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WEAK ERROR EXPANSION OF THE IMPLICIT EULER SCHEME

OMAR ABOURA

ABSTRACT. In this paper, we extend the Talay Tubaro theorem to the implicit Euler
scheme.

1. INTRODUCTION

Let (2, F, P) a probability space and 7' > 0 a fixed time. W will be a Brownian motion
in R with respect to his own filtration ;. We will consider the following stochastic
differential equation

Xe=z+ /t b(Xs)ds + /t o(Xs)dWs, (1.1)
0 0

where x € R, b and o are real functions defined on R.. It is well know that, under Lipschitz
conditions on b and o, this equation admits a unique strong solution.

For various reasons, including mathematical finance or partial differential equations,
the approximation of Ef(Xr) is of importance. One way to do this is to use an Euler
scheme and to study the speed of convergence. There is a vast literature on this subject
and one of the pioneering work is the paper of D. Talay and L. Tubaro [7].

Let N € N* and h := T/N. Consider (t;)o<k<n the uniform subdivision of [0, 7]
defined by t; := kh. In their paper [7] the authors deal with the explicit Euler scheme
(th)0<k<N defined as: Xy, =z and for k=0,...,N — 1,

th+1 = th + b (th) h +o (th) AW]C+17 (12)

where AWy 1 := Wy, ., — Wy, They study the weak error Ef (X'T) — Ef (X7).
Here, we will use the implicit Euler scheme defined as follow: ngf = z and for k =
0,...,N—1,

XN =xV 4 (ngvﬂ) h+ o (XN) AWy (1.3)

Despite the fact that this implicit scheme cannot be implemented in most cases, it has
been studied in [5] but, to the best of our knowledge, its weak error expansion has not
been given. The main reason of this study is that we believe it would be a step in order
to study a weak convergence error for SPDEs. So far in that framework only few cases
have been studied in [2]-[4] for the stochastic heat or Schrédinger equation.

Notations. Let n € N and v,w : [0,7] x R — R be smooth functions. We will denote by
0"v(t, z) the nt" derivative of v with respect to the space variable z, except for the second
derivative denoted Aw(t,z) as usual. Moreover, by an abuse of notation, for a function
v:R—=Rand w:[0,7] x R = R, we will write (vw)(t,x) := v(z)w(t, z).

Given p € N, C, will denote a constant that depends on p, T and the coefficients b and
o, but does not depend on N. As usual, C), may change from line to line.

For h small enough, we denote by S} the functions defined on R by

Sp(z) = 1/(1 — h¥/(z)). (1.4)

It is similar to the map used by Debussche in [3].
1
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2. THE MAIN RESULT

Let u the (classical) solution of the following pde, called the Kolmogorov equation:

%u(t, z) + b(z)0u(t, z) + 0% (z) Au(t,z) = 0,
w(T,z) = f(x).
The properties of u will be given in the next section. Let us mention that for b and o

smooth enough, u is smooth too. We define the function v; : [0,7] x R — R, where i
stands for implicit, as follows for a smooth enough function w:

(2.1)

_ 1 L, Lo L 4o 1 2 L, 2
;= 5()8 (bou) + i A (bOu) — §b Au+ 3¢ 0" u — Zba (0" Au) — 3¢ A (0°Au).
(2.2)
We are now in position to state the main result of this paper.

Theorem 2.1. Let b,o, f be C®°-functions with bounded derivatives.
(i) The implicit Euler scheme (1.3) is of weak order 1, that is, there exists a constant C,
such that for h small enough ‘Ef (X:]pv) —Ef (XT){ < Ch.

(i) The weak error can be expanted as
T
Bf (XF) — Bf (Xr) = hE [ (¢, Xi)dt + O(12)
0

We have not given the minimal hypothesis; indeed we want to focus on the ideas and not
on the best set of assumptions. The proof of this theorem is quite long; it uses intensively
the Kolmogorov equation (2.1), the It6 and Clark-Ocone formulas. It will be proved in
the next section. We at first compare our result with that of Talay Tubaro. In their paper
[7], the authors introduce the following function

2
Ve :%bZAu + %bJZ(?gu + éa434u + %%u + b%@u + %O’Q%Au,
and prove the following result (see [7] page 489).

Theorem 2.2. Let (th)k:(],___,N denote the explicit Euler scheme defined by (1.2). Then
weak error has the following expansion

T
Ef (Xr) — Ef (Xr) = hE/O Ve(t, Xp)dt + O(h?).

Applying %, b0 and finally %O‘QA to (2.1) and summing these equations we have

2

%u + 2b8%u + O'QA%U = —b0 (bOu) — %b@ (J2Au) - %J2A (bou) — iUQA (O'QAU)

So we can rewrite the function v, as
Lo Loogg 1 4oy 1

e = 56 Au+§ba 0 u—i-ga 0 u—§

For b = 0, we have ¢, = ¢; = %0484u — %0'2A (U2Au) as expected since in this case the

explicit and the implicit Euler scheme coincide. We can notice that v; = 1, — b*Au +

102 A(bOu) + b9 (bdu) — Lbo?du.

bO (bOu) — ib@ (o®Au) — iaQA (bOu) — %UQA (o°Au)

3. PROOF THEOREM 2.1

Here is a sketch of the proof: After proving some property of the scheme, we introduce
a continuous interpolation of this scheme. Finally, after decomposing the weak error, we
study a remainder term.
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3.1. Some tools.

