

Let (Ω, \mathcal{F}, P) a probability space and $T > 0$ a fixed time. $(W(t))_{t \geq 0}$ will be a cylindrical
Brownian motion on $L^2(0, 1)$. We consider the stochastic heat equation, written in abstract
form in $L^2(0, 1)$:
$$X(0) = 0, \text{ for all } t \in [0, T] \ X(t, 0) = X(t, 1) = 0 \text{ and}$$
$$dX(t) = \frac{1}{2} \frac{d^2}{dx^2}X(t)dt + dW(t). \quad (1.1)$$
It is well know that this equation admits a unique weak solution (from the analytical point
of view).

Let $N \in \mathbb{N}^*$ and $h := T/N$. Consider $\left(t_k\right)_{0 \leq k \leq N}$ the uniform subdivision of $[0, T]$ defined
by $t_k := kh$. We consider the implicit Euler scheme defined as follow:
$$X^N(t_{k+1}) = X^N(t_k) + h \frac{1}{2} \frac{d^2}{dx^2}X^N(t_{k+1}) + \Delta W(k + 1), \quad (1.2)$$
where $\Delta W(k + 1) = W(t_{k+1}) - W(t_k)$.

Let $f : L^2(0, 1) \to \mathbb{R}$ be a functional. The stong error is the study of $E \left|X^N(T) - X(T)\right|^2_{L^2(0,1)}$.
The weak error is the study of $\left|Ef\left(X^N(T)\right) - Ef\left(X(T)\right)\right|$ with respect to the time mesh h.

In [6], A. Debussche considers a more general stochastic equation and a more general
functional than the one considered here. He obtains a weak error of order $1/2$, which is
the double of that proved by [15] for the strong speed of convergence. The novelty of this
paper his to prove that for the square of the norm the weak error his better than $1/2$ in
negative Sobolev spaces.

2. Preliminaries and main result

Notations. We collect here some of the notations used through the paper. $\langle \,, \, \rangle_{L^2(0,1)}$ is the inner product in $L^2(0, 1)$, $H^1_0(0, 1)$ is the Sobolev space of functions f in $L^2(0, 1)$
vanishing in 0 and 1 with first derivatives in $L^2(0, 1)$, $H^2(0, 1)$ is the Sobolev space of functions f in $L^2(0, 1)$
with first and second derivatives in $L^2(0, 1)$. Finally, for $m = 1, 2, \ldots$, let $(\epsilon_m(x) = \sqrt{2} \sin(m \pi x) \text{ and } \lambda_m = \frac{1}{2}(\pi m)^2$ denote the eigenfunction and eigenvalues of
$-\Delta$ with Dirichlet boundary conditions on $[0, 1)$.

An $L^2(0, 1)$-valued stochastic process $(X(t))_{t \in [0, T]}$ is said to be a solution of (1.1) if:
$X(0) = 0$ and for all $g \in H^1_0(0, 1) \cap H^2(0, 1)$ we have
$$\langle X(t), g \rangle_{L^2(0,1)} = \int_0^t \langle X(s), \frac{1}{2} \frac{d^2}{dx^2}g \rangle_{L^2(0,1)} ds + \langle W(t), g \rangle_{L^2(0,1)}.$$
It is well known that (1.1) admits a unique solution: see [4]. Then \((e_m)_{m \geq 1}\) is a complete orthonormal basis of \(L^2(0,1)\). If we denote by \(\lambda_m := \frac{1}{2}(\pi m)^2\), \(W_{\lambda_m}(t) := \langle W(t), e_m \rangle_H\) and \(X_{\lambda_m}(t)\) denote the solution of the evolution equation: \(X_{\lambda_m}(0) = 0\) and for \(t > 0\):
\[
dX_{\lambda_m}(t) = -\lambda_m X_{\lambda_m}(t) dt + dW_{\lambda_m}(t).
\]
Then the processes \((X_{\lambda_m}(.))_{m \geq 1}\) are independent and \(X(t) = \sum_{m \geq 1} X_{\lambda_m}(t)e_m\) for all \(t \geq 0\).

A sequence of \(L^2(0,1)\)-valued \((X^N(t_k))_{k=0,\ldots,N}\) is said to be a solution of (1.2) if: \(X^N(t_0) = 0\) and for all \(k = 0, \ldots, N - 1\) and for all \(g \in H^1_0(0,1) \cap H^2(0,1)\) we have
\[
<x^N(t_{k+1}), g>_{L^2(0,1)} = <x^N(t_k), g>_{L^2(0,1)} + h <x^N(t_{k+1}), \frac{d^2}{dx^2}g>_{L^2(0,1)} + <\Delta W(k+1), g>_{L^2(0,1)}.
\]

It is well known that (1.2) has a unique solution and there exists a constant \(C > 0\), independent of \(N\), such that \(E \|X^N(T) - X(T)\|^2_{L^2(0,1)} \leq Ch^\frac{1}{2}\) where \(h = T/N\). Now if we denote by \((X^N_{\lambda_m}(t_k))_{k=0,\ldots,N}\) the solution of: \(X^N_{\lambda_m}(t_0) = 0\) and for \(k = 0, \ldots, N - 1\)
\[
X^N_{\lambda_m}(t_{k+1}) = X^N_{\lambda_m}(t_k) - \lambda_m h X^N_{\lambda_m}(t_{k+1}) + W_{\lambda_m}(k+1).
\]
The random vectors \((X^N_{\lambda_m}(t_k), k = 0, \ldots, N)_{m=1,2,\ldots}\) are independent and \(X^N(t_k) = \sum_{m \geq 1} X^N_{\lambda_m}(t_k)e_m\).

Let \(p \geq 0\); define the spaces \(H^{-p}\) as the completion of \(L^2(0,1)\) for the topology induced by the norm \(|u|^2_{H^{-p}} := \sum_{m \geq 1} \lambda^p_m <u, e_m>_H^2\). The following theorem improves the speed of convergence of \(X^N\) to \(X\) for negative Sobolev spaces.

Theorem 2.1. Suppose that \(h < 1\) and let \(p \in [0, \frac{1}{2})\). There exists a constant \(C > 0\), independent of \(N\), such that
\[
|E\|X^N(T)\|^2_{H^{-p}} - E\|X(T)\|^2_{H^{-p}}| \leq Ch^{p+\frac{1}{2}}.
\]

3. Proof of the Theorem 2.1

The proof of the theorem will be done in several steps. First we recall the weak error of the Ornstein-Uhlenbeck process. Secondly we prove some technical lemmas. Then we decompose the weak error and analyse each term of these decomposition.

