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Abstract 

Dissolved chloride in argillite porewater has been studied as a natural analogue for radionuclides potentially 
released from radioactive waste disposal. The Tournemire URL intersects impervious and compacted argillite.  A 
previously obtained chloride concentration profile of intact rock is symmetric with a maximum concentration of 
0.6±0.1 g/L, compared to 19 g/L for the original connate seawater. Dissolved chloride shows high δ37Cl values, 
ranging between +6 and +8‰ vs. SMOC. The modeled profile considers diffusive exchange between connate 
seawater and meteoric freshwater. Transport parameters were obtained by radial diffusion experiments. Numerical 
modeling was performed with the coupled reactive-transport code Hytec. Simulations suggest a diffusive-exchange 
time of 85±10 Ma for Cl, which correlates with a major erosional period. Simulated δ37Cl values between 1.002 and 
1.003 agree with observed porewater δ37Cl. This study strongly suggests that the dissolved chloride profile in the 
argillites results from diffusive exchange and indicates that unfractured argillites can provide good confinement.  
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1. Introduction 

Safety studies on High Level and Intermediate Level Long Lived radioactive wastes in deep geological 
formations include assessing the potential transfer of the most mobile radionuclides, such as 36Cl, from 
the host rock to the biosphere. This requires developing conceptual models for calculating the flows of 
water and solute through geological formations. These models are mainly based on the study of natural 
tracers that indicate past and present transfers across a sedimentary pile. The tracers used are generally the 
most mobile, such as the halides Cl- and Br-. Since the 1990s, the Tournemire Underground Research 
Laboratory (URL) owned by the French Institute for Radiological Protection and Nuclear Safety (IRSN) 
has developed methods for the characterization of chloride in a compacted argillite ([1], [2] and [3]). The 
URL, located in the south of France (Fig. 1), crosses an over-consolidated argillite mainly composed of 
clay minerals (50%) dominated by illite (40%), with carbonates (10-40%) and silts (15%) [4]. The 
hydraulic conductivity of the intact rock was estimated to be between 10-14 and 10-15 m/s [4], which 
definitely classifies the formation as an aquitard. This argillaceous rock is cross-cut by subvertical water-
saturated fractures with equivalent hydraulic conductivities on the order of 10-10 m/s. The study of 
dissolved chloride in the Toarcian/Domerian argillite porewater and its diffusive transport parameters 
were mainly discussed in two complementary PhD theses ([1] and [2]) performed on samples taken from 
the unfractured rock. The aqueous chloride concentrations (Fig. 2) were determined from either diffusion 
experiments on small cubic pieces of argillite (boreholes TN2 and TN3 [1]) or radial diffusion 
experiments on core samples (boreholes PH4 and PH5 [2]). The two sets of data were in good agreement.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Cross section of the Tournemire URL with the location 
of the boreholes dedicated to Cl concentration measurements. 

Fig.2 Profile of Cl concentration in 
porewater at the Tournemire URL. 

 
The bell-shaped Cl profile (Fig 2) suggested binary mixing between saline water preserved in the 

argillite and freshwater contained in the surrounding aquifers. Their conceptual models proposed seawater 
as the unique source of chloride as no indication of brine occurrence has been found at Tournemire, so 
far. They also assumed that the salinity of argillite porewater started to decrease by diffusive mixing with 
meteoric water after it reached the argillite borders. It was initially proposed that this contact was initiated 
with the Pyrenean orogeny, some 53 Ma ago [1]. Next, it was suggested that the diffusive transport could 
have started much earlier - in the upper Cretaceous [2]. This period coincides with a major regression 
phase leading to the erosion of nearly 1000 m of sediment in the Cevennes area before a last and fast sea 
incursion, some 60 Ma ago [2]. If diffusion is responsible for the Cl transport, then it must also have 
induced a fractionation of its stable isotopes (37Cl and 35Cl) in agreement with the Cl transport time 
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deduced from modelling. Indeed, only diffusion and saline filtration are known to fractionate chlorine 
stable isotopes during transport [5, 6]. The goal of this study is to verify the consistency of diffusive 
exchange between seawater and freshwater by modelling the diffusive transport of Cl and of its stable 
isotopes through the Tournemire argillite. The modelled chlorine stable isotope contents also have to 
agree with the high and positive δ37Cl values between 6 and 8 ‰ vs. SMOC) measured in fracture water 
samples and assumed to be representative of argillite porewater located at their contact [7]. 