Proposition 3.1 (Property of u). Let (Xﬁ*”) o denote the stochastic flow, that is
sE|t,

the solution of (1.1) starting from x at time t and let u(t,x) = Ef (X;$> Then u

belongs to C°>° ([0, T] x R) and satisfies the Kolmogorov equation (2.1). Moreover, for

any n,p € N, there exists constants C and k such that

an

@apu(t, x)
See for example [7] page 486 Lemma 2.
Now we recall several results from Malliavin Calculus that will be used in the sequel.

For a detailled introduction, we send the reader to D.Nualart’s book [6].

Proposition 3.2 (Clark-Ocone formula). Let t € [0,T] and F € L*(F;) N DY2; then we
have for all s € [0, ]

§0(1—|—|x|k).

t
F = E(F|F,) +/ E (D, F|F,) dW,.

Lemma 3.3. Let F,G € D2,

(i) If F and DF are bounded, then FG € DY? and D(FG) = FDG + GDF.

(ii) Let f € C' with a bounded derivative; then f(F) € DY2 and Df(F) = f'(F)DF.

(iii) Let (s,t) € [0,T)? such that s <t and let F € DY2NL? (F,). Then F (W; — W) €
D2 and

D, [F (W, — Wy)] = D,F(W, — W) + Flgoc,<py.

(iv) Let {H,,n > 1} be a sequence of random variables in D2 that converges to H in
L? () and such that sup,, E <HDHnH%2(0,T)) < co. Then H belongs to D%2.

For a proof of (iii), see [6] Lemma 1.3.4. Now we state some technical lemmas that will
be useful in the sequel. The following discrete Gronwall lemma is classical.
Lemma 3.4 (Gronwall’s lemma). For any nonnegative sequences (ay)o<k<n and (by)o<k<n
satisfying ag+1 < (14+Ch)ag+bgy1, with C > 0. Then we have ay, < eC(T~tr) <a0 -+ Z?:l bi>.
Lemma 3.5. Let L > 0; then for h* small enough (more precisely Lh* < 1) there exists
I':= £ > 0 such that for all h € (0,h*) we have = < 1+ Th.
Proof. Let h € (0,h*); then we have 1 — Lh > 1 — Lh* > 0. Hence £+ < +£— =T, so

that Lh < Th(1 — Lh), which yields 1 +Th — Lh — TLh? = (1 + Th)(1 — Lh) > 1. This
concludes the proof. O

Lemma 3.6 (Generalization of Young’s lemma). For an integer p > 1 and for e > 0, we
have

2P 1
(a+0)* <(1+e¥ ¥ + (1 + —> v
€

Proof. We use an induction argument. The inequality is true for p = 1, that is (a + b)? <
(1+e€)a® + (1 + %) b2. Now, suppose that it is true until p and will prove it for p + 1;
indeed the induction hypothesis yields

21
(@+b)¥" <1+ ¥ + (1 + —) b’
€

2
b

<o+ Pl P+ (141) \(1 )
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This concludes the proof. [

3.2. Property of the implicit Euler scheme.

Lemma 3.7 (Existence of the scheme). For small h, the implicit Euler scheme (1.3) is
well defined. Moreover, for all k =0,..., N, we have Xt]Z e L? (Fip)-

We will denote by Ny the smallest integer such that the scheme is well defined.

Proof. For k = 0, we have Xt](\)[ = z € L*(F,). Suppose that for all j = 0,...,k,
Xt];[ is well defined and belongs to L? (.th); we prove this for j = kK + 1. We define
Efpy1 := Xt]Z +o (Xt]Z) AWj41. By independence of AW}, and F;, and the linear growth
of o, we have that &,41 € L% (). Let Fjyq : L2 (Q) — L? () be defined by

Fi1(X) = &psr1 + b(X)h, (3.1)

for all X € L?(Q). Using the Lipschitz property of b we have E |y 1(X) — Frq (Y)]? <
|1/ lso|* E|X — Y| So by the fixed point theorem, if [|/|jooh < 1 there exist an unique

element of L?(€2), noted ngvﬂ, such that ngvﬂ = Fr1 (Xt]kvﬂ). The measurability of

ngvﬂ with respect to Fy, , , is obvious. U

Lemma 3.8 (Malliavin derivability). Let h > 0 small enough; then for all k =0,...,N,
we have thkv € DY2. Moreover, for allt € [t t)41), we have DtXt]ZH =Su (Xg:ﬂ) o (Xt]kv),
where Sy, is defined by (1.4).

Proof. 1t is true for £ = 0, since Xév = x. Now suppose that for all j = 1,...,k,
ng\,f € D2 and prove that ngvﬂ € D'2. First, we define the following sequence in L? (Q):

X{Y1(0) =0 and for i > 0, X;Y, (i + 1) = Fjyq (Xp, (7)) where Fyq is defined by (3.1).