3.1. Weak error of the Ornstein-Uhlenbeck process.

Let \(\lambda > 0\), \((W_{\lambda}(t))_{t \geq 0}\) be a one dimensional Brownian motion and \((X_{\lambda}(t))_{t \geq 0}\) be the Ornstein Uhlenbeck process solution of the following stochastic differential equation: \(X_{\lambda}(0) = x \in \mathbb{R}\) and
\[
dX_{\lambda}(t) = -\lambda X_{\lambda}(t) dt + dW_{\lambda}(t). \tag{3.1}
\]

In this step, we study two properties associated with this process: the Kolmogorov equation and the implicit Euler scheme.

Let \(\left(X^{t,x}_{\lambda}(s)\right)_{t \leq s \leq T}\) be the solution of (3.1) starting from \(x\) at time \(t\). It is well known that \(X^{t,x}_{\lambda}(T)\) is a normal random variable:
\[
X^{t,x}_{\lambda}(T) \sim \mathcal{N}\left(e^{-\lambda(T-t)}x, \frac{1-e^{-2\lambda(T-t)}}{2\lambda}\right).
\]
For \(t \in [0, T] \) and \(x \in \mathbb{R} \) set \(u_\lambda(t, x) := E \left| X_\lambda^{t,x}(T) \right|^2 \). Then \(u_\lambda \) is the solution of the following partial differential equation, called Kolmogorov equation: for all \(x \in \mathbb{R} \), \(u_\lambda(T, x) = |x|^2 \) and for all \((t, x) \in [0, T] \times \mathbb{R}\)

\[
-\frac{\partial}{\partial t} u(t, x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t, x) - \lambda x \frac{\partial}{\partial x} u(t, x). \tag{3.2}
\]

Since \(X_\lambda^{t,x}(T) \) has a normal law, we can write \(u_\lambda \) explicitly:

\[
u_\lambda(t, x) = \frac{1 - e^{-2\lambda(T-t)}}{2\lambda} + e^{-2\lambda(T-t)} x^2. \tag{3.3}\]

With this expression we see that \(u_\lambda \in C^{1,2}([0, T] \times \mathbb{R}) \) and we have the following derivatives:

\[
\frac{\partial}{\partial x} u_\lambda(t, x) = 2e^{-2\lambda(T-t)}x, \tag{3.4}
\]

\[
\frac{\partial^2}{\partial x^2} u_\lambda(t, x) = 2e^{-2\lambda(T-t)} \tag{3.5}
\]

\[
\frac{\partial}{\partial t} u_\lambda(t, x) = -e^{-2\lambda(T-t)} + 2\lambda e^{-2\lambda(T-t)}x^2, \tag{3.6}
\]

\[
\frac{\partial^2}{\partial t \partial x} u_\lambda(t, x) = 4\lambda e^{-2\lambda(T-t)}x. \tag{3.7}
\]

The implicit Euler scheme for the Ornstein-Uhlenbeck equation (3.1) starting from 0 at time \(t_0 \), is defined as follow: \(X_\lambda^{N}(t_0) = 0 \) and for \(k = 0, \ldots, N - 1 \)

\[
X_\lambda^{N}(t_{k+1}) = X_\lambda^{N}(t_k) - \lambda h X_\lambda^{N}(t_{k+1}) + \Delta W_\lambda(k+1), \tag{3.8}
\]

where \(\Delta W_\lambda(k+1) = W_\lambda(t_{k+1}) - W_\lambda(t_k) \). Since we have the following equation

\[
X_\lambda^{N}(t_{k+1}) = \frac{1}{1 + \lambda h} X_\lambda^{N}(t_k) + \frac{1}{1 + \lambda h} \Delta W_\lambda(k+1), \tag{3.9}
\]

we see that the scheme is well defined.

Lemma 3.1. For \(k = 1, \ldots, N \) we have \(X_\lambda^{N}(t_k) = \sum_{j=0}^{k-1} \frac{\Delta W_\lambda(k-j)}{(1 + \lambda h)^{j+1}}. \)

Proof. We proceed by induction. If \(k = 1 \), we have \(X_\lambda^{N}(t_1) = \frac{1}{1 + \lambda h} \Delta W_\lambda(1) \). Suppose the result true until \(k \). Using (3.9), we have

\[
X_\lambda^{N}(t_{k+1}) = \sum_{j=0}^{k-1} \frac{\Delta W_\lambda(k-j)}{(1 + \lambda h)^{j+2}} + \frac{1}{1 + \lambda h} \Delta W_\lambda(k+1)
\]

\[
= \sum_{l=1}^{k} \frac{\Delta W_\lambda(k+1-l)}{(1 + \lambda h)^{l+1}} + \frac{1}{(1 + \lambda h)^{0+1}} \Delta W_\lambda(k+1-0),
\]

which concludes the proof. \(\square \)

Lemma 3.2. For all \(k = 0, \ldots, N \), we have the following bound \(E \left| X_\lambda^{N}(t_k) \right|^2 \leq \frac{1}{2\lambda} \).

Proof. Using the independence of the increments of the Brownian motion and Lemma 3.1, we have

\[
E \left| X_\lambda^{N}(t_k) \right|^2 = \sum_{j=0}^{k-1} \frac{1}{(1 + \lambda h)^{2(j+1)}} E \left| \Delta W_\lambda(k-j) \right|^2 = h \sum_{j=0}^{k-1} \frac{1}{(1 + \lambda h)^{2(j+1)}}.
\]
Let $a := 1/(1 + \lambda h)^2$; we deduce that $E \left| X^N_\lambda(t_k) \right|^2 = ha \frac{1-a^k}{1-a}$. Simple computations yield $ha/(1 - a) = 1/(2\lambda + \lambda^2 h)$, which implies
\[
E \left| X^N_\lambda(t_k) \right|^2 = \frac{1}{2\lambda + \lambda^2 h} \left(1 - \frac{1}{(1 + \lambda h)^2} \right).
\]
This concludes the proof. \hfill \Box

For $t \geq 0$, we denote $\mathcal{F}_t^\lambda := \sigma(W_\lambda(s), s \leq t)$ and D^1_λ the Malliavin Sobolev space with respect to W_λ.

Lemma 3.3. For all $k = 1, \ldots, N$, we have $X^N_\lambda(t_k) \in D^{1,2}_\lambda \cap L^2(\mathcal{F}_{t_k}^\lambda)$.

