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Introduction

Let m and n be two positive integers. Functions from the vectorspace V m = F m 2 to the vectorspace V n = F n 2 , where F 2 is the finite field with two elements, are called (m, n)-functions or more generally, vectorial Boolean functions. For a cryptographic use, such functions need to fulfill many criteria in order to ensure the robustness of the cryptosystems in which they are involved [START_REF] Carlet | Vectorial Boolean Functions for Cryptography[END_REF]. Among these criteria and one very important notion is the nonlinearity of these functions that must be as high as possible in order to resist to linear cryptanalysis. A (m, n)-function is affine if and only if it is a F 2 -linear map plus a constant. The nonlinearity N L(f ) of a (m, n)-function f equals the minimum Hamming distance between all the component functions of f , that is v.f where v ∈ V * n = V n \ {0}, and all affine (m, n)-functions. It can be computed through the Walsh transform of these components. For a given v ∈ V * n , the Walsh transform of v.f is the Fourier transform of χ v•f (x) = (-1) (v.f )(x) the ±1-representation of v.f . Let us denote by V m the set of characters of V m . For every µ ∈ V m , we have

χ v•f (µ) = x∈Vm (-1) (v.f )(x) µ(x),
where µ(x) = (-1) x.y for some y in V m . And the nonlinearity of f is

N L(f ) = 2 m-1 - 1 2 max v∈V * n µ∈ Vm | χ v•f (µ)| . 1 
Hence a function has high nonlinearity if all of its components Walsh values have low magnitudes. The covering radius bound is valid for every (m, n)-

function N L(f ) ≤ 2 m-1 -2 m/2-1 , (1) 
and can be achieved with equality only if m is even and n ≤ m/2. For n ≥ m, we have a better bound [START_REF] Chabaud | Links between differential and linear cryptanalysis[END_REF], and when n is sufficiently greater than m, other bounds are given in [START_REF] Carlet | Nonlinearities of S-boxes[END_REF]. Finding better bounds than (1) in the other cases remains an open problem. Besides that, we don't have information about the distribution of the nonlinearity of (m, n)-functions. When n = 1, the distribution was studied by [START_REF] Olejár | On cryptographic properties of random Boolean functions[END_REF][START_REF] Carlet | On cryptographic complexity of Boolean functions[END_REF][START_REF] Rodier | Asymptotic nonlinearity of Boolean functions[END_REF][START_REF] Litsyn | On the distribution of Boolean function nonlinearity[END_REF].

In this paper, we propose asymptotic bounds which are valid for almost all (m, n)-functions. Let 0 < β < 1/4, when m tends to infinity and n ≤ m, we show in theorem 2.1 that the nonlinearity of almost all (m, n)-functions is bounded from above by

2 m-1 -2 m-1 2 (m + n) log 2 (1 -β).
And in theorem 3.1, we prove that for any positif real β, when (m + n) tends to infinity and without any order for m and n, almost all (m, n)-functions have nonlinearity greater than

2 m-1 -2 m-1 2 (m + n) log 2 (1 + β).
To obtain the first result, we use G. Halász method in [START_REF] Halász | On a result of Salem and Zygmund concerning random polynomials[END_REF] concerning random trigonometric polynomials. This work inspired F. Rodier [START_REF] Rodier | Asymptotic nonlinearity of Boolean functions[END_REF] to prove that almost all m-variable Boolean functions ((m, 1)-functions) have nonlinearities in the neighbourhood of 2 m-1 -2 m/2-1 √ 2m log 2. We use the same scheme of proof, however, it was necessary to take more precise approximations in the case of (m, n)-functions. As for the second result, it is a generalization of F. Rodier's result [START_REF] Rodier | Sur la non-linéarité des fonctions booléennes[END_REF] on Boolean functions inspired by the work of R. Salem and A. Zygmund [START_REF] Salem | Some properties of trigonometric series whose terms have random signs[END_REF] on trigonometric series. We begin by proving the lower bound of max

v∈V * n ;µ∈ Vm | χ v•f (µ)| which is more difficult.