Using the Lipschitz property of Fj1, since Xg:+ is a fixed point of Fj41, we have

1

2
E‘XN

. 2 9 . 2 2 i+1
N = XN+ 1] < Wkl BIXE,, - XEa0)| < (IW1=h]?) " B| XY

tr41

So X}V, (i) converge to Xt]kvﬂ in L?(Q) if ||b'||ooch < 1. Using the induction hypothe-
sis, the assumptions on ¢ and Lemma 3.3 (ii) and (iii), we deduce that {41 = XtJZ +
o (ngv ) AWj,11 belongs to D2, Finally, since b is Lipschitz, we deduce by induction that
for all i > 0 XV (i) € D12. Moreover we have DX} (i + 1) = D&y1 + hb' (XY (1)) DX (4)
and DX} ,(0) =0, so that

DX (i + D207y < 20D€k41l7207) + 2021V 12 DX (N2 07
An induction argument yields for > 1 and 2h2||b'||%, < 1,

HD&H-IH%%(),T)

N (-2
1D X 20y < 27— gpapp2,

Finally, we have sup;, || DX (i)|| < co. Lemma 3.3 (iv) proves that Xt]ZH € D2

Finally, let ¢ € [tg,tx+1); applying the Malliavin derivative D to (1.3) and using Lemma
3.3 we have
D XN

tr41

= nv' (X}

trt1

VD XN

trt1

+o (XtJZ ) ;
which concludes the proof. O

The following result gives a bound of p* moments of the implicit scheme.
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Lemma 3.9. Fiz p > 1; then for Ny large enough, there exists a constant C(p) > 0 such
that

sup _maxNE ‘XN‘p < C(p). (3.2)

Proof. Holder’s inequality shows that it suffices to consider moments which are power of
2, that is to check supy> y, maxg—o,. N F {thl\”zp < C,, for every integer p > 1. Using the
generalized Young Lemma 3.6 the independence between AW, and F,, and the fact
that for all j € N, E(AWkH)QjH = 0, we have for h € (0,h*) and some constant C,
depending on h*

(1+n*  E|XY + 0 (XY) AW [©

‘tkl

(reg) e ()

op iy ; )
<+ GME|XN[T +aron Y <2j>E (X7 o (X)) B 1AW

j=1,...,2p—1
2P>

Using the identity E |AWk+1|2j = C(2j)h? and the linear growth of o we deduce for h < 1

P

+Cyh <1 +B|xY

2p

( NI <aronE|xy 2+Ch+ChE( N
+a+eneh S B (XY (1+]xN]7).
j=1,...,2p=1

p+1

Using the inequality: a? 2 < 2" 41 valid for any a > 0, we get for some constant

Cp>0and h <1

2p

N 2
E ‘thﬂ

<O B+ o+ ConE| XY

Provided that h is small enough, the Gronwall Lemma 3.4 and Lemma 3.5 conclude the
proof. O

3.3. Some martingales and related process: ﬂt N fN,’yf’N and nf’N. Let k €

{0,..., N — 1} be fixed; in the sequel, we will use the following processes defined for
t € [tr, try1]

g =E (v (X)) | 7). AN =B (0o (X0),)]A), (3.3)
k k
b mo () + =) 2N = o (X)) B (D (s) (X0, ) 7))
The following lemma describes the time evolution of these processes.

Lemma 3.10. For all k = 0,...,N — 1, and for t € [tg,tp11], we have the following
relation

dﬁf’N = zf’Nth, dzf’N = nf’Nqu d’)’f’ = zt Nat + 77t (t — tk)dW,
anf = |o (x) [P B (D2 (s37) (X3, ) 17) .
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Proof. Let k = 0,...,N — 1 and let t € [fy,t41]. Lemmas 3.3 (ii), 3.7 and 3.8 and the
bounds of [|b”[|oc imply that b <X,£Z+1) € L2 (F;,,,) N DY? and

Db (X7,,) =0 (x5

tet+1

) DXN = (Spb) (ijﬁ) o (xN). (3.4)

let1

So the Clark-Ocone formula in Proposition 3.2 yields ﬁf’N =0 <XN

trt1

and hence dﬁf’N = zf’Nth; where 25N = E <Dsb <XtJZ+1) |]:s>; using (3.4)

te+1 k,N
) = N aw,

AV =0 (X)) E () (X1, (f) . (3.5)

tet1

So taking conditionnal expectation with respect to F;, we have (3.5). Since b” is bounded

and b Lipschitz we have that for h small enough, Spb’ = 1—b—i/zb' € C’,}. So we can conclude

that (Spb) <Xt]Z+1) € D2 and using the Clark-Ocone formula we deduce that for s €

[t tht1),

(Sub) (X{ZH) —E (Shb’ (X{Z+1> ]]—“5> n / g <Du [Shb’ (X{ZH)] \]—"u) aw,,
and hence

bl
dzbN = o (X)) E (DS [Thb, (X{ZH)] ‘]—") AW, = noNdW.

The differential of ’yf s a consequence of the previous result and It6’s formula. Fi-
nally, since Spb' € C} and (Spb') = S7b”, Lemma 3.8 implies that D;(Syb') (Xt]z\ng) =

o (X7) (Spv”) (XgZH) and then

N = o (X)) [P B ((sip") (X)) 1) (3.6)

Applying once more the Clark-Ocone formula in Proposition 3.2, we deduce
Tkt
B (spy (X,,) 17) = (i) (X5,) - /t E (Dy(Si") (X5, ) 1) aws.
Multiplying this by {a (Xt]: ) {2 and using (3.6), we conclude the proof. O

The next lemma provides uniform moment estimates of the above processes.