2. Modelling the Cl and δδ37Cl profiles across the Toarcian/Domerian argillite 

Seawater composition was set as the initial condition for the argillite porewater (Cl = 557 mmol/L, 
δ37Cl = 0‰ vs. SMOC) assuming no change in the marine 37Cl composition over geological time. 
Boundary conditions were those presently measured in the Carixian and Aalenian aquifers, respectively 
1.41 and 3.10 mmol/L for Cl, and 0‰ vs. SMOC for δ37Cl values. Simulations of diffusion in the vertical 
direction were performed assuming that, throughout the simulation time, dispersion was dominated by 
diffusion. Therefore, the 1D dispersion equation is: ∂/∂z (Dp ∂C/∂z ) = θ ∂C/∂t where C is the 
concentration for total Cl, 35Cl and 37Cl,  θ the porosity accessible to Cl, Dp the Cl pore diffusion 
coefficient (m2  s-1) and z the elevation in metres above sea level (masl). All parameters were estimated 
at different depths by the radial diffusion method [2], and are summarized in Table 1. The numerical 
modelling was performed with the coupled reactive-transport code Hytec [8]. The argillite formation was 
divided into eight units to account for variations of transport properties. Each unit was divided into 1m x 
1m quadrilaterals, leading to a number of computational elements equal to the column height. As the Dp 
values were determined parallel to the bedding, they were divided by 3 to account for the known 
anisotropy of the argillite in the normal direction. 
 
Table 1: Summary of the chloride pore diffusion coefficients and accessible porosity utilized as inputs in the simulations. 

Formation Interval (m asl) Dp Cl- ⊥ x10-11 [m2.s-1] θ (% vol/vol) 
Upper Toarcian 1 558-513 1.7 8.0 
Upper Toarcian 2 503-450 1.1 6.0 
Upper Toarcian 3 450-430 1.2 6.4 
Upper/Middle Toarcian 430-400 0.72 3.5 
Middle Toarcian 400-380 0.8 7.2 
Middle/Lower Toarcian 380-370 0.7 6.0 
Lower Toarcian/Domerian 370-325 0.8 3.0 
Domerian 325-298 1.4 4.0 

 
The modelled curves for chloride are reported in Figure 3 and compared to experimental data [2]. 
Simulations are shown for a large but realistic time span since marine regression started at the end of the 
Tithonian, some 145 Ma ago [2]. This figure shows that most of the experimental data plot on the 85 ± 10 
Ma curve, a reasonable estimate as the very last brief marine intrusion is known to have taken place in the 
early Palaeocene - some 60 Ma ago. The dispersion equation was also applied separately to 35Cl and 37Cl 
isotopes at different modelling times (between 5 and 100Ma) and various diffusion coefficient ratios (α = 
D35Cl/37Cl) ranging between 1.0015 and 1.003.  The best agreement was obtained for an evolution time of 
85 Ma and for values of α35/37 ranging between 1.002 and 1.003 (Fig. 4). These values compare well with 
the previous estimates of α35/37 while remaining in the upper range. Indeed in previous studies α35/37 range 
from 0,9981 in water [9], to 1.00128 at 2 °C to 1.00192 in polyacrilamide gel [10], and 1.0017 in lagoon 
sediments [11]. Gimmi and Waber considered α35/37 values up to 1.003 in argillaceous rocks [12]. The 
lower values obtained here may be due to the extremely impermeable nature of the argillite. This result 
clearly indicates that the pure diffusive model is realistic as it explains both the Cl and δ37Cl values. 
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Fig. 3 Experimental chloride profile compared to 
modelled curves of a diffusive exchange between 
seawater and freshwater since aquifer activation. 

 
 
Fig. 4 Comparison of δ37Cl values in fracture 
water with model curves obtained for a diffusive 
exchange of 85 Ma with different  values. 

3. Conclusions 

The scenario of diffusive transport in the Toarcian/Domerian argillite between marine water and 
meteoric water reservoirs, and initiated during Cretaceous times, is supported both by the geological 
history of the basin and the common behaviour of the Cl and stable isotopes. Indeed modelling of 
diffusion, for both Cl and 37Cl, considering diffusion coefficient ratios α35/37 between 1.002 and 1.003, 
agrees well with the data. The simulated time span required to reach the present-day chloride profile and 
to reach the high values of δ37Cl determined for porewater converge towards a diffusion time of about 
85±10 Ma. This period is older than the 53 Ma initially proposed [1]. 
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