The lower bound

Let u(x), that will be completely constructed in section 2.3, be a function on R satisfying

0 ≤ u(x) ≤ 1 ∀x ∈ R, u(x) = 0 for |x| ≤ M 1 for |x| ≥ M + ∆, where M = 2 m+1 2 (m + n) log 2(1 -β) with 0 < β < 1/4 and ∆ = 2 m log 2 m .
We consider the random variable η on the space of (m, n)-functions

η(f ) = V * n Vm u ( χ v.f (µ)) dµdv, where dµ (resp. dv) is a uniform measure over V m (resp. V * n ) of total mass 1. η(f ) = 0 is equivalent to max v∈V * n ; µ∈ Vm | χ v•f (µ)| ≤ M. When n ≤ m, we shall
prove by applying Chebyshev's inequality that this occurs with probability tending to 0 for large enough m. The function u(x) is the real Fourier transform of a measure U on R

u(x) = R exp (-2πitx) dU(t). Hence η(f ) = V * n Vm R exp (-2πit χ v.f (µ)) dU(t)dµdv.
Before evaluating the first and second moment of η, some estimations are necessary but we chose to give the proof later. The following proposition is given in [START_REF] Halász | On a result of Salem and Zygmund concerning random polynomials[END_REF] and [START_REF] Rodier | Asymptotic nonlinearity of Boolean functions[END_REF] but we repeat it for the reader's convenience.

Proposition 2.1. When m tends to infinity, we have the following estimations:

R |dU(t)| = O(m), (2) 
R |t| p |dU(t)| = O m 2 m p/2 for 1 ≤ p ≤ 32, (3) 
    R exp -2 m+1 π 2 t 2 t p dU(t)     = O 2 -m p 2 -(m+n)(1-2β) m p/2-1/2 for 0 ≤ p ≤ 24. (4) 
Proof. See section 2.3.

Expectation of η

Lemma 2.1.

E(η) = R exp -2 m+1 π 2 t 2 dU(t) + O 2 -2m-n+2β(m+n) m 3/2 + O 2 -2m m 4 .
(

) 5 
Proof. We have

E(η) = V * n Vm R E (exp (-2πit χ v.f (µ))) dU(t)dµdv.
The random variables χ v.f (x)µ(x) are independent in x and take values +1 and -1 with probability 1/2. Thus

E (exp (-2πit χ v.f (µ))) = E x∈Vm exp (-2πitχ v.f (x)µ(x)) = x∈Vm E (exp (-2πitχ v.f (x)µ(x))) = cos 2 m (2πt) (6) = exp -2 m+1 π 2 t 2 - 4 3 π 4 2 m t 4 + O(2 m t 6 )
for |t| ≤ 1 3π , by applying on ( 6)

log cos y = - y 2 2 - y 4 12 + O y 6 for |y| ≤ 1 and exp(-a) = exp(-b) + O(b -a) for a, b ≥ 0. (7) 
For |t| > 1 3π , we use the trivial bound 1 for the integrand. This gives

R E (exp (-2πit χ v.f (µ))) dU(t) = 1 3π -1 3π exp -2 m+1 π 2 t 2 - 4 3 π 4 2 m t 4 dU(t) + O 2 m R t 6 |dU(t)| + O |t|≥ 1 3π |dU(t)| .
We extend the first integral over the real line making the same error as the third term, that can be included in the second one. This yields

R exp -2 m+1 π 2 t 2 - 4 3 π 4 2 m t 4 dU(t) + O 2 m R t 6 |dU(t)| .
By (3), the remainder equals O (2 -2m m 3 ). As for the main term, we use exp(-a) = 1a + O(a 2 ) for a > 0, in addition to (3) and ( 4) as follows

R exp -2 m+1 π 2 t 2 - 4 3 π 4 2 m t 4 dU(t) = R exp -2 m+1 π 2 t 2 1 - 4 3 π 4 2 m t 4 + O 2 2m t 8 dU(t) = R exp -2 m+1 π 2 t 2 dU(t) + O 2 -2m-n+2β(m+n) m 3/2 + O 2 2m R t 8 |dU(t)| = R exp -2 m+1 π 2 t 2 dU(t) + O 2 -2m-n+2β(m+n) m 3/2 + O 2 -2m m 4 .
The proof is complete recalling that the total mass over V * n and V m is 1.

