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Asymptotic Nonlinearity of Vectorial Boolean

Functions

Stéphanie DIB

Institut de Mathématiques de Luminy, Marseille, France

Abstract. We investigate the nonlinearity of functions from F
m
2 to F

n
2 . We

give asymptotic bounds for almost all these functions.

1 Introduction

Let m and n be two positive integers. Functions from the vectorspace Vm =
F
m
2 to the vectorspace Vn = F

n
2 , where F2 is the finite field with two elements,

are called (m,n)-functions or more generally, vectorial Boolean functions.
For a cryptographic use, such functions need to fulfill many criteria in order
to ensure the robustness of the cryptosystems in which they are involved
[1]. Among these criteria and one very important notion is the nonlinearity
of these functions that must be as high as possible in order to resist to
linear cryptanalysis. A (m,n)-function is affine if and only if it is a F2-linear
map plus a constant. The nonlinearity NL(f) of a (m,n)-function f equals
the minimum Hamming distance between all the component functions of f ,
that is v.f where v ∈ V ∗

n = Vn \ {0}, and all affine (m,n)-functions. It
can be computed through the Walsh transform of these components. For
a given v ∈ V ∗

n , the Walsh transform of v.f is the Fourier transform of

χv·f (x) = (−1)(v.f)(x) the ±1-representation of v.f . Let us denote by V̂m the

set of characters of Vm. For every µ ∈ V̂m, we have

χ̂v·f(µ) =
∑

x∈Vm

(−1)(v.f)(x)µ(x),

where µ(x) = (−1)x.y for some y in Vm. And the nonlinearity of f is

NL(f) = 2m−1 − 1

2
max
v∈V ∗

n

µ∈V̂m

|χ̂v·f (µ)| .
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Hence a function has high nonlinearity if all of its components Walsh values
have low magnitudes. The covering radius bound is valid for every (m,n)-
function

NL(f) ≤ 2m−1 − 2m/2−1, (1)

and can be achieved with equality only if m is even and n ≤ m/2. For n ≥ m,
we have a better bound [4], and when n is sufficiently greater than m, other
bounds are given in [2]. Finding better bounds than (1) in the other cases
remains an open problem. Besides that, we don’t have information about
the distribution of the nonlinearity of (m,n)-functions. When n = 1, the
distribution was studied by [8, 3, 10, 7].
In this paper, we propose asymptotic bounds which are valid for almost all
(m,n)-functions. Let 0 < β < 1/4, when m tends to infinity and n ≤ m, we
show in theorem 2.1 that the nonlinearity of almost all (m,n)-functions is

bounded from above by 2m−1−2
m−1

2

√
(m+ n) log 2 (1−β). And in theorem

3.1, we prove that for any positif real β, when (m+ n) tends to infinity and
without any order for m and n, almost all (m,n)-functions have nonlinearity

greater than 2m−1 − 2
m−1

2

√
(m+ n) log 2 (1 + β).

To obtain the first result, we use G. Halász method in [6] concerning random
trigonometric polynomials. This work inspired F. Rodier [10] to prove that
almost all m-variable Boolean functions ((m, 1)-functions) have nonlinearities
in the neighbourhood of 2m−1 − 2m/2−1

√
2m log 2. We use the same scheme

of proof, however, it was necessary to take more precise approximations in
the case of (m,n)-functions. As for the second result, it is a generalization of
F. Rodier’s result [9] on Boolean functions inspired by the work of R. Salem
and A. Zygmund [11] on trigonometric series.
We begin by proving the lower bound of max

v∈V ∗

n ;µ∈V̂m

|χ̂v·f (µ)| which is more

difficult.

2 The lower bound

Let u(x), that will be completely constructed in section 2.3, be a function on
R satisfying

0 ≤ u(x) ≤ 1 ∀x ∈ R, u(x) =

{
0 for |x| ≤ M
1 for |x| ≥ M +∆,

2



where M = 2
m+1

2

√
(m+ n) log 2(1−β) with 0 < β < 1/4 and ∆ =

√
2m

log 2m
.