Proof. This is a consequence of Lemma 3.1, the fact that $L^2(\mathcal{F}_{t_k}^\lambda)$ and $D^{1,2}_\lambda$ are linear space and for all $j = 0, \ldots, k - 1$, $\Delta W_\lambda(k - j) \in D^{1,2}_\lambda \cap L^2(\mathcal{F}_{t_k}^\lambda)$. \hfill \Box

As usual in the study of weak error, we need to use a continuous process that interpolates the Euler scheme. The interpolation process that we used was introduced in [1]. We recall its construction and prove some of its properties.

Let $k \in \{0, \ldots, N - 1\}$ be fixed. In order to interpolate the scheme between the points $(t_k, X^N_\lambda(t_k))$ and $(t_{k+1}, X^N_\lambda(t_{k+1}))$, we define the process as follows: for $t \in [t_k, t_{k+1}]$, set
\[
X^N_\lambda(t) := X^N_\lambda(t_k) - \lambda E \left(X^N_\lambda(t_{k+1})|\mathcal{F}_t \right) (t - t_k) + W_\lambda(t) - W_\lambda(t_k).
\]
In the sequel, we will use the following processes: for $t \in [t_k, t_{k+1}]
\[
\beta^k_N(t) := -\lambda E \left(X^N_\lambda(t_{k+1})|\mathcal{F}_t \right),
\]
\[
z^k_N(t) := -\lambda E \left(D_t X^N_\lambda(t_{k+1})|\mathcal{F}_t \right),
\]
\[
\gamma^k_N(t) := 1 + (t - t_k)z^k_N(t).
\]

The next lemma relates the above processes.

Lemma 3.4. Let $k = 0, \ldots, N - 1$. For $t \in [0, T]$, we have
\[
d\beta^k_N(t) = z^k_N(t) dW_\lambda(t), \quad z^k_N(t) = -\frac{\lambda}{1 + \lambda h},
\]
\[
\gamma^k_N(t) = 1 - (t - t_k)\frac{\lambda}{1 + \lambda h}, \quad dX^N_\lambda(t) = \beta^k_N(t) dt + \gamma^k_N(t) dW_\lambda(t).
\]

Proof. Using the Clark-Ocone formula and Lemma 3.3, we have
\[
X^N_\lambda(t_{k+1}) = E \left(X^N_\lambda(t_{k+1})|\mathcal{F}_t \right) + \int_t^{t_{k+1}} E \left(D_s X^N_\lambda(t_{k+1})|\mathcal{F}_s \right) dW_\lambda(s).
\]
Multiplying by $(-\lambda)$, we deduce
\[
-\lambda X^N_\lambda(t_{k+1}) = \beta^k_N(t) + \int_t^{t_{k+1}} z^k_N(s) dW_\lambda(s),
\]
which gives the first identity. Applying the Malliavin derivative to (3.9), we have for $s \in [t_k, t_{k+1}] D_s X^N_\lambda(t_{k+1}) = \frac{1}{1 + X^N_\lambda(t_{k+1})}$. Multiplying by $(-\lambda)$, we deduce the second and third equalities.

Finally, Itô’s formula gives us
\[
d \left((t - t_k)\beta^k_N(t) \right) = (t - t_k)z^k_N(t) dW_\lambda(t) + \beta^k_N(t) dt,
\]
which concludes the proof. \hfill \Box
Lemma 3.5. Let \(k \in \{0, \ldots, N-1\} \). For any \(s \in [t_k, t_{k+1}] \), we have
\[
E \left| \beta^{k,N}_\lambda(s) \right|^2 \leq 2\lambda, \quad E \left| X^N_\lambda(s) \right|^2 \leq \frac{1}{2\lambda} + h, \quad E \beta^{k,N}_\lambda(s) X^N_\lambda(s) \leq 1.
\]

Proof. Applying the conditional expectation with respect to \(\mathcal{F}_s \) on both sides of (3.9) for \(s \in [t_k, t_{k+1}] \) we have
\[
E \left(X^N_\lambda(t_{k+1}) | \mathcal{F}_s \right) = \frac{1}{1 + \lambda h} \left[X^N_\lambda(t_k) + (W_\lambda(s) - W_\lambda(t_k)) \right].
\]
Multiplying by \((-\lambda)\) and using (3.11), we obtain
\[
\beta^{k,N}_\lambda(s) = -\frac{\lambda}{1 + \lambda h} X^N_\lambda(t_k) - \frac{\lambda}{1 + \lambda h} (W_\lambda(s) - W_\lambda(t_k)). \tag{3.14}
\]
The independence of \(\mathcal{F}_{t_k} \) and \(W_\lambda(s) - W_\lambda(t_k) \) yields
\[
E \left| \beta^{k,N}_\lambda(s) \right|^2 \leq \frac{\lambda^2}{(1 + \lambda h)^2} E \left| X^N_\lambda(t_k) \right|^2 + \frac{\lambda^2}{(1 + \lambda h)^2} (s - t_k).
\]
Using Lemma 3.2, we deduce
\[
E \left| \beta^{k,N}_\lambda(s) \right|^2 \leq \frac{\lambda}{2(1 + \lambda h)^2} + \frac{\lambda^2 h}{(1 + \lambda h)^2},
\]
which proves the first upper estimate.

Using (3.10) and (3.14), we have for \(s \in [t_k, t_{k+1}] \)
\[
X^N_\lambda(s) = \left(1 - \frac{\lambda(s - t_k)}{1 + \lambda h} \right) \left[X^N_\lambda(t_k) + (W_\lambda(s) - W_\lambda(t_k)) \right]. \tag{3.15}
\]
Taking the expectation of the square and using the independence of \(\mathcal{F}_{t_k} \) and \(W_\lambda(s) - W_\lambda(t_k) \), we have
\[
E \left| X^N_\lambda(s) \right|^2 = \left(1 - \frac{\lambda(s - t_k)}{1 + \lambda h} \right)^2 \left(E \left| X^N_\lambda(t_k) \right|^2 + (s - t_k) \right) \leq E \left| X^N_\lambda(t_k) \right|^2 + h \leq \frac{1}{2\lambda} + h,
\]
where the last upper estimates follows from Lemma 3.2.

Multiplying (3.14) and (3.15), taking expectation we obtain
\[
E \left(X^N_\lambda(s) \beta^{k,N}_\lambda(s) \right) = -\frac{\lambda}{1 + \lambda h} \left(1 - \frac{\lambda(s - t_k)}{1 + \lambda h} \right) \left[E \left| X^N_\lambda(t_k) \right|^2 + (s - t_k) \right].
\]
Using Lemma 3.2, we deduce
\[
\left| E \left(X^N_\lambda(s) \beta^{k,N}_\lambda(s) \right) \right| \leq \frac{\lambda}{1 + \lambda h} \frac{1}{2\lambda} + \frac{\lambda h}{1 + \lambda h}.
\]
This concludes the proof. \(\square \)

3.2. Some useful analytical lemmas. We at first give a precise upper bound of a series defined in terms of the eigenvalues of the Laplace operator with Dirichlet boundary conditions.