2.2

The second moment

η 2 (f ) consists of three sums η 2 (f ) = V * n 2 × V 2 m (v,µ)=(v ′ ,µ ′ ) u ( χ v.f (µ)) u ( χ v ′ .f (µ ′ )) dµdvdµ ′ dv ′ + V * n 2 × V 2 m v=v ′ µ =µ ′ u ( χ v.f (µ)) u ( χ v ′ .f (µ ′ )) dµdvdµ ′ dv ′ + V * n 2 × V 2 m v =v ′ u ( χ v.f (µ)) u ( χ v ′ .f (µ ′ )) dµdvdµ ′ dv ′ ,
which we denote respectively by

η 2 1 (f ), η 2 2 (f ) et η 2 3 (f ). Lemma 2.2. E(η 2 1 ) ≤ 1 2 m (2 n -1) E(η).
Proof.

η 2 1 (f ) = V * n 2 × V 2 m (v,µ)=(v ′ ,µ ′ ) u ( χ v.f (µ)) u ( χ v ′ .f (µ ′ )) dµdvdµ ′ dv ′ = 1 2 m (2 n -1) V * n × Vm u 2 ( χ v.f (µ)) dµdv ≤ 1 2 m (2 n -1) V * n × Vm u ( χ v.f (µ)) dµdv = 1 2 m (2 n -1) η(f ) noting that 0 ≤ u(x) ≤ 1, ∀x ∈ R.
For E(η 2 2 ) (resp. E(η 2 3 )), we use the representation of u as a Fourier transform

E(η 2 2 ) = E V * n 2 × V 2 m v=v ′ µ =µ ′ u ( χ v.f (µ)) u ( χ v.f (µ ′ )) dµdvdµ ′ dv ′ = V * n 2 × V 2 m v=v ′ µ =µ ′ R 2 E (exp (-2πit χ v.f (µ) -2πit ′ χ v.f (µ ′ ))) dU(t)dU(t ′ )dµdvdµ ′ dv ′ .
We evaluate the integrand in the following lemma.

Lemma 2.3. Given v ∈ V * n and µ, µ ′ ∈ V m such that µ = µ ′ . For t and t ′ of absolute value smaller than 1 3π , we have

E (exp (-2πit χ v.f (µ) -2πit ′ χ v.f (µ ′ ))) = exp -2 m 4 i=1 i j=0 c i,j t 2i-2j t ′2j +2 m O(|t|+|t ′ |) 10 ,
where c i,j are positive reals.

Proof. The random variables χ v.f (x) (tµ(x) + t ′ µ ′ (x)) are independent in x, and take values (tµ(x) + t ′ µ ′ (x)) and -(tµ(x) + t ′ µ ′ (x)) with probability 1/2. Thus

E (exp (-2πit χ v.f (µ) -2πit ′ χ v.f (µ ′ ))) = E x∈Vm exp (-2πiχ v.f (x) (tµ(x) + t ′ µ ′ (x))) = x∈Vm E (exp (-2πiχ v.f (x) (tµ(x) + t ′ µ ′ (x)))) = x∈Vm cos(2π(tµ(x) + t ′ µ ′ (x))).
Since µ = µ ′ , they agree (resp. disagree) Simplifying and using [START_REF] Litsyn | On the distribution of Boolean function nonlinearity[END_REF] give the result.

2 m-1 times x∈Vm cos(2π(tµ(x) + t ′ µ ′ (x))) = cos 2 m-1 (2π(t + t ′ )) cos 2 m-1 (2π(t -t ′ )) = exp -2 m 4 i=1 c i (t + t ′ ) 2i + O(t + t ′ ) 10 + 4 i=1 c i (t -t ′ ) 2i + O(t -t ′ ) 10 , for |t| ≤ 1 3π , |t ′ | ≤
Lemma 2.4.