We consider the random variable η on the space of (m,n)-functions

η(f) =

∫

V ∗

n

∫

V̂m

u (χ̂v.f(µ)) dµdv,

where dµ (resp. dv) is a uniform measure over V̂m (resp. V ∗
n ) of total mass

1. η(f) = 0 is equivalent to max
v∈V ∗

n ;µ∈V̂m

|χ̂v·f(µ)| ≤ M . When n ≤ m, we shall

prove by applying Chebyshev’s inequality that this occurs with probability
tending to 0 for large enough m.
The function u(x) is the real Fourier transform of a measure U on R

u(x) =

∫

R

exp (−2πitx) dU(t).

Hence

η(f) =

∫

V ∗

n

∫

V̂m

∫

R

exp (−2πit χ̂v.f (µ)) dU(t)dµdv.

Before evaluating the first and second moment of η, some estimations are
necessary but we chose to give the proof later. The following proposition is
given in [6] and [10] but we repeat it for the reader’s convenience.

Proposition 2.1. When m tends to infinity, we have the following estima-

tions:
∫

R

|dU(t)| = O(m), (2)

∫

R

|t|p|dU(t)| = O
(m

2m

)p/2
for 1 ≤ p ≤ 32, (3)


∫

R

exp
(
−2m+1π2t2

)
tpdU(t)

 = O
(
2−m p

2
−(m+n)(1−2β)mp/2−1/2

)
for 0 ≤ p ≤ 24.

(4)

Proof. See section 2.3.

2.1 Expectation of η

Lemma 2.1.

E(η) =

∫

R

exp
(
−2m+1π2t2

)
dU(t) +O

(
2−2m−n+2β(m+n)m3/2

)
+O

(
2−2mm4

)
.

(5)
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Proof. We have

E(η) =

∫

V ∗

n

∫

V̂m

∫

R

E (exp (−2πit χ̂v.f (µ))) dU(t)dµdv.

The random variables χv.f (x)µ(x) are independent in x and take values +1
and −1 with probability 1/2. Thus

E (exp (−2πit χ̂v.f (µ))) = E
( ∏

x∈Vm

exp (−2πitχv.f (x)µ(x))
)

=
∏

x∈Vm

E (exp (−2πitχv.f (x)µ(x)))

= cos2
m

(2πt) (6)

= exp
(
− 2m+1π2t2 − 4

3
π42mt4

)
+O(2mt6)

for |t| ≤ 1
3π

, by applying on (6)

log cos y = −y2

2
− y4

12
+O

(
y6
)

for |y| ≤ 1

and
exp(−a) = exp(−b) +O(b− a) for a, b ≥ 0. (7)

For |t| > 1
3π

, we use the trivial bound 1 for the integrand. This gives

∫

R

E (exp (−2πit χ̂v.f (µ))) dU(t)

=

∫ 1

3π

− 1
3π

exp
(
− 2m+1π2t2 − 4

3
π42mt4

)
dU(t) +O

(
2m
∫

R

t6|dU(t)|
)

+O
(∫

|t|≥ 1
3π

|dU(t)|
)
.

We extend the first integral over the real line making the same error as the
third term, that can be included in the second one. This yields

∫

R

exp
(
− 2m+1π2t2 − 4

3
π42mt4

)
dU(t) +O

(
2m
∫

R

t6|dU(t)|
)
.

By (3), the remainder equals O (2−2mm3). As for the main term, we use

exp(−a) = 1− a +O(a2) for a > 0,
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in addition to (3) and (4) as follows

∫

R

exp
(
− 2m+1π2t2 − 4

3
π42mt4

)
dU(t)

=

∫

R

exp
(
−2m+1π2t2

) (
1− 4

3
π42mt4 +O

(
22mt8

) )
dU(t)

=

∫

R

exp
(
−2m+1π2t2

)
dU(t) +O

(
2−2m−n+2β(m+n)m3/2

)
+O

(
22m

∫

R

t8|dU(t)|
)

=

∫

R

exp
(
−2m+1π2t2

)
dU(t) +O

(
2−2m−n+2β(m+n)m3/2

)
+O

(
2−2mm4

)
.

The proof is complete recalling that the total mass over V ∗
n and V̂m is 1.