Lemma 3.6. Let \(p \in \left[0, \frac{1}{2} \right) \). There exists a constant \(C > 0 \), such that for all \(\alpha > 0 \), we have
\[
\sum_{m \geq 1} \lambda_m^p e^{-2\lambda_m \alpha} \leq C \alpha^{p - \frac{1}{2}}
\]
Proof. The function \((x \in \mathbb{R}_+ \mapsto x^{-2p}e^{-2x^2\alpha})\) is decreasing. So by comparaison, we obtain
\[
\sum_{m \geq 1} m^{-2p}e^{-2m^2\alpha} \leq \int_0^\infty x^{-2p}e^{-2x^2\alpha}dx \leq \alpha^{p-\frac{1}{2}} \int_0^\infty y^{-2p}e^{-2y^2}dy = C\alpha^{p-\frac{1}{2}}.
\]
Since \(\lambda_m = \frac{1}{2}(\pi m)^2\), we deduce the desired upper estimate. \(\square\)

Lemma 3.7. Let \(q > 0\). There exists a constant \(C > 0\), such that for all \(\alpha > 0\)
\[
\sum_{m \geq 1} \lambda_m^\alpha e^{-\lambda_m} \leq C \left(1 + \frac{1}{\alpha^{q+2}}\right).
\]

Proof. Let \(f(x) = x^{2q}e^{-x^2\alpha}\). His derivatives is given by \(f'(x) = 2x^{2q-1}e^{-x^2\alpha}(q - \alpha x^2)\).

Case 1: \(\alpha > q/4\). Then \(f\) is decreasing on \([2, \infty)\) and a standard comparaison argument yields
\[
\sum_{m \geq 1} m^{2q}e^{-m^2\alpha} \leq e^{-\alpha} + 4^q e^{-4\alpha} + \sum_{m \geq 3} \int_{m-1}^m x^{2q}e^{-x^2\alpha}dx
\]
\[
\leq C + \int_0^\infty x^{2q}e^{-x^2\alpha}dx
\]
\[
\leq C + \alpha^{-q-\frac{1}{2}} \int_0^\infty y^{2q}e^{-y^2}dy
\]
\[
\leq C(1 + \alpha^{-q-\frac{3}{2}}).
\]

Case 2: \(\alpha \leq q/4\). The function \(f\) is increasing on \([0, \sqrt{q/\alpha}]\). So for each \(m = 1, \ldots, \lfloor\sqrt{\frac{q}{\alpha}}\rfloor - 1\), we have
\[
m^{2q}e^{-m^2\alpha} \leq \int_{m}^{m+1} x^{2q}e^{-x^2\alpha}dx.
\]
On the interval \([\sqrt{\frac{q}{\alpha}}, \infty)\), \(f\) is decreasing. So for each integer \(m \geq \lfloor\sqrt{\frac{q}{\alpha}}\rfloor + 2\), we have
\[
m^{2q}e^{-m^2\alpha} \leq \int_{m-1}^{m} x^{2q}e^{-x^2\alpha}dx.
\]
The above upper estimates yield
\[
\sum_{m \geq 1} m^{2q}e^{-m^2\alpha} \leq \sum_{m \leq \lfloor\sqrt{\frac{q}{\alpha}}\rfloor - 1} \int_m^{m+1} x^{2q}e^{-x^2\alpha}dx + \sum_{m \geq \lfloor\sqrt{\frac{q}{\alpha}}\rfloor + 2} \int_{m-1}^{m} x^{2q}e^{-x^2\alpha}dx
\]
\[
+ \sum_{m \in (\lfloor\sqrt{\frac{q}{\alpha}}\rfloor, \lfloor\sqrt{\frac{q}{\alpha}}\rfloor + 1]} m^{2q}e^{-m^2\alpha}
\]
\[
\leq \int_0^\infty x^{2q}e^{-x^2\alpha}dx + \sum_{m \in (\lfloor\sqrt{\frac{q}{\alpha}}\rfloor, \lfloor\sqrt{\frac{q}{\alpha}}\rfloor + 1]} m^{2q}e^{-m^2\alpha}
\]
\[
\leq C\alpha^{-q-\frac{1}{2}} + \sum_{m \in (\lfloor\sqrt{\frac{q}{\alpha}}\rfloor, \lfloor\sqrt{\frac{q}{\alpha}}\rfloor + 1]} m^{2q}e^{-m^2\alpha}
\]
Now we study each term of the sum in the right hand side. Since \(q \geq \alpha\), we have
\[
\left(\sqrt{\frac{q}{\alpha}}\right)^{2q}e^{-\left(\sqrt{\frac{q}{\alpha}}\right)^2} \leq \left(\frac{q}{\alpha}\right)^q \leq \left(\frac{q}{\alpha}\right)^{q+\frac{1}{2}} \leq C\alpha^{-q-\frac{1}{2}}.
\]
For the second term, we remark that since $q \geq \alpha \left[\sqrt{\frac{q}{\alpha}} \right] + 1 \leq 2 \left[\sqrt{\frac{q}{\alpha}} \right] \leq 2 \sqrt{\frac{q}{\alpha}}$. This implies
\[\left(\left[\sqrt{\frac{q}{\alpha}} \right] + 1 \right)^{2q} e^{-\left(\sqrt{\frac{q}{\alpha}} \right) + 1} \leq \left(2 \sqrt{\frac{q}{\alpha}} \right)^{2q} \leq C \alpha^{-q - \frac{3}{2}}. \]
Therefore, in both cases we obtain
\[\sum_{m \geq 1} m^{2q} e^{-m^2 \alpha} \leq C \left(1 + \frac{1}{\alpha^{q + \frac{3}{2}}} \right). \]
Since $\lambda_m = \frac{1}{2} (\pi m)^2$, the proof is complete.

\[\square \]

Lemma 3.8. Let $p \in [0, \frac{1}{2})$ and $n \in \mathbb{N}^*$. Let $(v(k,m))_{(k,m) \in \{0, \ldots, N-2\} \times \mathbb{N}^*}$ be a sequence such that for all $k \in \{0, \ldots, N-2\}$ and $m \geq 1$, we have
\[0 \leq v(k,m) \leq \lambda_m^{n-p} p \lambda_m^{n+1} e^{-2 \lambda_m (T-t_{k+1})}. \]
Then, there exists a constant $C > 0$, independent of N, such that
\[\sum_{m \geq 1} \sum_{k=0}^{N-2} v(k,m) \leq Ch^{p+\frac{1}{2}}. \]