E(η 2 2 ) = 1 2 n -1 R exp -2 m+1 π 2 t 2 dU(t) 2 + O 2 -3m-3n+4β(m+n) m + O 2 -4m-n m 9 .
Proof. Using the previous lemma together with the trivial bound 1 for the integrand outside the square |t| ≥

1 3π , |t ′ | ≥ 1 3π give R 2 E (exp (-2πit χ v.f (µ) -2πit ′ χ v.f (µ ′ ))) dU(t)dU(t ′ ) = 1 3π -1 3π 1 3π -1 3π exp -2 m 4 i=1 i j=0 c i,j t 2i-2j t ′2j dU(t)dU(t ′ ) + O 2 m R 2 (|t| + |t ′ |) 10 |dU(t)||dU(t ′ )| (8) 
+ O |t|≥ 1 3π R |dU(t)||dU(t ′ )| .
We extend integration in the first term over R 2 making the same error as the third term, that is smaller than the second one. Noting that c 1,0 = c 1,1 = 2π 2 , and applying

exp(-a) = 1 -a + a 2 2 - a 3 6 + O(a 4
), for a > 0, the first term then becomes

R 2 exp(-2 m+1 π 2 t 2 ) exp(-2 m+1 π 2 t ′2 ) 1 -2 m 4 i=2 i j=0 c i,j t 2i-2j t ′2j + 2 2m 8 i=4 i j=0 l i,j t 2i-2j t ′2j -2 3m 12 i=6 i j=0 p i,j t 2i-2j t ′2j + 2 4m O 16 i=8 i j=0 r i,j t 2i-2j t ′2j dU(t)dU(t ′ )
and by ( 4), we get

R exp(-2 m+1 π 2 t 2 )dU(t) 2 -2 m 4 i=2 i j=0 O 2 -mi-2(m+n)(1-2β) m i-1 + 2 2m 8 i=4 i j=0 O 2 -mi-2(m+n)(1-2β) m i-1 -2 3m 12 i=6 i j=0 O 2 -mi-2(m+n)(1-2β) m i-1 + 2 4m O 16 i=8 i j=0 r i,j R t 2i-2j |dU(t)| R t ′2j |dU(t ′ )| . ( 9 
)
Terms in ( 9) with i = j or j = 0 are equal

2 4m O (m) O m 2 m
8 by ( 2) and

(3). The other terms are equal

2 4m O m 2 m 8 by (3). This gives R exp -2 m+1 π 2 t 2 dU(t) 2 + O 2 -3m-2n+4β(m+n) m + O 2 -4m m 9 .
As for [START_REF] Olejár | On cryptographic properties of random Boolean functions[END_REF], it can be estimated just like ( 9) using ( 2) and ( 3), yielding O (2 -4m m 6 ). We end the calculations by integrating over the other variables.

Lemma 2.5.

E(η 2 3 ) = 1 - 1 2 n -1 E 2 (η).
Proof. We have

E(η 2 3 ) = V * n 2 × V 2 m v =v ′ R 2 E (exp (-2πit χ v.f (µ) -2πit ′ χ v ′ .f (µ ′ ))) dU(t)dU(t ′ )dµdvdµ ′ dv ′ . Since v = v ′ , the random variables χ v.f (µ) and χ v ′ .f (µ ′ ) are independent. Thus E (exp (-2πit χ v.f (µ) -2πit ′ χ v ′ .f (µ ′ ))) = E (exp (-2πit χ v.f (µ))) E (exp (-2πit ′ χ v ′ .f (µ ′ ))) = cos 2 m (2πt) cos 2 m (2πt ′ ),
as calculated previously in [START_REF] Halász | On a result of Salem and Zygmund concerning random polynomials[END_REF]. And,

E(η 2 3 ) = V * n 2 × V 2 m v =v ′ dµdvdµ ′ dv ′ R cos 2 m (2πt)dU(t) 2 = 1 - 1 2 n -1 E 2 (η). Lemma 2.6. 1 E(η) = O 2 (m+n)(1-β) 2 √ m . (10) 
Proof. We have