Lemma 3.11. Let p € N; then for Ny large enough there exists a constant C, such that
for N > Ny,

kNP
max sup  E |5 +
k=0, N—1 t; <t<t) 1,

kN |P kN |P kN |P
AN b e iy <
Proof. Using Jensen’s inequality, the Lipschitz property of b and Lemma 3.9 we have

E‘ﬁf’N‘p < E(b (X{ZH)‘I’ <c,(1+8|xY,[) <,

tet1

The identity (3.5), Jensen’s inequality, the growth property of o and the upper estimate
b'/(1 —hb') > C for small h, Schwarz’s inequality and Lemma 3.9 yield

P p
BN <B o (x3) (s (X,)| <6
Using the definition of ’yf Nin (3.3) and the previous upper estimates we deduce

BN < oo (X" + oppre N[ < 6,
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Finally (3.6), the Jensen inequality, the growth condition on o, the upper bounds of ¥/
and b”, Lemma 3.9 and Schwarz’s inequality yield

Bl < B {lo ()7 |(str) (x2)[] < &

This concludes the proof. O

3.4. Continuous interpolation. As usual we need to introduce a continuous process
that interpolates the implicit Euler scheme (1.3). With an abuse of notation, let (ng ) te[0,T]

be the process defined as follow: Xév =zxpand for k=0,...,N —1and t; <t <tp11
XN = x4 B (b (XN, ) [F7) (¢ = ) + o (X)) (W0 - W), (3.7)
This process satisfies the following

Lemma 3.12. The process (XtN)te[o 7]

of the scheme (1.3). Moreover, for k € {0,...,N — 1} and t € [tg, t)41] we have dX} =
5N dt 4 PN AWy, where the process (BN and (vF) are defined by (3.3).

Remark 3.13. (1) If b= 0, (3.7) corresponds to the classical interpolation given by Talay
Tubaro [7], since the explicit and implicit Euler scheme are the same.

(2) If b is linear, this continuous process differs from that used by Debussche in [3]. Indeed,
the finite dimensional analog of the interpolation correponding to the process dX; =
—BXdt + o (X;) dWy, is defined by

t—,BXN tO.(XN)
xXP=x+ | —*d +/ e dW;
O A T N R A SN

for t € [tg,tps1] (see [3] page 96 equation (3.2)). In this particular case, our interpolation
is given by

t t
XtN:Xt]Z—ir/ E(-8x}, |7 ds+/ {o (X5) + (s =t B (-DyBXY,,

tk ty
Proof of Lemma 3.12. The fact that (X}V) is an (F;)-adapted process which interpolates
the scheme (1.3) is a consequence of (3.7). The continuity is a consequence of the fact
that the map (¢t — F (X|F;)) has a continuous modification. So, applying Itd’s formula

and Lemma 3.10, we obtain d(ﬁf’N(t —tr)) = (t — tg) zf’Nth + ﬁf’th, and hence
dxN = gNar + (a (X)) + (t = ty) zf’N) AW,
This concludes the proof. O

is continuous Fy-adapted and is an interpolation

) }aws.

We next give moment estimates of the interpolation process X;V.

Lemma 3.14. Let p > 1 and h* > 0 be small enough. There exits a constant C,, > 0
depending on h* such that

sup sup E |ng|p < Cp.

N>Np te[0,T)
Proof. Using Lemma 3.9, Jensen’s inequality and the independence of W; — W, and Xt]Z ,
we have for ¢ € [ty, tiy1]:
B|XN" <GB X[+ Cpr | B (b (x5

tet1

) ’th) ‘p [t —tx|” + C,E ‘a (ng\f)‘p W, — Wtk’p

<C, + C,hPE ‘b (x7

tr41

>‘p+E\a(XfZ)\pE]Wt—Wtk]p.

Using the growth condition on b and o, moments of the normal law and Lemma 3.9, we
deduce the result. O
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The following is a straightforward consequence of Lemmas 3.11 and 3.14

Corollary 3.15. Let v : [0,7] x R — R be a function with polynomial growth, and let
ni,...,ng non negative integers. Then there exists a constant C independent of h* such
that for r € [tg, txy1] and h € (0 h*)

B (Jo

3.5. Local decomposition. Now we return to the proof of the main theorem. Let u be
the solution to the Kolmogorov equation (2.1). Using (2.1), we decompose the weak error

777,’ " Ir — t|™® {v (r, X7{V){%> <C.

7’

into a sum of local errors. Let 612\[ = Fu <tk+1’Xt]Z+1) Eu (tk,X ) we deduce

Ef (X)) - Ef (X7) = Eu(T,X}) — Eu(0,2) Zak (3.8)

We introduce, for ¢ <t <tpyq,

V() =B (8N — 0 (X)) ou(t.XY)], W) =E [(‘ﬁ”f . (XtN)> Au (t,XtN)] .

Since u € C12, using Ito’s formula, Lemma 3.11 and the Kolmogorov equation (2.1) at
the point (t, XtN), we obtain

tr41 0 1 2
6N =E {—u + 8PN ou + = ‘%’“’N‘ Au} (t, X7V) dt (3.9)
t ot 2
Tkt 1
—FE {I,ﬁv (t) + §j,gv (t)} dt. (3.10)
123
Now for k=0,..., N — 1, we introduce the following quantities for s € [tg, tx+1]:
0
iy, () = (b0u) (5, X¥) + B0 (b0w) (5, X[T) (3.11)

1
+ =

3

W\Q 9 pu (s, x)

’yf’N‘Q A (bOu) (s,XS{V) — 55“%811 (s,XS{V)

A 0P (s 62,

vavaN) Au (s, XV) -

2
N (s) = k’N‘ u (s, X2) (3.12)

_|_

N‘ *u SXN)—|—27kN kNAu(s XN)
—|—|s—tk| ‘nkN‘ Au (s, X, )+2(s—tk ‘ kN‘ nPN o3 (S,X;V)
0
~ 5 ( 2Au) (s,XéV) - Bf’Na (UQAu) (s,XS{V) — 3

The next two lemmas explain that, up to some sign, Zliv (resp. jkN ) can be viewed as an
antiderivative of i) (resp. ji).

fyf’N‘z A (O’QAU) (s,XSN) .