2.2 The second moment

η2(f) consists of three sums

η2(f) =

∫

V ∗

n
2×V̂ 2

m

(v,µ)=(v′ ,µ′)

u (χ̂v.f (µ))u (χ̂v′.f(µ
′)) dµdvdµ′dv′

+

∫
V ∗

n
2×V̂ 2

m

v=v′

µ6=µ′

u (χ̂v.f (µ))u (χ̂v′.f(µ
′)) dµdvdµ′dv′

+

∫

V ∗

n
2×V̂ 2

m

v 6=v′

u (χ̂v.f (µ))u (χ̂v′.f(µ
′)) dµdvdµ′dv′,

which we denote respectively by η21(f), η
2
2(f) et η23(f).

Lemma 2.2.

E(η21) ≤
1

2m(2n − 1)
E(η).

Proof.

η21(f) =

∫

V ∗

n
2×V̂ 2

m

(v,µ)=(v′ ,µ′)

u (χ̂v.f (µ))u (χ̂v′.f(µ
′)) dµdvdµ′dv′

=
1

2m(2n − 1)

∫

V ∗

n×V̂m

u2 (χ̂v.f (µ)) dµdv

≤ 1

2m(2n − 1)

∫

V ∗

n×V̂m

u (χ̂v.f (µ)) dµdv =
1

2m(2n − 1)
η(f)

noting that 0 ≤ u(x) ≤ 1, ∀x ∈ R.
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For E(η22) (resp. E(η23)), we use the representation of u as a Fourier transform

E(η22) = E

(∫
V ∗

n
2×V̂ 2

m

v=v′

µ6=µ′

u (χ̂v.f (µ))u (χ̂v.f (µ
′)) dµdvdµ′dv′

)

=

∫
V ∗

n
2×V̂ 2

m

v=v′

µ6=µ′

∫

R2

E (exp (−2πit χ̂v.f (µ)− 2πit′ χ̂v.f (µ
′))) dU(t)dU(t′)dµdvdµ′dv′.

We evaluate the integrand in the following lemma.

Lemma 2.3. Given v ∈ V ∗
n and µ, µ′ ∈ V̂m such that µ 6= µ′. For t and t′

of absolute value smaller than 1
3π

, we have

E (exp (−2πit χ̂v.f (µ)− 2πit′ χ̂v.f (µ
′))) = exp

(
−2m

4∑

i=1

i∑

j=0

ci,jt
2i−2jt′2j

)
+2mO(|t|+|t′|)10,

where ci,j are positive reals.

Proof. The random variables χv.f(x) (tµ(x) + t′µ′(x)) are independent in x,
and take values (tµ(x) + t′µ′(x)) and − (tµ(x) + t′µ′(x)) with probability 1/2.
Thus

E (exp (−2πit χ̂v.f (µ)− 2πit′ χ̂v.f (µ
′)))

= E
( ∏

x∈Vm

exp (−2πiχv.f (x) (tµ(x) + t′µ′(x)))
)

=
∏

x∈Vm

E (exp (−2πiχv.f (x) (tµ(x) + t′µ′(x))))

=
∏

x∈Vm

cos(2π(tµ(x) + t′µ′(x))).

Since µ 6= µ′, they agree (resp. disagree) 2m−1 times
∏

x∈Vm

cos(2π(tµ(x) + t′µ′(x)))

= cos2
m−1

(2π(t+ t′)) cos2
m−1

(2π(t− t′))

= exp

(
− 2m

( 4∑

i=1

ci(t + t′)2i +O(t+ t′)10 +

4∑

i=1

ci(t− t′)2i +O(t− t′)10
))

,

for |t| ≤ 1
3π

, |t′| ≤ 1
3π

, by applying

log cos y = −y2

2
− y4

12
− y6

45
− 17y8

2520
+O

(
y10
)

for |y| ≤ 1.

Simplifying and using (7) give the result.
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Lemma 2.4.

E(η22) =
1

2n − 1

(∫

R

exp
(
−2m+1π2t2

)
dU(t)

)2

+O
(
2−3m−3n+4β(m+n)m

)
+O

(
2−4m−nm9

)
.