E(η) = R exp -2 m+1 π 2 t 2 dU(t) + O 2 -2m-n+2β(m+n) m 3/2 + O 2 -2m m 4 .
The Fourier transform of exp (-

2 m+1 π 2 t 2 ) is 1 √ 2 m+1 π exp - x 2 2 m+1
. Hence, by Plancherel's theorem, and the left-hand inequality of (13), we have

R exp -2 m+1 π 2 t 2 dU(t) = 1 √ 2 m+1 π R exp - x 2 2 m+1 u(x)dx ≥ 1 √ 2 m+1 π |x|≥M +∆ exp - x 2 2 m+1 dx = 1 √ π |y|≥ M +∆ √ 2 m+1
exp(-y 2 )dy

≥ 2 m+1 π exp -(M +∆) 2 2 m+1 M + ∆ 1 - 2 m (M + ∆) 2 ≥ C 1 √ 2 m+1 exp -M 2 2 m+1 M + ∆ ≥ C 2 2 -(m+n)(1-β) 2 m -1/2 .

Adding the fact that

O 2 -2m-n+2β(m+n) m 3/2 + O 2 -2m m 4 = o 2 -(m+n)(1-β) 2 m -1/2 ,
proves the result.

Theorem 2.1. Let 0 < β < 1 4 and γ any positive real. When m tends to infinity and n ≤ m, we have

P max v∈V * n µ∈ Vm | χ v•f (µ)| ≤ 2 m+1 2 (m + n) log 2 (1 -β) = P (η = 0) = O m -γ .
Proof. When η = 0, η deviates from its expectation by E(η), and by Tchebitcheff's inequality

P (η = 0) ≤ P |η -E(η)| ≥ E(η) ≤ E(η 2 ) -E 2 (η) E 2 (η) .
We have

E(η 2 ) -E 2 (η) ≤ E(η) 2 m (2 n -1) + 1 2 n -1 R exp -2 m+1 π 2 t 2 dU(t) 2 -E 2 (η) + O 2 -3m-3n+4β(m+n) m + O 2 -4m-n m 9 ,
and by [START_REF] Feller | An introduction to probability theory and its applications[END_REF], we get

E(η 2 ) -E 2 (η) ≤ E(η) 2 m (2 n -1) + 1 2 n -1 R exp -2 m+1 π 2 t 2 dU(t) O 2 -2m-n+2β(m+n) m 3/2 + O 2 -4m m 8 + E(η)O 2 -2m m 4 + O 2 -3m-3n+4β(m+n) m + O 2 -4m-n m 9
When divided by E 2 (η), we can check using [START_REF] Rodier | Asymptotic nonlinearity of Boolean functions[END_REF] and ( 4) that every term is smaller than O (m -γ ).

Proof of proposition 2.1

Before giving the proof, we first complete the construction of u. Let us fix a 34 times continuously differentiable function α on [0, 1], which takes 0 at 0, 1 at 1, takes values between 0 and 1, and with vanishing derivatives up to the 18th order at 0 and 1. By choosing u(x) to be equal

α |x|-M ∆ for M ≤ |x| ≤ M + ∆, u(x) is then a 34 times differentiable function on R with |u r (x)| ≤ constant ∆ r
, for r = 0, 1, ..., 34. Proof. The measure U, having u as its Fourier transform, can be written as the sum of the Dirac measure at the origin and

g(t) = R exp(-2πitx)(u(x) -1)dx = M +∆ -M -∆ exp(-2πitx)(u(x) -1)dx.
We have

|g(t)| ≤ 2(M + ∆) = O(M). (11) 
And integration by parts gives

|t r g(t)| ≤ M +∆ -M -∆ |u (r) (x)|dx = O 1 ∆ r-1 for r = 1, ..., 34. (12) 
To prove (2), we use [START_REF] Salem | Some properties of trigonometric series whose terms have random signs[END_REF] for |t| ≤ 1 ∆ and (12

) with r = 2 for |t| ≥ 1 ∆ R |dU(t)| = 1 + R |g(t)|dt = O M ∆ = O(m).
To prove (3), we use (12) with r = p for |t| ≤ 1 ∆ and with r = p + 2 for

|t| ≥ 1 ∆ R |t p ||dU(t)| = R |t p ||g(t)|dt = O 1 ∆ p = O m 2 m p/2
for p = 1, ..., 32.