Lemma 3.16. For allk =0,...,N—1, we have T} (t) Eft’““ N (s)ds fort € [ty tri1].

Proof. 1f we denote by A := F { f’Nau (t,XfV)} -F [b (Xt]Z 1) ou (tkH,XgZH)} and by
Bi= B [b(XN,,) 0u (ter1, X3, ) |- B [0 (X) u (¢, XP)] we can write Y (1) = A+ B.

tkt1
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Lemma 3.11 enables us to apply Ito’s formula: Let v : [0,7] x R — R be of class C1?;
It6’s formula yields

0 1 2
dv (t, XN) = {av + 80N o + 5 "yf’N‘ Av} (t, X{) dt + PN ow (8, XY) dw. (3.13)
Using this equation with Lemma 3.10 we have for v € C'12

a [tV (r.x))| = {@Wﬁ

{5’“ NaEN gy 4 26Ny }(r,XﬁV) AW, (3.14)

N‘ Av+sz7kN8v} (’I“,X7{V) dr

The function Awu has polynomial growth; hence corollary 3.15 implies that
E ft'““ { k, wa’NAu + z?’Nau} (5, Xév) dWs = 0. Using equation (3.14) with v = Ju, in-

tegrating between ¢ and 41, using the fact that ﬁfk’ivl =b <XN

tk+1) and taking expectation

we obtain
Tkt
A= —E/ {@fwgau%—
t 68

Similarly, Corollary 3.15 implies that Eft'““ BN (bOu) (s, X)) dW, = 0. Using (3.13)
with v = bOu, integrating between t and t;y; and taking expectation yields

s

2
mf’N‘ PP+ zf’Nvf’NAu} (s, Xév) ds.
(3.15)

tet1 2
B=E / ’ {g(bau)—l—ﬂf’]va(b@u)—l— 7§7N( A(bau)} (s, X2) ds.
t S

The stochastic integral is centered by Corollary 3.15. This identity combined with (3.15)
concludes the proof. O

Lemma 3.17. For allk=0,...,N — 1, we have TN (¢ Eft i (s)ds fort € [tg, tii1).

Proof. Using (3.3) we clearly deduce that 7} (t) = C + D where

C=E “0 () + (- 1) 2 A (o, 7 )] B [o® (X2) Au (tp, XV)] .
D :=E [0 (X{Y) Au (te, X)))] — E [0 (X]) Au (¢, X]V)] .
We at first rewrite the term D: using (3.13) with v = 02Au, integrating between t; and ¢
and taking expectation, we obtain:
t

D=-F {% (O'ZAU) + 85N (O'QAU) +

tk

vf’N‘Q A (O'ZAU)} (S,X;V) ds,

since 02Awu has polynomial growth which implies that the stochastic integral is centered
using Corollary 3.15. 1t6’s formula and Lemma 3.10 yield for r € [t, tg11]

2
d %IfN‘ _ {2,ykN RN

N( I — t] }dr—l—Q*yankN( Ct)dW,.  (3.16)
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Using this equation and (3.13), we have for v of class C1'2 and r € [ty, try1]
2
N‘ v (7", va) = {

+2y8N kNv—i—‘nkN‘ r— tg|?

d |yF

N‘ Bv—i-

( It N( Av (3.17)

f’N‘ nff’N(r — tk)av} (r, X7{V) dr

—|—{<%’?’ > (%—{—27]“\[ kN( tk)v} (T,X,],V) dW,.

Using equation (3.17) with v = Aw, integrating between ¢; and ¢, using the identity

yka =0 (XtN) and taking expectation, we deduce

CE/{ .

2 4
k,N kN
vy ‘ FPu+ = vy ‘ o*u
2
F2 NN At [s — || A 2(s — 1)

2
yf’N‘ nf’Nﬁgu} (s, X;V) ds.

Indeed, once more Corollary 3.15 and the polynomial growth of 0Au and Awu implies that
the corresponding stochastic integral is centered. This concludes the proof. O
Plugging the results of Lemmas 3.16 and 3.17 into (3.10) we obtain
N-1

Bf (X)) -Bf (Xr) =S E [ {/}tk+ i]kv(s)ds+%/ j,iv(s)ds}dt. (3.18)

k=0 Uk 122

Note: Thanks to Corollary 3.15 and the assumptions growth or boundness on the coeffi-
cients, all the stochastic integrals appearing in the next section, are centered.

3.6. Upper estimate of Z." (t). We next upper estimate the difference ¢;(s) — ¢;(tx+1),
where ¢; is one of the seven terms in the right hand side of (3.11)

3.6.1. The term ¢1(s) = 8 (bOu) (s, XY). Using (3.13) with v = %(bau), integrating
from s to tx+1 and taking expected value we deduce

) )
B (b0u) (5. XY ) =B (bdu) (e, X5 ) + Ras),
where

Ri(s) = —E / o { 0622 (b0u) + BN 0 0 - (b0u) +

Futhermore, Lemmas 3.14 and 3.11 and the polynomlal growth of the functions involved

imply that |R;(s)| < Ch.

N‘ AL bau)} (r, XN) dr.