Proof. Using the previous lemma together with the trivial bound 1 for the
integrand outside the square |t| ≥ 1

3π
, |t′| ≥ 1

3π
give

∫

R2

E (exp (−2πit χ̂v.f (µ)− 2πit′ χ̂v.f (µ
′))) dU(t)dU(t′)

=

∫ 1
3π

− 1
3π

∫ 1
3π

− 1
3π

exp

(
− 2m

4∑

i=1

i∑

j=0

ci,jt
2i−2jt′2j

)
dU(t)dU(t′)

+O

(
2m
∫

R2

(|t|+ |t′|)10|dU(t)||dU(t′)|
)

(8)

+O

(∫

|t|≥ 1
3π

∫

R

|dU(t)||dU(t′)|
)
.

We extend integration in the first term over R2 making the same error as the
third term, that is smaller than the second one.
Noting that c1,0 = c1,1 = 2π2, and applying

exp(−a) = 1− a+
a2

2
− a3

6
+O(a4), for a > 0,

the first term then becomes
∫

R2

exp(−2m+1π2t2) exp(−2m+1π2t′2)

(
1− 2m

4∑

i=2

i∑

j=0

ci,jt
2i−2jt′2j + 22m

8∑

i=4

i∑

j=0

li,jt
2i−2jt′2j

− 23m
12∑

i=6

i∑

j=0

pi,jt
2i−2jt′2j + 24mO

( 16∑

i=8

i∑

j=0

ri,jt
2i−2jt′2j

))
dU(t)dU(t′)

and by (4), we get
(∫

R

exp(−2m+1π2t2)dU(t)

)2

− 2m
4∑

i=2

i∑

j=0

O
(
2−mi−2(m+n)(1−2β)mi−1

)

+ 22m
8∑

i=4

i∑

j=0

O
(
2−mi−2(m+n)(1−2β)mi−1

)
− 23m

12∑

i=6

i∑

j=0

O
(
2−mi−2(m+n)(1−2β)mi−1

)

+ 24mO

(
16∑

i=8

i∑

j=0

ri,j

∫

R

t2i−2j |dU(t)|
∫

R

t′2j |dU(t′)|
)
. (9)
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Terms in (9) with i = j or j = 0 are equal 24mO (m)O
(m

2m

)8
by (2) and

(3). The other terms are equal 24mO
(m

2m

)8
by (3). This gives

(∫

R

exp
(
−2m+1π2t2

)
dU(t)

)2

+ O
(
2−3m−2n+4β(m+n)m

)
+O

(
2−4mm9

)
.

As for (8), it can be estimated just like (9) using (2) and (3), yielding
O (2−4mm6). We end the calculations by integrating over the other vari-
ables.

Lemma 2.5.

E(η23) =
(
1− 1

2n − 1

)
E2(η).

Proof. We have

E(η23) =

∫

V ∗

n
2×V̂ 2

m

v 6=v′

∫

R2

E (exp (−2πit χ̂v.f (µ)− 2πit′ χ̂v′.f(µ
′))) dU(t)dU(t′)dµdvdµ′dv′.

Since v 6= v′, the random variables χ̂v.f (µ) and χ̂v′.f(µ
′) are independent.

Thus

E (exp (−2πit χ̂v.f (µ)− 2πit′ χ̂v′.f(µ
′)))

= E (exp (−2πit χ̂v.f (µ)))E (exp (−2πit′ χ̂v′.f(µ
′)))

= cos2
m

(2πt) cos2
m

(2πt′),

as calculated previously in (6). And,

E(η23) =

∫

V ∗

n
2×V̂ 2

m

v 6=v′

dµdvdµ′dv′
(∫

R

cos2
m

(2πt)dU(t)

)2

=
(
1− 1

2n − 1

)
E2(η).

Lemma 2.6.
1

E(η)
= O

(
2(m+n)(1−β)2

√
m
)
. (10)

Proof. We have

E(η) =

∫

R

exp
(
−2m+1π2t2

)
dU(t) +O

(
2−2m−n+2β(m+n)m3/2

)
+O

(
2−2mm4

)
.
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The Fourier transform of exp (−2m+1π2t2) is
1√

2m+1π
exp

(
− x2

2m+1

)
. Hence,

by Plancherel’s theorem, and the left-hand inequality of (13), we have

∫

R

exp
(
−2m+1π2t2

)
dU(t) =

1√
2m+1π

∫

R

exp

(
− x2

2m+1

)
u(x)dx

≥ 1√
2m+1π

∫

|x|≥M+∆

exp

(
− x2

2m+1

)
dx

=
1√
π

∫

|y|≥ M+∆√
2m+1

exp(−y2)dy

≥
√

2m+1

π

exp
(
− (M+∆)2

2m+1

)

M +∆

(
1− 2m

(M +∆)2

)

≥ C1

√
2m+1

exp
(
− M2

2m+1

)

M +∆

≥ C2 2
−(m+n)(1−β)2m−1/2.