Proof. First we remark that $T - t_{k+1} = h(N - k - 1)$. Using Lemma 3.7, we deduce the existence of C depending on n and p, but independent of N, such that for $k = 0, \ldots, N-2$:
\[\sum_{m \geq 1} v(k,m) \leq C h^{n+1} \left(1 + \frac{1}{h^{n-p+\frac{1}{2}} (N - k - 1)^{n-p+\frac{1}{2}}} \right), \]
\[\leq C \left(h^{n+1} + \frac{h^{p+\frac{1}{2}}}{(N - k - 1)^{n-p+\frac{1}{2}}} \right). \]
Therefore, there exists a constant C as above such that
\[\sum_{m \geq 1} \sum_{k=0}^{N-2} v(k,m) \leq C \left(h^n + h^{p+\frac{1}{2}} \sum_{k=0}^{N-2} \frac{1}{(N - k - 1)^{n-p+\frac{1}{2}}} \right) \]
\[\leq C \left(h^n + h^{p+\frac{1}{2}} \sum_{l=1}^{N-1} \frac{1}{l^{n-p+\frac{1}{2}}} \right) \leq Ch^{p+\frac{1}{2}}, \]
which concludes the proof. \[\square \]

3.3. Decomposition of the weak error. We follow the classical decomposition introduced in [16]. The definition of $u_\alpha(t,x)$ in section 3.1 yields
\[E \left| X^N(T) \right|^2_{H^{-p}} - E \left| X(T) \right|^2_{H^{-p}} = \sum_{m \geq 1} \lambda_m^{-p} \left(E \left| X^N_\lambda(T) \right|^2 - E \left| X_\lambda(T) \right|^2 \right), \]
\[= \sum_{m \geq 1} \lambda_m^{-p} \left(Eu_\lambda(T, X^N_\lambda(T)) - u_\lambda(0, X^N_\lambda(0)) \right). \]
Let $\delta^N(k,m) := \lambda_m^{-p} \left(Eu_\lambda(T, X^N_\lambda(t_{k+1})) - Eu_\lambda(T, X^N_\lambda(t_k)) \right)$; then
\[E \left| X^N(T) \right|^2_{H^{-p}} - E \left| X(T) \right|^2_{H^{-p}} = \sum_{m \geq 1} \sum_{k=0}^{N-1} \delta^N(k,m). \]
Note that using Lemmas 3.3, 3.4 and (3.4) we deduce that for any \(k = 0, \ldots, N - 1 \)
\[
E \int_{t_k}^{t_{k+1}} |\gamma^{k,N}_\lambda(t) \frac{\partial u}{\partial x}(t, X^N_\lambda(t))|^2 \, dt < \infty.
\]

From now, we do not justify that the stochastic integral are centered. Itô’s formula and Lemma 3.4, we imply that for \(k = 0, \ldots, N - 1 \)
\[
\delta^N(k, m) = \lambda^p_m E \int_{t_k}^{t_{k+1}} \left\{ \frac{\partial}{\partial t} u_{\lambda m} + \beta^{k,N}_\lambda(t) \frac{\partial}{\partial x} u_{\lambda m} + \frac{1}{2} \left| \gamma^{k,N}_\lambda(t) \right|^2 \frac{\partial^2}{\partial x^2} u_{\lambda m} \right\} (t, X^N_{\lambda m}(t)) \, dt
\]
\[
= \lambda^p_m E \int_{t_k}^{t_{k+1}} \left\{ I^{k,N}_{\lambda m}(t) + \frac{1}{2} J^{k,N}_{\lambda m}(t) \right\} dt,
\]
where
\[
I^{k,N}_{\lambda m}(t) := \left(\beta^{k,N}_\lambda(t) + \lambda_m X^N_{\lambda m}(t) \right) \frac{\partial}{\partial x} u_{\lambda m}(t, X^N_{\lambda m}(t)),
\]
\[
J^{k,N}_{\lambda m}(t) := \left(\left| \gamma^{k,N}_\lambda(t) \right|^2 - 1 \right) \frac{\partial^2}{\partial x^2} u_{\lambda m}(t, X^N_{\lambda m}(t)).
\]

This yields the following decomposition:
\[
E \left| X^N(T) \right|^2_{H^{-p}} - E \left| X(T) \right|^2_{H^{-p}} = \sum_{m \geq 1} \delta^N(N - 1, m) + \sum_{m \geq 1} \sum_{k=0}^{N-2} \lambda^p_m E \int_{t_k}^{t_{k+1}} I^{k,N}_{\lambda m}(t) \, dt
\]
\[
+ \frac{1}{2} \sum_{m \geq 1} \sum_{k=0}^{N-2} \lambda^p_m E \int_{t_k}^{t_{k+1}} J^{k,N}_{\lambda m}(t) \, dt.
\]

Now we study each term of this decomposition.

Lemma 3.9. There exists a constant \(C \), independant of \(N \), such that
\[
\sum_{m \geq 1} |\delta^N(N - 1, m)| \leq C h^{p+\frac{1}{2}}.
\]

This study is similar to the third step of [6], page 97.

Proof. Using the definition of \(u_{\lambda m}(t, x) \) (3.3) and (3.9), we have
\[
u_{\lambda m}(t_N, X^N_{\lambda m}(t_N)) = \left| X^N_{\lambda m}(t_N) \right|^2 = \frac{1}{(1 + \lambda_m h)^2} \left| X^N_{\lambda m}(t_{N-1}) + \Delta W_m(N) \right|^2,
\]
\[
u_{\lambda m}(t_{N-1}, X^N_{\lambda m}(t_{N-1})) = \frac{1 - e^{-2\lambda_m h}}{2\lambda_m} + e^{-2\lambda_m h} \left| X^N_{\lambda m}(t_{N-1}) \right|^2.
\]

By independence between \(\Delta W_m(N) \) and \(X^N_{\lambda m}(t_{N-1}) \), we have
\[
\delta^N(N - 1, m) = \lambda^p_m \left\{ \frac{1}{(1 + \lambda_m h)^2} - e^{-2\lambda_m h} \right\} E \left| X^N_{\lambda m}(t_{N-1}) \right|^2
\]
\[
+ \frac{h}{\lambda^p_m (1 + \lambda_m h)^2} - \frac{1 - e^{-2\lambda_m h}}{2\lambda^{p+1}_m}.
\]