3.6.2. The term ¢o(s) = BYN 0 (bou) (s,X)). Using (3.14) with v = 9(bdu), integrating
between s and ;1 and taking expectation we obtain

B [85N0 (bou) (s, X2) | = B b (XN,,) 0 (00u) (te11, X7, )| + Bals),
where

)= —E / o [ va{%a(ba )+ 85N A (bou) + Wf’N‘263(b8u)}

+ Wf’sz’NA(bﬁu)] (’I“, X7{V) dr.

The polynomial growth of the functions and Lemmas 3.14 and 3.11 imply that |Ra(s)| <
Ch.
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2
3.6.3. The term ¢3(s) = % ¥ N‘ A (bdu) (s, XY). Let

R3(s) := _%E/stm{

+298N RN A (bdu) +

4
’y,’?’N‘ 84(bau)

2 2
yRN ( %A(b@u) - RN ‘ 93 (bou) +

2
Nl = el Abow)

2
’Yf’N‘ nf N (r — tk)a3(b8u)} (r, Xf‘v) dr.

Using (3.17) with v = %A(b@u), integrating between s and t;y1, and taking expectation
give us

1
_E{
2

with |R3(s)| < Ch.

tk+1

,Y?N‘QA(bau) (s,Xév)} _E U

"2 000 (e, X5, )|+ o)

3.6.4. The term ¢4(s) = ﬁkNaau( ,XY). Let
k+1
:E/ ﬁ’fN—a +

+7kN kNa; (914 (T,X;N)dr.

2_90 1 2 0
kN|" 59 L okN | kNP A9
Br ‘ a(95 Ou + 25r or ‘ A@s du

Using (3.14) for v = %Bu and integrating between s and 1, we obtain
9 9
k,N N o N
- [/88 Eau (S’XS )] =-FK |:b (thc+1> atau (tk+17Xt]g 1>:| + R4( )
with |R4(s)| < Ch.

3.6.5. The term ¢5(s) =

have

2
BE’N‘ Ay (S,Xév). Using [t0’s formula and Lemma 3.10 we

2
= [V dr + 285N N aw,.

Using this equation, (3.13) and It6’s formula we obtain

| )| = [Je

kN‘ Au—l—QﬁkN kN ’N83u] (T,X;N)dr—der,
where dM, = {2@“ kN Ay +

N‘234u

Au + (Bk N) Pu +

Bl N‘ ~EN 9By, } (r, XN) dW, and M, is a square inte-

grable martingale. Let

tk+1
A

+ zf’NAu + 2ﬁf’sz’N7f’N63u] (r, Xf,v) dr.

1 2
k‘N‘ —Au+(ﬁkN) 83u+§ Wf’N‘ o*u

Integrating between s and ;1 and taking expectation we have
2
E |:‘5§7N‘ A’LL (S,Xév):| == |:"8tk+l

with |Rs(s)| < Ch.

Aueﬂhxﬁg}+RA$
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3.6.6. The term ¢g(s) = zf NABN A (S,X;V). Applying It6’s formula to the product of

2PN AEN and (3.13), and Lemma 3.10, we obtain for r € [ty, txi1]

0 1 2
d[ kN%IfN (T’X;V)} :{ kN%IfNatv_FZkN ,Nﬁf,Nav+_Z (%@N) N|7,
2 2
+ an‘ )v—l—ZkN kN(T—tk)%, Wf’N‘ nf’Nav} (T,va) dr + dM,
(3.19)

where dM, = { Zp ‘ ov + zk anN(r — tp)v —i—vf anN } (r, Xf,v) dW, and M, is

a square integrable martmgale. Using equation (3.19) with v = Auw, integrating between
s and {41 and taking expectation give us

—F [zf,nyvaAu (s,XéV)} =-F [Ztk+l’ytk+1Au (tk+1,th+1>} + RG( )
with |Rg(s)| < Ch.

2
3.6.7. The term ¢7(s) = %ﬁf’N 'yf’N‘ Pu (s,XéV). Using Lemma 3.10 and equation

(3.17), Itd’s formula give us for v of class C'H?2
aF: o] (o) = { gt

+2ﬁf,N kN kNv+5

4
N A
(3.20)

2 3
BN N = ) + 25N (V)

#] g

IBkN‘

2
NPl g 2
—1—27]“ an N ffN(r — rk)v} (7", Xf,v) dr

+{%’f
1

Using this equation with v = 533u, integrating between s and {; 1 and taking expectation
we have

1
L[

with |R7(s)| < Ch.

2 3
’N‘ sz’Nv + Bf’N (’yff’N) ov + 25f’nyf’Nn7]f’N(r — rk)v} (7", Xf,v) dW,..

k,N
’ythﬁl

2 1
k,N 3 Ny | _ k,N
s ‘ 0 u(S,XS )] = —§E |:'8tk+l

“u (1. ngﬂ)} + Ra(s),

3.7. Upper estimate of JV (). We upper estimate the error bi(s) — b5(ty,) where ¢; is
one of the nine terms in the right hand side of (3.12)

- 2
3.7.1. The term ¢ (s) = |y %Au (s,XY). Using (3.17) with v = %Au, integrating

between t; and s, taking expectation and using the fact that VZN =0 (Xt]Z) we have

B[4 g (s, x| = 8 [Jo () 5 a0 (065 | + Ao
with
R ’ BN hN kN |2 9, O
i) =E | [|]pF ‘ P At (2f + |k ‘ Ir = tef?) - A

173

+ {80 + 20 (r = )
Corollary 3.15 implies that |R;(s)| < Ch.

f’Nr %8424 (7‘, va) dr.