Adding the fact that

O
(
2−2m−n+2β(m+n)m3/2

)
+O

(
2−2mm4

)
= o

(
2−(m+n)(1−β)2m−1/2

)
,

proves the result.

Theorem 2.1. Let 0 < β < 1
4

and γ any positive real. When m tends to

infinity and n ≤ m, we have

P
(
max
v∈V ∗

n

µ∈V̂m

|χ̂v·f (µ)| ≤ 2
m+1

2

√
(m+ n) log 2 (1− β)

)
= P (η = 0) = O

(
m−γ

)
.

Proof. When η = 0, η deviates from its expectation by E(η), and by Tchebitch-
eff’s inequality

P (η = 0) ≤ P
(
|η − E(η)| ≥ E(η)

)
≤ E(η2)− E2(η)

E2(η)
.

We have

E(η2)−E2(η) ≤ E(η)

2m(2n − 1)
+

1

2n − 1

((∫

R

exp
(
−2m+1π2t2

)
dU(t)

)2

− E2(η)

)

+O
(
2−3m−3n+4β(m+n)m

)
+O

(
2−4m−nm9

)
,
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and by (5), we get

E(η2)−E2(η) ≤ E(η)

2m(2n − 1)
+

1

2n − 1

((∫

R

exp
(
−2m+1π2t2

)
dU(t)

)
O
(
2−2m−n+2β(m+n)m3/2

)

+O
(
2−4mm8

)
+ E(η)O

(
2−2mm4

))
+O

(
2−3m−3n+4β(m+n)m

)
+O

(
2−4m−nm9

)
.

When divided by E2(η), we can check using (10) and (4) that every term is
smaller than O (m−γ).

2.3 Proof of proposition 2.1

Before giving the proof, we first complete the construction of u. Let us fix
a 34 times continuously differentiable function α on [0, 1], which takes 0 at
0, 1 at 1, takes values between 0 and 1, and with vanishing derivatives up

to the 18th order at 0 and 1. By choosing u(x) to be equal α
(

|x|−M
∆

)
for

M ≤ |x| ≤ M +∆, u(x) is then a 34 times differentiable function on R with

|ur(x)| ≤ constant

∆r
, for r = 0, 1, ..., 34.

Proof. The measure U , having u as its Fourier transform, can be written as
the sum of the Dirac measure at the origin and

g(t) =

∫

R

exp(−2πitx)(u(x)− 1)dx =

∫ M+∆

−M−∆

exp(−2πitx)(u(x)− 1)dx.

We have
|g(t)| ≤ 2(M +∆) = O(M). (11)

And integration by parts gives

|trg(t)| ≤
∫ M+∆

−M−∆

|u(r)(x)|dx = O

(
1

∆r−1

)
for r = 1, ..., 34. (12)

To prove (2), we use (11) for |t| ≤ 1

∆
and (12) with r = 2 for |t| ≥ 1

∆
∫

R

|dU(t)| = 1 +

∫

R

|g(t)|dt = O

(
M

∆

)
= O(m).

To prove (3), we use (12) with r = p for |t| ≤ 1

∆
and with r = p + 2 for

|t| ≥ 1

∆
∫

R

|tp||dU(t)| =
∫

R

|tp||g(t)|dt = O

(
1

∆p

)
= O

(m

2m

)p/2
for p = 1, ..., 32.
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To prove (4), we use the Plancherel’s theorem. The Fourier transform of tpU

is
ip

(2π)p
u(p)(x) and that of exp (−2m+1π2t2) is

1√
2m+1π

exp

(
− x2

2m+1

)
,


∫

R

exp
(
−2m+1π2t2

)
tpdU(t)

 =
1√

2m+1π (2π)p


∫

R

exp

(
− x2

2m+1

)
u(p)(x)dx



= O

(
1

∆p
√
2m

)∫

|x|≥M

exp

(
− x2

2m+1

)
dx.