To prove (4), we use the Plancherel's theorem. The Fourier transform of t p U is i p (2π) p u (p) (x) and that of exp (-

2 m+1 π 2 t 2 ) is 1 √ 2 m+1 π exp - x 2 2 m+1 ,     R exp -2 m+1 π 2 t 2 t p dU(t)     = 1 √ 2 m+1 π (2π) p     R exp - x 2 2 m+1 u (p) (x)dx     = O 1 ∆ p √ 2 m |x|≥M exp - x 2 2 m+1 dx.
To evaluate the integral of the exponential, we have [START_REF] Feller | An introduction to probability theory and its applications[END_REF] 1 -

1 2y 2 exp(-y 2 ) -2y < y -∞ exp(-x 2 )dx < exp(-y 2 ) -2y , (13) 
for every y < 0. Using the right-hand inequality of (13), we get

    R exp -2 m+1 π 2 t 2 t p dU(t)     = O 2 (-m p 2 -(m+n)(1-β) 2 ) m p/2-1/2 . ( 14 
)
3 The upper bound Lemma 3.1. Let λ be a real number, v ∈ V * n and µ ∈ V m . Then, for f running in the space of (m, n)-functions

E (exp (λ χ v.f (µ))) ≤ exp 2 m-1 λ 2 .
Proof. The random variables χ v.f (x)µ(x) are independent in x and take values +1 and -1 with probability 1/2. Thus (m + n) log 2 (1 + β), which gives the result.

E (exp (λ χ v.f (µ))) = E x∈Vm exp (λ χ v.f (x)µ(x)) = x∈Vm E (exp (λ χ v.f (x)µ(x))) = x∈Vm cosh λ.

And cosh λ ≤ exp λ 2 2 . 3 . 1 . 2 m+1 2 ( 2 = 2 -|

 2312222 Theorem Let m and n be any positive integers and β any positif real. ThenP max v∈V * n µ∈ Vm | χ v•f (µ)| ≥ m + n) log 2 (1 + β) ≤ 2 -(m+n)(2β+β 2 )+1 . Proof. There exists (v 0 , µ 0 ) in V * n × V m such that max v∈V * n µ∈ Vm | χ v•f (µ)| = | χ v 0 •f (µ 0 )|.Let λ be a positive real, we haveexp λ max v∈V * n µ∈ Vm | χ v•f (µ)| ≤ exp (λ χ v 0 •f (µ 0 )) + exp (-λ χ v 0 •f (µ 0 )) ≤ 2 m+n V * n Vm (exp (λ χ v•f (µ)) + exp (-λ χ v•f (µ))) dµdv.When f ranges over the space of (m, n)-functionsE exp λ max v∈V * n µ∈ Vm | χ v•f (µ)| ≤ 2 m+n V * n Vm E (exp (λ χ v•f (µ)) + exp (-λ χ v•f (µ))) dµdv.Using lemma 3.1 and recalling that the total mass over V * n and V m is 1, we haveE exp λ max v∈V * n µ∈ Vm | χ v•f (µ)| ≤ 2 m+n+1 exp 2 m-1 λ (m+n)(2β+β 2 )+1 exp 2 m-1 λ 2 + (m + n)(1 + β) 2 log 2 .Thus,E exp λ max v∈V * n µ∈ Vm | χ v•f (µ)|-2 m-1 λ 2 -(m+n)(1+β) 2 log 2 ≤ 2 -(m+n)(2β+β 2 )+1 .Consequently,P exp λ max v∈V * n µ∈ Vm | χ v•f (µ)|-2 m-1 λ 2 -(m+n)(1+β) 2 log 2 ≥ 1 ≤ 2 -(m+n)(2β+β 2 )+1 . χ v•f (µ)| ≥ 2 m-1 λ + (m + n)(1 + β) 2 log 2 λ ≤ 2 -(m+n)(2β+β 2 )+1 .The best bound is obtained when λ = 2