‘ —du —|—




WEAK ERROR EXPANSION OF THE IMPLICIT EULER SCHEME 13

3.7.2. The term &2(8) = gBN "ny‘ Pu (s X;V) For an Fs-measurable random vari-
able Z, we have FE <Zﬂfk’N) = (Zb (Xt]ZJr )) Using (3.20) with v = 93u, integrating

between t; and s and taking expectation we have
2
E[ e (s,ng)] -Bb (X7,
where

Ro(s):=FE S{{Q’yr’ z

tg

) o (5N 0% (b0, X0 | + (),

N‘ Ir — t\ +2’ykN77fN kN( tk)}agu

7"

‘ —du —l—

SN 55
o ‘8u

’y,’?’N‘Q 84u} (7", va) dr.

Bf’N( +2ﬁf’an’N(r—tk)+vf’ z

Corollary 3.15 implies that |Ra(s)| < Ch.

~ 4
3.7.3. The term ¢3(s) = 3 ¥ N‘ d*u (s,X)). Using Lemma 3.10 and It6’s formula we

deduce
N ‘4

Using this equation and (3.13) with v = %84u and applying It6 formula, we have

1
§E[’Y§

2 3
N‘ |r — tk\2}d7" +4 <'yf’N> nf’N(r — tg)dW,.

N‘ {4,ykN kN

’N‘434u (s,XSN)} = %E

o (X[ 0 (12, X)) | + (),
where R3(s) < Ch by Corollary 3.15.

3.7.4. The term ¢u(s) = 2y N N Ay (s,XN). Using (3.19) with v = 2Au we have
E [2%@ N kN Ay, (s, XN)] =F [nyfk CAu (g, X )] + Ry4(s), and Corollary 3.15 implies
|R4(s)| < Ch.

3.7.5. The term ¢5(s) := Rs(s) == |s
Using Corollary 3.15, we have |R5(s)| < Ch.

N‘Q Au (s, XN)4+2(s—tp) |

‘ N 93y (s, XN).

3.7.6. The term ¢g(s) = 5 ( 2Au) (s, XY). Using (3.13) with v = % (02Au), integrating
between ¢;, and s and taking expectation, we have

0 0 _
—F |:§ (UQAu) (S,XSN):| =—F [a (0'2Au) (tkaXt]Z):| +R6(S),
with |Rg(s)| < Ch by Corollary 3.15.

3.7.7. The term ¢r(s) = BENO (oc2Au) (s, XY). Using (3.14) with v = d(c*Au), inte-
grating between t; and s, taking expectation we have

B [BEN0 (M) (. X2) | = —E [0 (X)) 6 (a2 Au) (14, X)) + Ra(s),

with |R7(s)| < Ch by Corollary 3.15.
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- 2
3.7.8. The term ¢s(s) = 3 "yf’N‘ A (0?Au) (s,XN). Using (3.17) with v =
integrating between t; and s, and finally taking expectation we have

1
__E[
2

with |Rg(s)| < Ch by Corollary 3.15.

%A(UQAu),

" (020 (0,52 = 5 [l (R 8 (0280 (1,50 + st

3.8. Proof Theorem 2.1 (i). The identity (3.18) and the upper estimate in section 3.6
and 3.7 imply that

tet1 Tkt t
B ) - Br 0 = B [ [T i eds g [ wdshare

i
N-1 ;N

W3 Bl () + 302 S B3 (1) + B (3.21)
k=0 k=0

where
N—1 7 N—1

thr1  fle+1 8 te+1 [t
R=3"%" / / Ri(s)dsdt + 3 / Ry (s)dsdt.
t =1 ti ty

k=0 j=1"k k=0 j

Hence |R| < Ch?. Note that ﬁfk’ivl =b (Xt]ZJrl . Using (3.3) and (3.5) we deduce that
sz’ivl =0 (Xt]Z) (Spd) (Xt]ZH) and Wi’ﬁ =0 (Xt]Z) [1 + h(Spb") <XtJZ+1)] =0 (Xt]kv) S, <X5Z+l>.

Therefore, we deduce that
1
b0u) (thsr, X0Y,, ) + 00 (b0u)] (B0, X7, ) + 50° (X) [SRA (000)] (B0, X7, )

(
0
[baau} (tk+17X£]kV+1) — [b2Au] <tk+17Xt]Z+1> — 0’2 (ngv) [b/S]%AU] (tk+17X£]kv+1>

o (X0)) [pS30u] (b0 X1, )

) 0
iy (tre1) =5

!
2
Simi kN N
imilary, 3 =0 (th). So we have
. 0 1
B (tr) =Bo™ 5 Au (t, X[) + b (X}, ) 0%0%u (14, X))) + S B0 o (1, XY
)
+ 2B, (X}, ) 0?Au (te, X)Y) = B2 (0?Au) (0, X7Y)
1

)0 (028u) (4, X1Y) = 5E0*A (02Au) (14, X7)) -

thy1

— Bb (XN
Notice that b and ¢ do not depend upon t; hence after simplification we have

) 1
it (te1) =00 (60u) (b1, X5, ) = 0 (e, X7, ) + 507 (X)) (S70/0u) (b, XY )
(3.22)

i () =Bb (X}

1

293 N 404 N N 2 N

W) 0 (b X0Y) + S ot (1, X)) — Bb (X)), ) 0 (0%Au) (14, X7))
1
— 5E0*A (02 Au) (14, X7Y) + 2BV'S, (XY, ) 0*Au (b, X)) (3.23)
Corollary 3.15 implies the existence of a constant C, such that for all k =0,..., N — 1:
B (it (te1) + 52 (t)| < C.