To evaluate the integral of the exponential, we have [5]
(
1− 1

2y2

)
exp(−y2)

−2y
<

∫ y

−∞
exp(−x2)dx <

exp(−y2)

−2y
, (13)

for every y < 0. Using the right-hand inequality of (13), we get

∫

R

exp
(
−2m+1π2t2

)
tpdU(t)

 = O
(
2(−m p

2
−(m+n)(1−β)2)mp/2−1/2

)
. (14)

3 The upper bound

Lemma 3.1. Let λ be a real number, v ∈ V ∗
n and µ ∈ V̂m. Then, for f

running in the space of (m,n)-functions

E (exp (λ χ̂v.f (µ))) ≤ exp
(
2m−1λ2

)
.

Proof. The random variables χv.f (x)µ(x) are independent in x and take val-
ues +1 and −1 with probability 1/2. Thus

E (exp (λ χ̂v.f(µ))) = E

(∏

x∈Vm

exp (λχv.f (x)µ(x))

)

=
∏

x∈Vm

E (exp (λχv.f (x)µ(x)))

=
∏

x∈Vm

cosh λ.

And

cosh λ ≤ exp
λ2

2
.
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Theorem 3.1. Let m and n be any positive integers and β any positif real.

Then

P
(
max
v∈V ∗

n

µ∈V̂m

|χ̂v·f(µ)| ≥ 2
m+1

2

√
(m+ n) log 2 (1 + β)

)
≤ 2−(m+n)(2β+β2)+1.

Proof. There exists (v0, µ0) in V ∗
n × V̂m such that max

v∈V ∗

n

µ∈V̂m

|χ̂v·f(µ)| = |χ̂v0·f(µ0)|.

Let λ be a positive real, we have

exp
(
λmax

v∈V ∗

n

µ∈V̂m

|χ̂v·f(µ)|
)
≤ exp (λ χ̂v0·f(µ0)) + exp (−λ χ̂v0·f(µ0))

≤ 2m+n

∫

V ∗

n

∫

V̂m

(exp (λ χ̂v·f(µ)) + exp (−λ χ̂v·f (µ))) dµdv.

When f ranges over the space of (m,n)-functions

E
(
exp

(
λmax

v∈V ∗

n

µ∈V̂m

|χ̂v·f (µ)|
))

≤ 2m+n

∫

V ∗

n

∫

V̂m

E (exp (λ χ̂v·f (µ)) + exp (−λ χ̂v·f (µ))) dµdv.

Using lemma 3.1 and recalling that the total mass over V ∗
n and V̂m is 1, we

have

E
(
exp

(
λmax

v∈V ∗

n

µ∈V̂m

|χ̂v·f (µ)|
))

≤ 2m+n+1 exp
(
2m−1λ2

)

= 2−(m+n)(2β+β2)+1 exp
(
2m−1λ2 + (m+ n)(1 + β)2 log 2

)
.

Thus,

E
(
exp

(
λmax

v∈V ∗

n

µ∈V̂m

|χ̂v·f (µ)|−2m−1λ2−(m+n)(1+β)2 log 2
))

≤ 2−(m+n)(2β+β2)+1.

Consequently,

P
(
exp

(
λmax

v∈V ∗

n

µ∈V̂m

|χ̂v·f (µ)|−2m−1λ2−(m+n)(1+β)2 log 2
)
≥ 1
)
≤ 2−(m+n)(2β+β2)+1.

And finally,

P
(
max
v∈V ∗

n

µ∈V̂m

|χ̂v·f (µ)| ≥ 2m−1λ+
(m+ n)(1 + β)2 log 2

λ

)
≤ 2−(m+n)(2β+β2)+1.

The best bound is obtained when λ = 2
1−m

2

√
(m+ n) log 2 (1 + β), which

gives the result.
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When (m+n) tends to infinity, we obtain then a lower bound of the nonlin-
earity of almost all (m,n)-functions.
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