Let \(\delta_1(\lambda_m) := \frac{1 - e^{-2\lambda_m h}}{2\lambda^{p+1}_m} \), \(\delta_2(\lambda_m) := \frac{h}{\lambda^{p+1}_m (1 + \lambda_m h)^2} \), and
\[
\delta_3(\lambda_m) := \lambda^p_m \left\{ \frac{1}{(1 + \lambda_m h)^2} - e^{-2\lambda_m h} \right\} E \left| X^N_{\lambda m}(t_{N-1}) \right|^2.
\]

With these notations we have
\[\delta^N(N - 1, m) \leq \delta_1(\lambda_m) + \delta_2(\lambda_m) + \delta_3(\lambda_m). \]

First, we study \(\delta_1(\lambda_m) \). Since \(\frac{1-e^{-2\lambda h}}{2h} = \int_0^h e^{-2\lambda x} \, dx \), using Lemma 3.6, we obtain
\[
\sum_{m \geq 1} \delta_1(\lambda_m) = \int_0^h \sum_{m \geq 1} \lambda_m^{-p} e^{-2\lambda_m x} \, dx \leq C \int_0^h x^{p-\frac{1}{2}} \, dx = Ch^{p+\frac{1}{2}}.
\]

(3.19)

Now we study \(\delta_2(\lambda_m) \). Since \((x \in [0, \infty) \mapsto x^{-2p}(1 + x^2 h)^2) \) is decreasing, we have for \(p \in [0, \frac{1}{2}) \)
\[
\sum_{m \geq 1} \delta_2(\lambda_m) \leq Ch \int_0^\infty \frac{1}{x^{2p}(1 + x^2 h)^2} \, dx \leq Ch^{p+\frac{1}{2}} \int_0^\infty \frac{y^{-2p}}{(1 + y^2)^2} \, dy \leq Ch^{p+\frac{1}{2}}.
\]

(3.20)

Finally, we study \(\delta_3(\lambda_m) \). Using Lemma 3.2, we have
\[
\delta_3(\lambda_m) \leq \lambda_m^{-p} \left\{ \frac{1}{(1 + \lambda_m h)^2} - e^{-2\lambda_m h} \right\} \frac{1}{2\lambda_m}.
\]

Since \(\frac{1}{(1 + \lambda h)^2} - e^{-2\lambda h} = 2\lambda \int_0^h \left\{ e^{-2\lambda x} - \frac{1}{(1 + \lambda x)^2} \right\} \, dx \), we have
\[
\delta_3(\lambda_m) \leq \lambda_m^{-p} \int_0^h \left\{ e^{-2\lambda_m x} + \frac{1}{(1 + \lambda_m x)^3} \right\} \, dx.
\]

Using Lemma 3.6, we have for \(p \in [0, \frac{1}{2}) \)
\[
\sum_{m \geq 1} \lambda_m^{-p} \int_0^h e^{-2\lambda_m x} \, dx \leq C \int_0^h x^{p-\frac{1}{2}} \, dx \leq Ch^{p+\frac{1}{2}}.
\]

Now since for \(x \geq 0 \) the map \((y \in \mathbb{R}_+ \mapsto y^{-2p}(1 + y^2 x)^{-3}) \) is decreasing, we have for \(p \in [0, \frac{1}{2}) \)
\[
\sum_{m \geq 1} \frac{\lambda_m^{-p}}{(1 + \lambda_m x)^3} \leq C \int_0^\infty \frac{1}{y^{2p}(1 + y^2 x)} \, dy \leq C x^{p-\frac{1}{2}} \int_0^\infty \frac{1}{z^{2p}(1 + z^2)^3} \, dz \leq C x^{p-\frac{1}{2}},
\]

and hence Fubini’s theorem yields
\[
\sum_{m \geq 1} \int_0^h \frac{\lambda_m^{-p}}{(1 + \lambda_m x)^3} \, dx \leq C \int_0^h x^{p-\frac{1}{2}} \, dx \leq Ch^{p+\frac{1}{2}}.
\]

The above inequalities imply \(\sum_{m \geq 1} \delta_3(\lambda_m) \leq Ch^{p+\frac{1}{2}} \). This inequality, (3.19) and (3.20) give the stated upper estimate.

\(\square \)

Lemma 3.10. There exists a constant \(C > 0 \), independent of \(N \), such that
\[
\sum_{m \geq 1} \sum_{k=0}^{N-1} \lambda_m^{-p} E \int_{t_k}^{t_{k+1}} \left| \gamma_{\lambda_m}^{k,N}(t) \right| \, dt \leq Ch^{p+\frac{1}{2}}.
\]

Proof. Using Lemma 3.4, we have
\[
\left| \gamma_{\lambda_m}^{k,N}(t) \right|^2 = 1 = \frac{2(t - t_k)\lambda_m}{1 + \lambda_m h} + \frac{|t - t_k|^2 \lambda_m^2}{(1 + \lambda_m h)^2}.
\]

Using (3.5) and (3.17), we have
\[
\lambda_m^{-p} E \int_{t_k}^{t_{k+1}} \left| \gamma_{\lambda_m}^{k,N}(t) \right| \, dt \leq C \left(\lambda_m^{1-p} h^2 + \lambda_m^{2-p} h^3 \right) e^{-2\lambda_m(T-t_{k+1})}.
\]

Lemma 3.8 concludes the proof.

\(\square \)
Lemma 3.11. There exists a constant $C > 0$, independant of N, such that
\[\sum_{m \geq 1} \sum_{k=0}^{N-2} \lambda_m^{-p} E \int_{t_k}^{t_{k+1}} \left| \int_{t_k}^{t_{k+1}} (s, X_{s}^{N}(s)) \right| \, ds \leq C h^{p+\frac{1}{2}}. \]

Proof. Let $I_{1,\lambda_m}^{k,N}(t) := E \lambda_m^{N} (t) \frac{\partial}{\partial t} u_{\lambda_m} (t, X_{\lambda_m}(t))$ and $I_{2,\lambda_m}^{k,N}(t) := \lambda_m E \lambda_m^{N} (t) \frac{\partial}{\partial t} u_{\lambda_m} (t, X_{\lambda_m}(t))$.