Using this bound with (3.21) proves the first part of Theorem 2.1.
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3.9. Proof Theorem 2.1 (ii). We at first prove the following lemma, which upper esti-
mates the error in the approximation of an integral by a Riemann sum.

Lemma 3.18. Let v and w in C,~([0,T] x R). Then there exists a constant C' inde-
pendent of h such that

N-—1
hS B (tkH,Xt]ZH) (t, X) E/ w(t, X;)dt| < Ch.
k=0

Proof. Using (3.13) multiply by w(t, X ]Z ) and taking expected value, we deduce for v €
CL2 Fy <tk+1’Xt]Z+1> w (tk,Xt]kV) Evw (tk, ) + Ay, where

et 9 1 2
Ay = Ew (tk,thkV)/ {atwrﬁt v+ 3 ‘%’“N‘ Av} (t, X7¥) dt.
2%

This yields

N-1 N—-1
h Z Ev <tk+1’thl\cf+1) tk, tk E/ t Xt Z hAk + hByj, + Ck)
k=0 =0
where

By, ==E(vw) (ty, X[Y) — E(vw) (t, Xy,)

Tkt
Cy :=hE(vw) (t, Xy,) — E (vw)(t, X¢)dt.

173

Using the Cauchy-Schwarz inequality, the fact that a 5V, 0v and Av have polynomial grow
so that Corollary 3.15 can be applied, we deduce
2]

tkt1 (9 1 2
/ : { v—l—ﬁt N8v+§‘wf’N‘ Av} (t,XtN)dt
tg

Ak <E |w (e, X))[*] B ot

tet+1
<ChE/
i

<Ch?,

Hence, |Ag| < Ch which implies 7Y ooy 1 [Ak| < Ch.
Since (vw)(t, .) is in Cp°, we use Theorem 2.1 (i), changing 7" by t;,, which yields | B;| < Ch
and then b ooy 1 [Bi| < Ch. Finally, Ito’s formula implies

2
dt

2
{—v—i—ﬂ ov + % "yf’N‘ Av} (t. X{)

trt1

Cy =FE {( ) (tk7 th) (Uw) (ta Xt)} dt

/ /{ () +bO(vw) + 50 A(Uw)}(S,Xs)dsdt.

Once more the polynomial growth imposed on v, w and their partial derivatives implies
that |Cx| < Ch? and then Y ., n_; |Ck| < Ch. This concludes the proof. O

Now we introduce the function ¢, : [0,7] x R — R defined by
1 1 1 1
Yin(t, x) ::iba(bau)(t,x) - §b2Au(t,m) + ZazSﬁb"au(t,x) + 160283u(t,x) (3.24)

1 1 1 1
+ §U4B4u(t,w) + ib'ShUQAu(t,x) — Zb@(UQAu)(t,x) — gO’ZA(O'QAU)(t,.%')
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Using the expression of & in (3.22) (resp. j in (3.23)) and the previous lemma, we
deduce

| Nl | M T
Sh kzo EilY (tper) + thZOEj}j(tk) - /0 Eqip,(t, X,)dt| < Ch. (3.25)
Using the definitions of 1; and v, given in (2.2) and (3.24) respectively, we have
1
Yin(t, ) — (L, ) =1 {025;21b"(9u + bo?Pu + 20/ Spo? Au — 02A(b8u)} (t,z)
1 1
:102 (Sp — 1) b"ou(t,z) + 56/ (S, — 1) o?Au(t, z).

Since (S, — 1) (z) = lf—l;:b,(x) and |Sp(x) + 1] < C for h € (0,h*), we have (S, — 1) (z)| +

|(S2 — 1) ()| < Ch, where as usually C' does not depend on N and h. This yields

T
/0 B {vn(t, X2) — it X))} dt| < Ch.

This last equation with (3.21) and (3.25) concludes the proof.

Acknowledgments: The author wishes to thank Annie Millet for many helpful com-
ments.

REFERENCES

[1] Bally V., Talay D., The law of the Euler scheme for stochastic differential equations: I. Convergence
rate of the distribution function. Prob. Th. Rel. Fields, 104-1:43-60, 1996.

[2] de Bouard A., Debussche A., Weak and strong order of convergence of a semi discrete scheme for the
stochastic Nonlinear Schrodinger equation, Applied Mathematics and Optimization journal, 54, 3, pp.
369-399 2006.

[3] Debussche A., Weak approximation of stochastic partial differential equations: the nonlinear case,
Math of Comp, 80, pp. 89-117 2011.

[4] Debussche A., Printems J., Weak order for the discretization of the stochastic heat equation, Math of
Comp, T8, 266, pp. 845-863 2009.

[5] Kloeden P. E., Platen E., Numerical solution of stochastic differential equations. Applications of
Mathematics (New York), 23. Springer-Verlag, Berlin, 1992.

[6] Nualart D., The Malliavin Calculus and Related Topics. Second Edition. Probability and its Applica-
tions (New York). Springer-Verlag, Berlin, 2006.

[7] Talay D., Tubaro L., Expansion of the global error for numerical schemes solving SDEs Stoch. Anal.
and App., 8(4),483-509, 1990.

E-mail address: omar.aboura@malix.univ-parisl.fr

SAMM, EA 4543, UNIVERSITE PARIS 1 PANTHEON SORBONNE, 90 RUE DE TOLBIAC, 75634 PARIS
CEDEX FRANCE