Using (3.16), we have
\[E I_{1,\lambda_m}^{k,N}(t) = I_{2,\lambda_m}^{k,N}(t). \tag{3.21} \]

First we study $I_{1,\lambda_m}^{k,N}(t)$. Using (3.4), we know that $\frac{\partial}{\partial x} u_{\lambda_m} \in C^{1,2}$. So using Itô’s formula and Lemma 3.4, we have
\[d \left[\beta_{\lambda_m}^{N}(s) \frac{\partial}{\partial x} u_{\lambda_m} (s, X_{\lambda_m}(s)) \right] = \left\{ \beta_{\lambda_m}^{N}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} + \left[\beta_{\lambda_m}^{N}(s) \right] ^2 \frac{\partial^2}{\partial x^2} u_{\lambda_m} \right\} (s, X_{\lambda_m}(s)) \, ds \]
\[+ \gamma_{\lambda_m}^{N}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} (s, X_{\lambda_m}(s)) \, dW_{\lambda_m}(s). \tag{3.22} \]

Using this equation, Lemma 3.4 and the Itô formula we deduce
\[d \left[\beta_{\lambda_m}^{N}(s) \frac{\partial}{\partial x} u_{\lambda_m} (s, X_{\lambda_m}(s)) \right] = \left\{ \beta_{\lambda_m}^{N}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} + \left[\beta_{\lambda_m}^{N}(s) \right] ^2 \frac{\partial^2}{\partial x^2} u_{\lambda_m} \right\} (s, X_{\lambda_m}(s)) \, ds \]
\[+ \left\{ \beta_{\lambda_m}^{N}(s) \gamma_{\lambda_m}^{N}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} + \gamma_{\lambda_m}^{N}(s) \frac{\partial}{\partial x} u_{\lambda_m} \right\} (s, X_{\lambda_m}(s)) \, dW_{\lambda_m}(s). \]

Integrating between t and t_{k+1}, taking expectation, and using the fact that $\beta_{\lambda_m}^{N}(t_{k+1}) = -\lambda_m X_{\lambda_m}(t_{k+1})$, so that $I_{1,\lambda_m}^{k,N}(t_{k+1}) = 0$, we obtain
\[I_{1,\lambda_m}^{k,N}(t) = -E \int_t^{t_{k+1}} \left\{ \beta_{\lambda_m}^{N}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} + \left[\beta_{\lambda_m}^{N}(s) \right] ^2 \frac{\partial^2}{\partial x^2} u_{\lambda_m} \right\} (s, X_{\lambda_m}(s)) \, ds. \tag{3.23} \]

Using (3.7) and Lemma 3.5, we have for $s \in [t, t_{k+1}]
\[E \beta_{\lambda_m}^{N}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} (s, X_{\lambda_m}(s)) = 4 \lambda_m e^{-2\lambda_m(T-t_{k+1})} E \beta_{\lambda_m}^{N}(s) X_{\lambda_m}(s) \leq C \lambda_m e^{-2\lambda_m(T-t_{k+1})}, \]
and hence
\[\lambda_m^{-p} \int_{t_k}^{t_{k+1}} dt \int_t^{t_{k+1}} ds E \beta_{\lambda_m}^{N}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} (s, X_{\lambda_m}(s)) \leq C \lambda_m^{-p} h^2 e^{-\lambda_m(T-t_{k+1})}. \]

Using Lemma 3.8, and the above inequality, we deduce
\[\sum_{m \geq 1} \sum_{k=0}^{N-2} \lambda_m^{-p} \int_{t_k}^{t_{k+1}} dt \int_t^{t_{k+1}} ds E \beta_{\lambda_m}^{N}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} (s, X_{\lambda_m}(s)) \leq C h^{p+\frac{1}{2}}. \tag{3.24} \]

Using (3.5) and Lemma 3.5, we have for $s \in [t_k, t_{k+1}]
\[E \left[\beta_{\lambda_m}^{N}(s) \right] ^2 \frac{\partial^2}{\partial x^2} u_{\lambda_m} (s, X_{\lambda_m}(s)) = 4 \lambda_m e^{-2\lambda_m(T-t_{k+1})} \leq 4 \lambda_m e^{-2\lambda_m(T-t_{k+1})}, \]
Therefore,

\[\lambda^{-p}_m \int_{t_k}^{t_{k+1}} dt \int_t^{t_{k+1}} ds E \left| \beta^{k,N}_{\lambda_m}(s) \right|^2 \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X^N_{\lambda_m}(s)) \leq C \lambda^{-1-p}_m h^2 e^{-2\lambda(T-t_{k+1})}. \]

Thus, Lemma 3.8 yields

\[\sum_{m=1}^{N-2} \lambda^{-p}_m \int_{t_k}^{t_{k+1}} dt \int_t^{t_{k+1}} ds E \left| \beta^{k,N}_{\lambda_m}(s) \right|^2 \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X^N_{\lambda_m}(s)) \leq Ch^{p+\frac{1}{2}}. \tag{3.25} \]

Using equations (3.5) and Lemma 3.4 we have for all \(s \in [t, t_{k+1}] \)

\[E \left| \beta^{k,N}_{\lambda_m}(s) \right|^2 \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X^N_{\lambda_m}(s)) \leq C \lambda^{-1-p}_m h^2 e^{-2\lambda(T-t_{k+1})}. \]

Therefore, we obtain

\[\lambda^{-p}_m \int_{t_k}^{t_{k+1}} dt \int_t^{t_{k+1}} ds E \left| \beta^{k,N}_{\lambda_m}(s) \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X^N_{\lambda_m}(s)) \right| \leq C \lambda^{-1-p}_m h^2 e^{-2\lambda(T-t_{k+1})}. \]

Using once more Lemma 3.8, we deduce

\[\sum_{m=1}^{N-2} \lambda^{-p}_m \int_{t_k}^{t_{k+1}} dt \int_t^{t_{k+1}} ds E \left| \beta^{k,N}_{\lambda_m}(s) \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X^N_{\lambda_m}(s)) \right| \leq Ch^{p+\frac{1}{2}}. \]

Plugging this inequality together with (3.24) and (3.25) into (3.23) gives us

\[\sum_{m=1}^{N-2} \sum_{k=0}^{t_{k+1}} \lambda^{-p}_m E \int_{t_k}^{t_{k+1}} \left| I^{k,N}_{2,\lambda_m}(t) \right| dt \leq Ch^{p+\frac{1}{2}}. \tag{3.26} \]

Now we study \(I^{k,N}_{2,\lambda_m}(t) \). Using Lemma 3.4, equation (3.22) and the Itô formula we have

\[dX^N_{\lambda_m}(s) \frac{\partial}{\partial x} u_{\lambda_m}(s, X^N_{\lambda_m}(s)) = \left\{ X^N_{\lambda_m}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} + X^N_{\lambda_m}(s) \beta^{k,N}_{\lambda_m}(s) \frac{\partial^2}{\partial x^2} u_{\lambda_m} \right. \]

\[+ \left. \beta^{k,N}_{\lambda_m}(s) \frac{\partial}{\partial x} u_{\lambda_m} + \left| \gamma^{k,N}_{\lambda_m}(s) \right|^2 \frac{\partial^2}{\partial x^2} u_{\lambda_m} \right\} \left. (s, X^N_{\lambda_m}(s)) \right| ds \]

\[+ \left\{ \gamma^{k,N}_{\lambda_m}(s) \frac{\partial}{\partial x} u_{\lambda_m} + X^N_{\lambda_m}(s) \gamma^{k,N}_{\lambda_m}(s) \frac{\partial^2}{\partial x^2} u_{\lambda_m} \right\} \left. (s, X^N_{\lambda_m}(s)) \right| dW_{\lambda_m}(s) \]

So integrating between \(t \) and \(t_{k+1} \) and taking expectation, we obtain

\[I^{k,N}_{2,\lambda_m}(t) = -\lambda_m E \int_t^{t_{k+1}} \left\{ X^N_{\lambda_m}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} + \beta^{k,N}_{\lambda_m}(s) \frac{\partial}{\partial x} u_{\lambda_m} + X^N_{\lambda_m}(s) \beta^{k,N}_{\lambda_m}(s) \frac{\partial^2}{\partial x^2} u_{\lambda_m} \right. \]

\[+ \left. \left| \gamma^{k,N}_{\lambda_m}(s) \right|^2 \frac{\partial^2}{\partial x^2} u_{\lambda_m} \right\} \left. (s, X^N_{\lambda_m}(s)) \right| ds. \tag{3.27} \]

Using equation (3.7) and Lemma 3.5, we have for all \(s \in [t, t_{k+1}] \)

\[\lambda_m E X^N_{\lambda_m}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} \left(s, X^N_{\lambda_m}(s) \right) = 4\lambda^2_m e^{-2\lambda(T-t)} E \left| X^N_{\lambda_m}(s) \right|^2 \]

\[\leq C \lambda^2_m \left(\frac{1}{\lambda_m} + h \right) e^{-2\lambda(T-t_{k+1})}. \]

Therefore,

\[\lambda^{-p}_m \int_{t_k}^{t_{k+1}} \int_t^{t_{k+1}} \lambda_m E X^N_{\lambda_m}(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m} \left(s, X^N_{\lambda_m}(s) \right) \leq C \left(\lambda^{-1-p}_m h^2 + \lambda^{-2-p}_m h^3 \right) e^{-2\lambda(T-t_{k+1})}, \]
and using Lemma 3.8, we deduce
\[
\sum_{m \geq 1} \sum_{k=0}^{N-2} \lambda_m^{-p} \int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} ds \lambda_m E X_m^N(s) \frac{\partial^2}{\partial t \partial x} u_{\lambda_m}(s, X_m^N(s)) \leq C h^{p+\frac{1}{2}}. \tag{3.28}
\]
The equation (3.4) and Lemma 3.5 yield for all \(s \in [t, t_{k+1}] \)
\[
\lambda_m E \beta_{\lambda_m}^{k,N}(s) \frac{\partial}{\partial x} u_{\lambda_m}(s, X_m^N(s)) = 2 \lambda_m e^{-2 \lambda_m(T-s)} E \beta_{\lambda_m}^{k,N}(s) X_m^N(s) \leq C \lambda_m e^{-2 \lambda_m(T-t_{k+1})},
\]
This upper estimate implies
\[
\lambda_m^{-1} \int_{t_k}^{t_{k+1}} ds \lambda_m E \beta_{\lambda_m}^{k,N}(s) \frac{\partial}{\partial x} u_{\lambda_m}(s, X_m^N(s)) \leq C \lambda_{m}^{-p} h^2 e^{-2 \lambda_m(T-t_{k+1})},
\]
and Lemma 3.8 yields
\[
\sum_{m \geq 1} \sum_{k=0}^{N-2} \lambda_m^{-p} \int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} ds \lambda_m E \beta_{\lambda_m}^{k,N}(s) \frac{\partial}{\partial x} u_{\lambda_m}(s, X_m^N(s)) \leq C h^{p+\frac{1}{2}}. \tag{3.29}
\]
Using equation (3.5) and Lemma 3.5, we have for all \(s \in [t, t_{k+1}] \)
\[
\lambda_m E X_m^N(s) \beta_{\lambda_m}^{k,N}(s) \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X_m^N(s)) \leq C \lambda_m e^{-2 \lambda_m(T-t_{k+1})},
\]
Therefore, we obtain
\[
\lambda_m E \left| \gamma_{\lambda_m}^{k,N}(s) \right| \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X_m^N(s)) \leq C \lambda_m e^{-2 \lambda_m(T-t_{k+1})},
\]
This yields
\[
\lambda_m^{-p} \int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} ds \lambda_m E \left| \gamma_{\lambda_m}^{k,N}(s) \right| \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X_m^N(s)) \leq C \lambda_{m}^{-p} h^2 e^{-2 \lambda_m(T-t_{k+1})},
\]
and Lemma 3.8 implies
\[
\sum_{m \geq 1} \sum_{k=0}^{N-2} \lambda_m^{-p} \int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} ds \lambda_m E \left| \gamma_{\lambda_m}^{k,N}(s) \right| \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X_m^N(s)) \leq C h^{p+\frac{1}{2}}. \tag{3.30}
\]
Finally, (3.5) and Lemma 3.4 imply that for all \(s \in [t, t_{k+1}] \)
\[
\lambda_m E \left| \gamma_{\lambda_m}^{k,N}(s) \right| \frac{\partial^2}{\partial x^2} u_{\lambda_m}(s, X_m^N(s)) \leq C \lambda_m e^{-2 \lambda_m(T-t_{k+1})},
\]
This equation together with (3.28) - (3.30) into (3.27), we deduce
\[
\sum_{m \geq 1} \sum_{k=0}^{N-2} \lambda_m^{-p} E \int_{t_k}^{t_{k+1}} \left| \gamma_{\lambda_m}^{k,N}(t) \right| dt \leq C h^{p+\frac{1}{2}}.
\]
This equation together with (3.21) and (3.26) conclude the proof. \(\square \)

Acknowledgments: The author wishes to thank Annie Millet for many helpful comments.
References

[1] Aboura O., Weak error expansion of the implicit Euler scheme

E-mail address: omar.aboura@malix.univ-paris1.fr

SAMM, EA 4543, Université Paris 1 Panthéon Sorbonne, 90 Rue de Tolbiac, 75634 Paris Cedex France